David S, Hamilton JP. Drug-induced liver injury. US Gastroenterol Hepatol Rev. 2010;6:73–80.
PubMed
PubMed Central
Google Scholar
Mosedale M, Watkins PB. Drug-induced liver injury: advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther. 2017;101(4):469–80.
Article
CAS
PubMed
Google Scholar
Chen M, Borlak J, Tong W. Predicting idiosyncratic drug-induced liver injury: some recent advances. Expert Rev Gastroenterol Hepatol. 2014;8(7):721–3.
Article
CAS
PubMed
Google Scholar
Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W. FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today. 2011;16(15):697–703.
Article
PubMed
Google Scholar
Wink S, Hiemstra SW, Huppelschoten S, Klip JE, van de Water B. Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch Toxicol. 2018;92(5):1797–814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albrecht W, Kappenberg F, Brecklinghaus T, Stoeber R, Marchan R, Zhang M, et al. Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol. 2019;93(6):1609–37.
Article
CAS
PubMed
Google Scholar
Ai H, Chen W, Zhang L, Huang L, Yin Z, Hu H, et al. Predicting drug-induced liver injury using ensemble learning methods and molecular fingerprints. Toxicol Sci. 2018;165(1):100–7.
Article
CAS
PubMed
Google Scholar
He S, Ye T, Wang R, Zhang C, Zhang X, Sun G, et al. An in Silico model for predicting drug-induced hepatotoxicity. Int J Mol Sci. 2019;20(8):1897.
Article
CAS
PubMed Central
Google Scholar
Kotsampasakou E, Montanari F, Ecker GF. Predicting drug-induced liver injury: the importance of data curation. Toxicology. 2017;389:139–45.
Article
CAS
PubMed
Google Scholar
Zhang C, Cheng F, Li W, Liu G, Lee PW, Tang Y. In silico prediction of drug induced liver toxicity using substructure pattern recognition method. Mol Inform. 2016;35(3–4):136–44.
Article
PubMed
CAS
Google Scholar
Zhang H, Ding L, Zou Y, Hu S-Q, Huang H-G, Kong W-B, et al. Predicting drug-induced liver injury in human with Naïve Bayes classifier approach. J Comput Aided Mol Des. 2016;30(10):889–98.
Article
CAS
PubMed
Google Scholar
Hong H, Thakkar S, Chen M, Tong W. Development of decision Forest models for prediction of drug-induced liver injury in humans using a large set of FDA-approved drugs. Sci Rep. 2017;7(1):1–15.
Article
CAS
Google Scholar
Minerali E, Foil DH, Zorn KM, Lane TR, Ekins S. Comparing machine learning algorithms for predicting drug-induced liver injury (DILI). Mol Pharm. 2020;17(7):2628–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Mansouri K, Judson RS, Martin MT, Hong H, Chen M, et al. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol. 2015;28(4):738–51.
Article
CAS
PubMed
Google Scholar
Wang Z, Clark NR, Ma’ayan A. Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics. 2016;32(15):2338–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams DP, Lazic SE, Foster AJ, Semenova E, Morgan P. Predicting drug-induced liver injury with Bayesian machine learning. Chem Res Toxicol. 2020;33(1):239–48.
Article
CAS
PubMed
Google Scholar
Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today. 2016;21(4):648–53.
Article
CAS
PubMed
Google Scholar
Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44(Database issue):D1075–9.
Article
CAS
PubMed
Google Scholar
Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010;50(5):742–54.
Article
CAS
PubMed
Google Scholar
Moriwaki H, Tian Y-S, Kawashita N, Takagi T. Mordred: a molecular descriptor calculator. J Cheminformatics. 2018;10(1):4.
Article
CAS
Google Scholar
lhm30. lhm30/PIDGINv3 [Internet]. 2019 [cited 2019 Oct 28]. Available from: https://github.com/lhm30/PIDGINv3.
Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A. Target prediction utilising negative bioactivity data covering large chemical space. J Cheminformatics. 2015;7(1):51.
Article
CAS
Google Scholar
Aniceto N, Freitas AA, Bender A, Ghafourian T. A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood. J Cheminformatics. 2016;8(1):69.
Article
CAS
Google Scholar
Idakwo G, Luttrell J, Chen M, Hong H, Zhou Z, Gong P, et al. A review on machine learning methods for in silico toxicity prediction. J Environ Sci Health Part C. 2018;36(4):169–91.
Article
CAS
Google Scholar
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borgelt C, Meinl T, Berthold M. MoSS: a program for molecular substructure mining. In: Proceedings of the 1st international workshop on open source data mining frequent pattern mining implementations - OSDM ‘05 [Internet]. Chicago, Illinois: ACM Press; 2005. [cited 2019 Oct 28]. p. 6–15. Available from: http://portal.acm.org/citation.cfm?doid=1133905.1133908.
Google Scholar
Ferrari T, Cattaneo D, Gini G, Bakhtyari NG, Manganaro A, Benfenati E. Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR QSAR Environ Res. 2013;24(5):365–83.
Article
CAS
PubMed
Google Scholar
Limban C, Nuţă DC, Chiriţă C, Negreș S, Arsene AL, Goumenou M, et al. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicol Rep. 2018;5:943–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Yu X, Wallqvist A. Data-driven identification of structural alerts for mitigating the risk of drug-induced human liver injuries. J Cheminformatics. 2015;7(1):4.
