Jeffery C: Moonlighting proteins. Trends Biochem Sci. 1999, 24: 8-11.
PubMed
CAS
Google Scholar
Campbell RM, Scanes CG: Endocrine peptides ‘moonlighting’ as immune modulators: roles for somatostatin and GH-releasing factor. J Endocrinol. 1995, 147: 383-396.
PubMed
CAS
Google Scholar
Weaver DT: Telomeres: moonlighting by DNA repair proteins. Curr Biol. 1998, 8: R492-R494.
PubMed
CAS
Google Scholar
Piatigorsky J, WistowG J: Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell. 1989, 57: 197-199.
PubMed
CAS
Google Scholar
WistowG J, Kim H: Lens protein expression in mammals:taxon-specificity and the recruitment of crystallins. J Mol Evol. 1991, 32: 262-269.
Google Scholar
Piatigorsky J: Multifunctional lens crystallins and corneal enzymes. More than meets the eye. Ann N Y Acad Sci. 1998, 842: 7-15.
PubMed
CAS
Google Scholar
Piatigorsky J: Crystallin genes: specialization by changes in gene regulation may precede gene duplication. J Struct Funct Genom. 2003, 3: 131-137.
CAS
Google Scholar
Graham C, Hodin J, WistowG J: A retinaldehyde dehydrogenase as a structural protein in a mammalian eye lens. Gene recruitment of eta-crystallin. J Biol Chem. 1996, 271: 15623-15628.
PubMed
CAS
Google Scholar
Jeffery C: Moonlighting proteins–an update. Mol Biosyst. 2009, 5: 345-350.
PubMed
CAS
Google Scholar
Jeffery C: Moonlighting proteins: complications and implications for proteomics research. Drug Discov Today: TARGETS. 2004, 3: 71-78.
CAS
Google Scholar
Moghaddam A, Bicknell R: Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry. 1992, 31: 12141-12146.
PubMed
CAS
Google Scholar
Ostrovsky de Spicer P, Maloy S: PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc Natl Acad Sci U S A. 1993, 90: 4295-4298.
PubMed
CAS
Google Scholar
Mowbray SL, Koshland DE: Mutations in the aspartate receptor of Escherichia coli which affect aspartate binding. J Biol Chem. 1990, 265: 15638-15643.
PubMed
CAS
Google Scholar
Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, de Riel JK, Sirover MA: A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1991, 88: 8460-8464.
PubMed
CAS
Google Scholar
Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998, 92: 735-745.
PubMed
CAS
Google Scholar
Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE: Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol. 2007, 189: 4046-4052.
PubMed
CAS
Google Scholar
Lu M, Sautin Y, Holliday L, Gluck S: The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H + −ATPase. J Biol Chem. 2004, 279: 8732-8739.
PubMed
CAS
Google Scholar
Huberts DH, Vander Klei IJ: Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta. 1803, 2010: 520-525.
Google Scholar
Jeffery C: Proteins with neomorphic moonlighting functions in disease. IUBMB Life. 2011, 63: 489-494.
PubMed
CAS
Google Scholar
Sriram G, Martinez JA, McCabe ER, Liao JC, Dipple KM: Single-gene disorders: what role could moonlighting enzymes play?. Am J Hum Genet. 2005, 76: 911-924.
PubMed
CAS
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402.
PubMed
CAS
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M: The Pfam protein families database. Nucleic Acids Res. 2014, 42: D222-D230.
PubMed
CAS
Google Scholar
Bru C, Courcelle E, Carrère S, Beausse Y, Dalmar S, Kahn D: The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 2005, 33: D212-D215.
PubMed
CAS
Google Scholar
Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 2012, 40: D306-D312.
PubMed
CAS
Google Scholar
Ozimek P, Kotter P, Veenhuis M, Klei IJ: Hansenula polymorpha and Saccharomyces cerevisiae Pex5p’s recognize different, independent peroxisomal targeting signals in alcohol oxidase. FEBS Lett. 2006, 580: 46-50.
