Wright S. Evolution in Mendelian populations. Genetics. 1931; 16:97–159.
CAS
PubMed
PubMed Central
Google Scholar
Pigliucci M. Sewall Wright’s adaptive landscapes: 1932 vs. 1988. Biol Philos. 2008; 23:591–603.
Article
Google Scholar
Svensson EI, Calsbeek R. The Adaptive Landscape in Evolutionary Biology. Oxford: Oxford University Press; 2012.
Google Scholar
Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc 6 th Int Congr Genet. 1932; 1:356–66.
Google Scholar
Mustonen V, Lässig M. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet. 2009; 25:111–9.
Article
CAS
PubMed
Google Scholar
Gavrilets S. Fitness Landscapes and the Origin of Species. Princeton: Princeton University Press; 2004.
Google Scholar
Pigliucci M. Landscapes, surfaces, and morphospaces: what are they good for? In: Svensson E, Calsbeek R, (eds.), editors. The Adaptive Landscape in Evolutionary Biology. Oxford: Oxford University Press: 2012. p. 26–38. Chap. 3.
Smith JM. Natural selection and the concept of a protein space. Nature. 1970; 225:563–4.
Article
CAS
PubMed
Google Scholar
Huynen MA, Stadler PF, Fontana W. Smoothness within ruggedness: The role of neutrality in adaptation. Proc Natl Acad Sci USA. 1996; 93:397–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bastolla U, Porto M, Roman HE, Vendruscolo M. Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution. J Mol Evol. 2003; 56:243–54.
Article
CAS
PubMed
Google Scholar
Ciliberti S, Martin OC, Wagner A. Innovation and robustness in complex regulatory gene networks. Proc Natl Acad Sci USA. 2007; 104:13591–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodrigues JFM, Wagner A. Genotype networks, innovation, and robustness in sulfur metabolism. BMC Syst Biol. 2011; 5:39.
Article
CAS
Google Scholar
Schultes EA, Bartel DP. One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science. 2000; 289:448–52.
Article
CAS
PubMed
Google Scholar
Bloom JD, Romero PA, Lu Z, Arnold FH. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol Dir. 2007; 2:17.
Article
Google Scholar
Koelle K, Cobey S, Grenfell B, Pascual M. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science. 2006; 314:1898–903.
Article
CAS
PubMed
Google Scholar
Gavrilets S. Evolution and speciation on holey adaptive landscapes. Trends Ecol Evol. 1997; 12:307–12.
Article
CAS
PubMed
Google Scholar
Kaplan J. The end of the adaptive landscape metaphor?Biol Philos. 2008; 23:625–38.
Article
Google Scholar
Gould SJ, Vrba ES. Exaptation – a missing term in the science of form. Paleobiology. 1982; 8:4–15.
Article
Google Scholar
Conant GC, Wolfe KH. Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet. 2008; 9:938–50.
Article
CAS
PubMed
Google Scholar
Gavrilets S, Gravner J. Percolation on the fitness hypercube and the evolution of reproductive isolation. J Theor Biol. 1997; 184:51–64.
Article
CAS
PubMed
Google Scholar
Huynen MA. Exploring phenotype space through neutral evolution. J Mol Evol. 1996; 43:165–9.
Article
CAS
PubMed
Google Scholar
Babajide A, Hofacker IL, Sippl MJ, Stadler PF. Neutral networks in protein space: a computational study based on knowledge-based potentials of mean force. Fold Des. 1997; 2:261–9.
Article
CAS
PubMed
Google Scholar
Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nat Revs Genet. 2007; 8:610–8.
Article
CAS
Google Scholar
Grüner W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker IL, Stadler PF, Schuster P. Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks. Monatsh Chem. 1996; 127:355–74.
Article
Google Scholar
Cowperthwaite MC, Economo EP, Harcombe WR, Miller EL, Meyers LA. The ascent of the abundant: How mutational networks constrain evolution. PLoS Comp Biol. 2008; 4:1000110.
Article
Google Scholar
Dingle K, Schaper S, Louis AA. The structure of the genotype-phenotype map strongly constrains the evolution of non-coding RNA. J R Soc Interf Focus. 2015; 5:20150053.
Article
Google Scholar
Irbäck A, Troein C. Enumerating designing sequences in the HP model. J Biol Phys. 2002; 28:1–15.