PubMed
CAS
Google Scholar
Chen XJ, Wang X, Kaufman BA, Butow RA: Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science. 2005, 307: 714-717.
PubMed
CAS
Google Scholar
Tang Y, Guest J: Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology. 1999, 145: 3069-3079.
PubMed
CAS
Google Scholar
Gomez A, Domedel N, Cedano J, Pinol J, Querol E: Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins?. Bioinformatics. 2003, 19: 895-896.
PubMed
CAS
Google Scholar
Khan I, Chitale M, Rayon C, Kihara D: Evaluation of function predictions by PFP, ESG, and PSI-BLAST for moonlighting proteins. BMC Proc. 2012, 6 (Suppl 7): S5-
PubMed
Google Scholar
Hawkins T, Luban S, Kihara D: Enhanced automated function prediction using distantly related sequences and contextual association by PFP. Protein Sci. 2006, 15: 1550-1556.
PubMed
CAS
Google Scholar
Hawkins T, Chitale M, Luban S, Kihara D: PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins: Struct Funct Bioinformatics. 2009, 74: 566-582.
CAS
Google Scholar
Chitale M, Hawkins T, Park C, Kihara D: ESG: extended similarity group method for automated protein function prediction. Bioinformatics. 2009, 25: 1739-1745.
PubMed
CAS
Google Scholar
Gómez A, Hernández S, Amela I, Piñol J, Cedano J, Querol E: Do protein-protein interaction databases identify moonlighting proteins?. Mol Biosyst. 2011, 7: 2379-2382.
PubMed
Google Scholar
Khan I, Kihara D: Computational characterization of moonlighting proteins. Biochem Soc Trans. 2014, 42: 1780-1785.
PubMed
CAS
Google Scholar
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25: 25-34.
PubMed
CAS
Google Scholar
Gene Ontology Consortium: Gene Ontology annotations and resources. Nucleic Acids Res. 2013, 41: D530-D535.
Google Scholar
UniProt Consortium: Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014, 42: D191-D198.
Google Scholar
Jeffery CJ: Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. Curr Opin Struct Biol. 2004, 14: 663-668.
PubMed
CAS
Google Scholar
Spiess C, Beil A, Ehrmann M: A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell. 1999, 97: 339-347.
PubMed
CAS
Google Scholar
Lipinska B, Zylicz M, Georgopoulos C: The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol. 1990, 172: 1791-1797.
PubMed
CAS
Google Scholar
Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A. 1999, 96: 4285-4288.
PubMed
CAS
Google Scholar
Babu M, Di’az-Meji JJ, Vlasblom J, Gagarinova A, Phanse S, Graham C, Yousif F, Ding H, Xiong X, Nazarians-Armavil A, Alamgir M, Ali M, Pogoutse O, Pe'er A, Arnold R, Michaut M: Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways. PLoS Genet. 2011, 7: e1002377-
PubMed
CAS
Google Scholar
Letoffe S, Heuck G, Delepelaire P, Lange N, Wandersman C: Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Nat Acad Science. 2009, 106: 11719-11724.
CAS
Google Scholar
Subedi K, Choi D, Kim I, Min B, Park C: Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol Microbiol. 2011, 81: 926-936.
PubMed
CAS
Google Scholar
Foti J, Persky N, Ferullo D, Lovett S: Chromosome segregation control by Escherichia coli ObgE GTPase. Mol Microbiol. 2007, 65: 569-581.
PubMed
CAS
Google Scholar
Jiang M, Datta K, Walker A, Strahler J, Bagamasbad P, Andrews P, Maddock J: The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. J Bacteriol. 2006, 188: 6757-6770.
PubMed
CAS
Google Scholar
Cohen-Ben-Lulu G, Francis NRSE, Noy DDY, Prasad K, Sagi Y, Cecchini G, Johnstone R, Eisenbach M: The bacterial flagellar switch complex is getting more complex. EMBO J. 2008, 27: 1134-1144.
PubMed
CAS
Google Scholar
Awano N, Rajagopal V, Arbing M, Patel S, Hunt J, Inouye M, Phadtare S: Escherichia coli RNase R has dual activities, helicase and RNase. J Bacteriol. 2010, 192: 1344-1352.
PubMed
CAS
Google Scholar
Stirling C, Colloms S, Collins J, Szatmari G, Sherratt DJ: xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J. 1989, 8: 1623-1627.
PubMed
CAS
Google Scholar
Skórko-Glonek J, Zurawa D, Kuczwara E, Wozniak M, Wypych Z, Lipinska B: The Escherichia coli heat shock protease HtrA participates in defense against oxidative stress. Mol Gen Genet: MGG. 1999, 262: 342-350.
PubMed
Google Scholar
Khil P, Camerini-Otero RD: Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol. 2002, 44: 89-105.
PubMed
CAS
Google Scholar
Cusa E, Obradors N, Baldomà L, Badía J, Aguilar J: Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J Bacteriol. 1999, 181: 7479-7484.
PubMed
CAS
Google Scholar
Henning U, Sonntag I, Hindennach I: Mutants (ompA) affecting a major outer membrane protein of Escherichia coli K12. Eur J Biochem. 1978, 92: 491-498.
PubMed
CAS
Google Scholar
Kurono N, Matsuda A, Etchuya R, Sobue R, Sasaki Y, Ito M, Ando T, Maeda S: Genome-wide screening of Escherichia coli genes involved in execution and promotion of cell-to-cell transfer of non-conjugative plasmids: rodZ (yfgA) is essential for plasmid acceptance in recipient cells. Biochem Biophys Res Comm. 2012, 421: 119-123.
PubMed
CAS
Google Scholar
Han X, Dorsey-Oresto A, Wang JY, Malik M, Drlica K, Zhao X, Lu T: Escherichia coli genes that reduce the lethal effects of stress. BMC Microbiol. 2010, 10: 35-
PubMed
Google Scholar
Arenas F, Díaz W, Díaz W, Pérez-Donoso J, Imlay J, Vásquez C: The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem Biophys Res Comm. 2010, 398: 690-694.
PubMed
CAS
Google Scholar
de Veaux L, Clevenson D, Bradbeer C, Kadner R: Identification of the btuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli. J Bacteriol. 1986, 167: 920-927.
PubMed
CAS
Google Scholar
Seok Y, Sondej M, Badawi P, Lewis M, Briggs M, Jaffe H, Peterkofsky A: High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J Biol Chem. 1997, 272: 26511-26521.
PubMed
CAS
Google Scholar
Frey A, Kallio P: Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev. 2003, 27: 525-545.
PubMed
CAS
Google Scholar
Poole R, Hughes M: New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol. 2000, 36: 775-783.
PubMed
CAS
Google Scholar
Iwamoto A, Osawa A, Kawai M, Honda H, Yoshida S, Furuya N, Kato J: Mutations in the essential Escherichia coli gene, yqgF, and their effects on transcription. J Mol Microbiol Biotechnol. 2012, 22: 17-23.
PubMed
CAS
Google Scholar
Aravind L, Makarova K, Koonin E: SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 2000, 28: 3417-3420.
PubMed
CAS
Google Scholar
Palchevskiy V, Finkel S: Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol. 2006, 188: 3902-3910.
PubMed
CAS
Google Scholar
de Leeuw E, Graham B, Phillips G, ten Hagen-Jongman C, Oudega B, Luirink J: Molecular characterization of Escherichia coli FtsE and FtsX. Mol Microbiol. 1999, 31: 983-993.
PubMed
CAS
Google Scholar
Gong S, Ma Z, Foster J: The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol Microbiol. 2004, 54: 948-961.