Article
PubMed
PubMed Central
Google Scholar
Holzgräfe C, Irbäck A, Troein C. Mutation-induced forld switching among lattice proteins. J Chem Phys. 2011; 135:195101.
Article
PubMed
Google Scholar
Jörg T, Martin OC, Wagner A. Neutral network sizes of biological RNA molecules can be computed and are not atypically small. BMC Bioinforma. 2008; 9:464.
Article
Google Scholar
Stich M, Briones C, Manrubia SC. On the structural repertoire of pools of short, random RNA sequences. J Theor Biol. 2008; 252:750–63.
Article
CAS
PubMed
Google Scholar
Schuster P, Fontana W, Stadler PF, Hofacker IL. From sequences to shapes and back: a case study in RNA secondary structures. Proc R Soc Lond B. 1994; 255:279–84.
Article
CAS
Google Scholar
Aguirre J, Buldú JM, Stich M, Manrubia SC. Topological structure of the space of phenotypes: The case of RNA secondary structure. PLoS ONE. 2011; 6:26324.
Article
Google Scholar
Greenbury SF, Ahnert SE. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype–phenotype maps. J Royal Soc Interface. 2015; 12:20150724.
Article
CAS
Google Scholar
Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature. 2001; 412:331–3.
Article
CAS
PubMed
Google Scholar
Codoñer FM, Darós JA, Solé RV, Elena SF. The fittest versus the flattest: Experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Path. 2006; 2:136.
Article
Google Scholar
Bornberg-Bauer E. How are model protein structures distributed in sequence space?. Biophys J. 1997; 73:2393–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnston IG, Ahnert SE, Doye JPK, Louis AA. Evolutionary dynamics in a simple model of self-assembly. Phys Rev E. 2011; 83:066105.
Article
Google Scholar
Wagner A. The Origins of Evolutionary Innovations. New York: Oxford University Press; 2011.
Book
Google Scholar
Lynch M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA. 2007; 104:8597–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontana W, Schuster P. Continuity in evolution: On the nature of transitions. Science. 1998; 280:1451–5.
Article
CAS
PubMed
Google Scholar
Fontana W, Schuster P. Shaping space: the possible and the attainable in RNA genotype-phenotype mapping. J Theor Biol. 1998; 194:491–515.
Article
CAS
PubMed
Google Scholar
Fontana W. Modelling ’evo-devo’ with RNA. BioEssays. 2002; 24:1164–77.
Article
CAS
PubMed
Google Scholar
Schaper S, Louis AA. The arrival of the frequent: How bias in genotype-phenotype maps can steer populations to local optima. PLoS ONE. 2014; 9:86635.
Article
Google Scholar
McCaskill J. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers. 1990; 29:1105–19.
Article
CAS
PubMed
Google Scholar
García-Martín JA, Bayegan AH, Dotu I, Clote P. Rnadualpf: software to compute the dual partition function with sample applications in molecular evolution theory. BMC Bioinforma. 2016; 17:424.
Article
Google Scholar
Reidys C, Stadler PF, Schuster P. Generic properties of combinatory maps: neutral networks of RNA secondary structures. Bull Math Biol. 1997; 59:339–97.
Article
CAS
PubMed
Google Scholar
Manzourolajdad A, Arnold J. Secondary structural entropy in RNA switch (riboswitch) identification. BMC Bioinforma. 2015; 16:133.
Article
Google Scholar
Vaidya N, Lehman N. One RNA plays three roles to provide catalytic activity to a group I intron lacking an endogenous internal guide sequence. Nucl Acids Res. 2009; 37:3981–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piatigorsky J. Gene Sharing and Evolution: the Diversity of Protein Functions. Cambridge: Harvard University Press; 2007.
Book
Google Scholar
Wistow G, Piatigorsky J. Recruitment of enzymes as lens structural proteins. Science. 1987; 236:1554–6.
Article
CAS
PubMed
Google Scholar
Jensen RA. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976; 30:409–25.
Article
CAS
PubMed
Google Scholar
Aharoni A, Gaidukov L, Khersonsky O, Gould SM, Roodveldt C, Tawfik DS. The “evolvability” of promiscuous protein functions. Nat Gen. 2005; 37:73.
CAS
Google Scholar
Barve A, Wagner A. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature. 2013; 500:203–8.