PubMed
CAS
Google Scholar
Inoue T, Shingaki R, Hirose S, Waki K, Fukui K, Mori H: Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol. 2007, 189: 950-957.
PubMed
CAS
Google Scholar
Zakin M, Duchange N, Ferrara P, Cohen G: Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. J Biol Chem. 1983, 258: 3028-3031.
PubMed
CAS
Google Scholar
D’Ari L, Rabinowitz J: Purification, characterization, cloning, and amino acid sequence of the bifunctional enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5,10-methenyltetrahydrofolate cyclohydrolase from Escherichia coli. J Biol Chem. 1991, 266: 23953-23958.
PubMed
Google Scholar
Clark D, Cronan JJ: Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J Bacteriol. 1980, 144: 179-184.
PubMed
CAS
Google Scholar
Kessler D, Leibrecht I, Knappe J: Pyruvate-formate-lyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett. 1991, 281 (1–2): 59-63.
PubMed
CAS
Google Scholar
E C K, J S P: Tandem translation starts in the cheA locus of Escherichia coli. J Bacteriol. 2013, 173: 2116-2119.
Google Scholar
Oosawa K, Hess J, Simon MI: Mutants defective in bacterial chemotaxis show modified protein phosphorylation. Cell. 1998, 53: 89-96.
Google Scholar
Breazeale S, Ribeiro A, McClerren A, Raetz C: A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem. 2005, 280: 14154-14167.
PubMed
CAS
Google Scholar
Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, Valvano M, Messner P: Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli. J Bacteriol. 2002, 184: 363-369.
PubMed
CAS
Google Scholar
Spencer J, Stolowich N, Roessner C, Scott A: The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 1993, 335: 57-60.
PubMed
CAS
Google Scholar
Korch S, Henderson T, Hill T: Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol. 2003, 50: 1199-1212.
PubMed
CAS
Google Scholar
Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F, Ritz D, Keck W, Ackermann M, Schirmer T, Jenal U: Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol. 2009, 72: 1500-1516.
PubMed
CAS
Google Scholar
Raffaelli N, Lorenzi T, Mariani P, Amici A, Ruggieri S, Magni G: The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity. J Bacteriol. 1999, 181: 5509-5511.
PubMed
CAS
Google Scholar
Mani M, Chen C, Amblee V, Liu H, Mathur T, Zwicke G, Zabad S, Patel B, Thakkar J, Jeffery CJ: MoonProt: a database for proteins that are known to moonlight. Nucleic Acids Res 2014, [Epub ahead of print],
Hernández S, Ferragut G, Amela I, Perez-Pons J, Piñol J, Mozo-Villarias A, Cedano J, Querol E: MultitaskProtDB: a database of multitasking proteins. Nucleic Acids Res. 2014, 42: D517-D520.
PubMed
Google Scholar
Qi Y, Noble W: Protein interaction networks: protein domain interaction and protein function prediction. Handbook of Computational Statistics: Statistical Bioinformatics. Edited by: Lu HH, Scholkopf B, Zhao H. 2011, Springer-Verlag, Heidelberg
Google Scholar
Vinayagam A, Zirin J, Roesel C, Hu Y, Yilmazel B, Samsonova AA, Neumüller RA, Mohr SE, Perrimon N: Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat Methods. 2014, 11: 94-99.
PubMed
CAS
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2014, [Epub ahead of print],
Jang J, León P, Zhou L, Sheen J: Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997, 9: 5-19.
PubMed
CAS
Google Scholar
Moore B, Zhou L, Rolland F, Hall Q, Cheng W, Liu Y, Hwang I, Jones T, Sheen J: Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003, 300: 332-336.
PubMed
CAS
Google Scholar
Kim M, Lim J, Ahn C, Park K, Kim G, Kim W, Pai H: Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell. 2006, 18: 2341-2355.
PubMed
CAS
Google Scholar
Kaptain S, Downey W, Tang C, Philpott C, Haile D, Orloff D, Harford J, Rouault T, Klausner R: A regulated RNA binding protein also possesses aconitase activity. Proc Natl Acad Sci U S A. 1991, 88: 10109-10113.
PubMed
CAS
Google Scholar
Philpott C, Klausner R, Rouault TA: The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci U S A. 1994, 91: 7321-7325.
PubMed
CAS
Google Scholar
Decker B, Wickner WT: Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. J Biol Chem. 2006, 281: 14523-14528.
PubMed
CAS
Google Scholar
Ruiz A, González A, Muñoz I, Serrano R, Abrie J, Strauss E, Ariño J: Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. Nat Chem Biol. 2009, 5: 920-928.
PubMed
CAS
Google Scholar
Zhang Y, Feng XH, Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature. 1998, 394: 909-913.
PubMed
CAS
Google Scholar
Portal MM, Ferrero GO, Caputto BL: N-Terminal c-Fos tyrosine phosphorylation regulates c-Fos/ER association and c-Fos-dependent phospholipid synthesis activation. Oncogene. 2007, 26: 3551-3558.
PubMed
CAS
Google Scholar
Liu F, Pouponnot C, Massagué J: Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997, 11: 3157-3167.
PubMed
CAS
Google Scholar
Kawakami T, Kawakami Y, Kitaura J: Protein kinase C beta (PKC beta): normal functions and diseases. J Biochem. 2002, 132: 677-682.
PubMed
CAS
Google Scholar
Scheidtmann KH: Dlk/ZIP kinase, a novel Ser/Thr-specific protein kinase with multiple functions. Signal Transduct. 2007, 7: 248-259.
CAS
Google Scholar
Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S: ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol. 1998, 18: 1642-1651.
PubMed
CAS
Google Scholar
Beinke S, Robinson M, Hugunin M, Ley SC: Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol Cell Biol. 2004, 24: 9658-9667.
PubMed
CAS
Google Scholar
Moriguchi T, Kuroyanagi N, Yamaguchi K, Gotoh Y, Irie K, Kano T, Shirakabe K, Muro Y, Shibuya H, Matsumoto K, Nishida E, Hagiwara M: A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J Biol Chem. 1996, 271: 13675-13679.
PubMed
CAS
Google Scholar
Wang Y, Faiola F, Xu M, Pan S, Martinez E: Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem. 2008, 283: 33808-33815.
PubMed
CAS
Google Scholar
Hardie DG: AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007, 8: 774-785.
PubMed
CAS
Google Scholar
Jäkel H, Weinl C, Hengst L: Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene. 2011, 30: 3502-3512.
PubMed
Google Scholar
Ma YC, Huang XY: Novel regulation and function of Src tyrosine kinase. Cell Mol Life Sci. 2002, 59: 456-462.
PubMed
CAS
Google Scholar
Zygmunt T, Gay CM, Blondelle J, Singh MK, Flaherty KM, Means PC, Herwig L, Krudewig A, Belting HG, Affolter M, Epstein JA, Torres-Vázquez J: Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev Cell. 2011, 21: 301-314.
PubMed
CAS
Google Scholar
Shibuya M: Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006, 39: 469-478.
PubMed
CAS
Google Scholar
Phung QH, Winter DB, Alrefai R, Gearhart PJ: Hypermutation in Ig V genes from mice deficient in the MLH1 mismatch repair protein. J Immunol. 1999, 162: 3121-3124.
PubMed
CAS
Google Scholar
Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, Sollott SJ, Forte M, Bernardi P, Rasola A: Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 2008, 3: e1852-
PubMed
Google Scholar
Kusakabe T, Motoki K, Hori K: Mode of interactions of human aldolase isozymes with cytoskeletons. Arch Biochem Biophys. 1997, 344: 184-193.