Article
CAS
PubMed
Google Scholar
Arias CF, Catalán P, Manrubia S, Cuesta JA. toyLIFE: a computational framework to study the multi-level organization of the genotype-phenotype map. Sci Rep. 2014; 4:7549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amitai G, Gupta RD, Tawfik DS. Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J. 2007; 1:67–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguirre J, Buldú JM, Manrubia SC. Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability. Phys Rev E. 2009; 80:066112.
Article
Google Scholar
Wagner A. Robustness and evolvability: A paradox resolved. Proc Roy Soc Lond B. 2008; 275:91–100.
Article
Google Scholar
Manrubia S, Cuesta JA. Evolution on neutral networks accelerates the ticking rate of the molecular clock. J R Soc Interf. 2015; 12:20141010.
Article
Google Scholar
Duarte EA, Novella IS, Ledesma S, Clarke DK, Moya A, Elena SF, Domingo E, Holland JJ. Subclonal components of consensus fitness in an RNA virus clone. J Virol. 1994; 68:4295–301.
CAS
PubMed
PubMed Central
Google Scholar
Manrubia S, Lázaro E, Pérez-Mercader J, Escarmís C, Domingo E. Fitness distribution in exponentially growing asexual populations. Phys Rev Lett. 2003; 90:188102.
Article
PubMed
Google Scholar
Lafforgue G, Martínez F, Sardanyés J, de la Iglesia F, Niu QW, Lin SS, Solé RV, Chua NH, Daròs JA, Elena SF. Tempo and mode of plant RNA Virus Escape from RNA interference-mediated resistance. J Virol. 2011; 85:9686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995; 267:483–9.
Article
CAS
PubMed
Google Scholar
Alexander HK, Bonhoeffer S. Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics. Epidemics. 2012; 4:187–202.
Article
PubMed
Google Scholar
Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet. 2010; 11:97–108.
Article
CAS
PubMed
Google Scholar
Waddington CH. Genetic assimilation of an acquired character. Evolution. 1953; 7:118–26.
Article
Google Scholar
Waddington CH. Genetic assimilation of the bithorax phenotype. Evolution. 1956; 10:1–13.
Article
Google Scholar
Schenk MF, Szendro IG, Salverda MLM, Krug J, de Visser JAGM. Patterns of epistasis between beneficial mutations in an antibiotic resistance gene. Mol Biol Evol. 2013; 30:1779–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehead DJ, Wilke CO, Vernazobres D, Bornberg-Bauer E. The look-ahead effect of phenotypic mutations. Biol Direct. 2008; 3:18.
Article
PubMed
PubMed Central
Google Scholar
Ancel LW, Fontana W. Plasticity, evolvability, and modularity in rna. J Exp Zool. 2000; 288:242–83.
Article
CAS
PubMed
Google Scholar
Borenstein E, Meilijson I, Ruppin E. The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. J Evol Biol. 2006; 19:1555–70.
Article
CAS
PubMed
Google Scholar
Kin T, Yamada K, Terai G, Okida H, Yoshinari Y, Ono Y, Kojima A, Kimura Y, Komori T, et al. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nuc Acids Res. 2007; 35:145–8.
Article
Google Scholar
Bloom JD, Arnold FH. In the light of directed evolution: Pathways of adaptive protein evolution. Proc Natl Acad Sci USA. 2009; 106:9995–10000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salverda MLM, Dellus E, Gorter FA, Debets AJM, van der Oost J, Hoekstra RF, Tawfik DS, de Visser JAGM. Initial mutations direct alternative pathways of protein evolution. PLoS Genet. 2011; 7:1001321.
Article
Google Scholar
Cabanillas L, Arribas M, Lázaro E. Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an rna virus. BMC Evol Biol. 2013; 13:11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lobkovsky AE, Wolf YI, Koonin EV. Predictability of evolutionary trajectories in fitness landscapes. PLoS Comp Biol. 2011; 7:1002302.
Article
Google Scholar
Lobkovsky AE, Wolf YI, Koonin EV. Quantifying the similarity of monotonic trajectories in rough and smooth fitness landscapes. Mol Biosyst. 2013; 9:1627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguirre J, Manrubia S. Tipping points and early warning signals in the genomic composition of populations induced by environmental changes. Sci Rep. 2015; 5:9664.
Article
CAS
PubMed
PubMed Central
Google Scholar