PubMed
CAS
Google Scholar
Yao D, Tolan D, Murray M, Harris D, Darras B, Geva A, Neufeld EJ: Hemolytic anemia and severe rhabdomyolysis caused by compound heterozygous mutations of the gene for erythrocyte/muscle isozyme of aldolase, ALDOA(Arg303X/Cys338Tyr). Blood. 2004, 103: 2401-2403.
PubMed
CAS
Google Scholar
Baronciani L, Beutler E: Analysis of pyruvate kinase-deficiency mutations that produce nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A. 1993, 90: 4324-4327.
PubMed
CAS
Google Scholar
Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A: Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res. 2007, 67: 1602-1608.
PubMed
Google Scholar
Harding CO, Williams P, Wagner E, Hang DS, ild K, Olwell RE, Olff JA: Mice with genetic gamma-glutamyl transpeptidase deficiency exhibit glutathionuria, severe growth failure, reduced life spans, and infertility. J Biol Chem. 1997, 272: 12560-12567.
PubMed
CAS
Google Scholar
Levasseur R, Barrios R, Elefteriou F, Glass DA, Lieberman MW, Karsenty G: Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice. Endocrinology. 2003, 144: 2761-2764.
PubMed
CAS
Google Scholar
Cascalho M, Wong J, Steinberg C, Wabl M: Mismatch repair co-opted by hypermutation. Science. 1998, 279: 1207-1210.
PubMed
CAS
Google Scholar
Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H, Woodard C, Wang H, Jeong J, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H: Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell. 2009, 139: 610-622.
PubMed
CAS
Google Scholar
Meysman P, Sonego P, Bianco L, Fu Q, Ledezma-Tejeida D, Gama-Castro S, Liebens V, Michiels J, Laukens K, Marchal K, Collado-Vides J, Engelen K: COLOMBOS v2.0: an ever expanding collection of bacterial expression compendia. Nucleic Acids Res. 2014, 42: D649-D653.
PubMed
CAS
Google Scholar
Mani R, St Onge RP, Hartman JL, Giaever G, Roth FP: Defining genetic interaction. Proc Natl Acad Sci U S A. 2008, 105: 3461-3466.
PubMed
CAS
Google Scholar
Takeuchi R, Tamura T, Nakayashiki T, Tanaka Y, Muto A: Colony-live –a high-throughput method for measuring microbial colony growth kinetics– reveals diverse growth effects of gene knockouts in Escherichia coli. BMC Microbiol. 2014, 14: 171-
PubMed
Google Scholar
Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, Lim B, Braberg H, Yamamoto N, Takeuchi R, Wanner BL, Mori H, Weissman JS, Krogan NJ, Gross CA: High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods. 2008, 5: 781-787.
PubMed
CAS
Google Scholar
Butland G, Babu M, Díaz-Mejía JJ, Bohdana F, Phanse S, Gold B, Yang W, Li J, Gagarinova AG, Pogoutse O, Mori H, Wanner BL, Lo H, Wasniewski J, Christopolous C, Ali M, Venn P, Safavi-Naini A, Sourour N, Caron S, Choi JY, Laigle L, Nazarians-Armavil A, Deshpande A, Joe S, Datsenko KA, Yamamoto N, Andrews BJ, Boone C, Ding H, Sheikh B, Moreno-Hagelseib G, Greenblatt JF, Emili A, et al: eSGA: E. coli synthetic genetic array analysis. Nat Methods. 2008, 5: 789-795.
PubMed
CAS
Google Scholar
Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn J-Y, Ou J, San Luis B-J, Bandyopadhyay S, Hibbs M, Hess D, Gingras AC, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boone C, Myers CL: Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods. 2010, 7: 1017-1024.
PubMed
CAS
Google Scholar
Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic’ Z: Intrinsic disorder and protein function. Biochemistry. 2002, 41: 6573-6582.
PubMed
CAS
Google Scholar
Tompa P, Szász C, Buday L: Structural disorder throws new light on moonlighting. Trends Biochem Sci. 2005, 30: 484-489.
PubMed
CAS
Google Scholar
Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty M, Xue B, Nyi Z, Uversky V, Obradovic Z, Kurgan L, Dunker A, Gough J: D2P2: database of disordered protein predictions. Nucleic Acids Res. 2013, 41: D508-D516.
PubMed
CAS
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000, 28: 235-242.
PubMed
CAS
Google Scholar
Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Blohm P, Frishman G, Smialowski P, Goebels F, Wachinger B, Ruepp A, Frishman D: The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res. 2013, 41: D475-D482.
PubMed
CAS
Google Scholar
Blohm P, Frishman G, Smialowski P, Goebels F, Wachinger B, Ruepp A, Frishman D: Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis. Nucleic Acids Res. 2014, 42: D396-D400.
PubMed
CAS
Google Scholar
Youngs N, Penfold-Brown D, Bonneau R, Shasha D: Negative example selection for protein function prediction: the NoGO database. PLoS Comput Biol. 2014, 10: e1003644-
PubMed
Google Scholar
Ouyang P: Antibodies differentiate desmosome-form and nucleus-form pinin: evidence that pinin is a moonlighting protein with dual location at the desmosome and within the nucleus. Biochem Biophys Res Comm. 1999, 263: 192-200.
PubMed
CAS
Google Scholar
Boonacker E, Van Noorden C: The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol. 2003, 82: 53-73.
PubMed
CAS
Google Scholar
Haraguchi C, Mabuchi T, Hirata S, Shoda T, Yamada A, Hoshi K, Yokota S: Spatiotemporal changes of levels of a moonlighting protein, phospholipid hydroperoxide glutathione peroxidase, in subcellular compartments during spermatogenesis in the rat testis. Biol Reprod. 2003, 69: 885-895.
PubMed
CAS
Google Scholar
Montfort A, Martin P, Levade T, Benoist H, Ségui B: FAN (factor associated with neutral sphingomyelinase activation), a moonlighting protein in TNF-R1 signaling. J Leukoc Biol. 2010, 88: 903-987.
Google Scholar
Tunio S, Oldfield N, Berry A, Ala’Aldeen D, Wooldridge K, Turner D: The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol Microbiol. 2010, 76: 605-615.
PubMed
CAS
Google Scholar
Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W: A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 2012, 40: 11583-11593.
PubMed
CAS
Google Scholar
Urban C, Xiong X, Sohn K, Schröppel K, Brunner H, Rupp S: The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol Microbiol. 2005, 57: 1318-1341.
PubMed
CAS
Google Scholar
Moreno J, Patlolla B, Belton K, Jenkins B, Radchenkova P, Piva MA: Two independent activities define Ccm1p as a moonlighting protein in Saccharomyces cerevisiae. Biosci Rep. 2012, 32: 549-557.
PubMed
CAS
Google Scholar
Herbert C, Labouesse M, Dujardin G, Slonimski P: The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. EMBO J. 1988, 7: 473-483.
PubMed
CAS
Google Scholar
Guo M, Schimmel P: Essential nontranslational functions of tRNA synthetases. Nat Chem Biol. 2013, 9: 145-153.
PubMed
Google Scholar
Herzog W, Müller K, Huisken J, Stainier D: Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ Res. 2009, 104: 1260-1266.
PubMed
CAS
Google Scholar
Xu X, Shi Y, Zhang H, Swindell E, Marshall A, Guo M, Kishi S, Yang X: Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat Comm. 2012, 3: 681-
Google Scholar
Ritterson Lew C, Tolan D: Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics. J Cell Biochem. 2013, 114: 1928-1939.
PubMed
Google Scholar
Henderson B, Fares M, Lund P: Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Phil Soc. 2013, 88: 955-987.
Google Scholar
Schlicker A, Domingues F, Rahnenführer J, Lengauer T: A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinform. 2006, 7: 302-
Google Scholar