Article
CAS
Google Scholar
Lipiński PFJ, Szurmak P. SCRAMBLE’N’GAMBLE: a tool for fast and facile generation of random data for statistical evaluation of QSAR models. Chem Zvesti. 2017;71(11):2217–32.
PubMed
PubMed Central
Google Scholar
Ahmed MME, Al-Obosi JAS, Osman HM, Shayoub ME. Overexpression of aldose Reductase render mouse hepatocytes more sensitive to acetaminophen induced oxidative stress and cell death. Indian J Clin Biochem. 2016;31(2):162–70.
Article
CAS
PubMed
Google Scholar
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.
Article
CAS
PubMed
Google Scholar
Huang Y, Wu C, Ye Y, Zeng J, Zhu J, Li Y, et al. The increase of ROS caused by the Interference of DEHP with JNK/p38/p53 pathway as the reason for hepatotoxicity. Int J Environ Res Public Health. 2019;16(3): 356.
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40(4):553–624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W-D, Zhang Y. Regulation of Aldo–Keto Reductases in human diseases. Front Pharmacol. 2012;3.
Laitakari A, Ollonen T, Kietzmann T, Walkinshaw G, Mennerich D, Izzi V, et al. Systemic inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 in mice protects from alcohol-induced fatty liver disease. Redox Biol. 2019;22:101145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol. 2014;310:39–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang DJ, Roychowdhury S, Bush K, McMullen MR, Pisano S, Niese K, et al. Adenosine 2A receptor antagonist prevented and reversed liver fibrosis in a mouse model of ethanol-exacerbated liver fibrosis. PLoS One. 2013;8(7):e69114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Chen M-N, Du J, Liu H, He Y-J, Li G-L, et al. Differential expression of adenosine P1 receptor ADORA1 and ADORA2A associated with Glioma development and tumor-associated epilepsy. Neurochem Res. 2016;41(7):1774–83.
Article
CAS
PubMed
Google Scholar
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: the state of the art. Physiol Rev. 2018;98(3):1591–625.
Article
CAS
PubMed
Google Scholar
Ming Z, Fan Y, Yang X, Lautt WW. Contribution of hepatic adenosine A1 receptors to renal dysfunction associated with acute liver injury in rats. Hepatology. 2006;44(4):813–22.
Article
CAS
PubMed
Google Scholar
Villeneuve J-P, Pichette V. Cytochrome P450 and liver diseases. Curr Drug Metab. 2004;5(3):273–82.
Article
CAS
PubMed
Google Scholar
Yuan L, Kaplowitz N. Mechanisms of drug-induced liver injury. Clin Liver Dis. 2013;17(4):507–18.
Article
PubMed
PubMed Central
Google Scholar
Feng S, He X. Mechanism-based inhibition of CYP450: an indicator of drug-induced hepatotoxicity. Curr Drug Metab. 2013;14(9):921–45.
Article
CAS
PubMed
Google Scholar
Mitchell JR, Snodgrass WR, Gillette JR. The role of biotransformation in chemical-induced liver injury. Environ Health Perspect. 1976;15:27–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu X, Manautou JE. Molecular mechanisms underlying chemical liver injury. Expert Rev Mol Med. 2012;14:e4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suciu M, Gruia AT, Nica DV, Azghadi SMR, Mic AA, Mic FA. Acetaminophen-induced liver injury: implications for temporal homeostasis of lipid metabolism and eicosanoid signaling pathway. Chem Biol Interact. 2015;242:335–44.
Article
CAS
PubMed
Google Scholar
Xue-jun M, Jia-long W. Arachidonic acid metabolism in galactosamine/endotoxin induced acute liver injury in rats. J Tongji Med Univ. 1994;14(3):169–72.
Article
Google Scholar
Cavar I, Kelava T, Vukojević K, Saraga-Babić M, Culo F. The role of prostaglandin E2 in acute acetaminophen hepatotoxicity in mice. Histol Histopathol. 2010;25(7):819–30.
CAS
PubMed
Google Scholar
Peltekian KM, Makowka L, Williams R, Blendis LM, Levy GA. Prostaglandins in liver failure and transplantation: regeneration, immunomodulation, and cytoprotection. Liver Transpl Surg. 1996;2(3):171–84.
Article
CAS
PubMed
Google Scholar
Vane JR, Botting RM. Mechanism of action of anti-inflammatory drugs. Scand J Rheumatol. 1996;25(sup102):9–21.
Article
Google Scholar
O’connor N, Dargan PI, Jones AL. Hepatocellular damage from non-steroidal anti-inflammatory drugs. QJM Int J Med. 2003;96(11):787–91.
Article
Google Scholar
Toyoda Y, Endo S, Tsuneyama K, Miyashita T, Yano A, Fukami T, et al. Mechanism of Exacerbative effect of progesterone on drug-induced liver injury. Toxicol Sci. 2012;126(1):16–27.
Article
CAS
PubMed
Google Scholar
Lu XP, Koch KS, Lew DJ, Dulic V, Pines J, Reed SI, et al. Induction of cyclin mRNA and cyclin-associated histone H1 kinase during liver regeneration. J Biol Chem. 1992;267(5):2841–4.
Article
CAS
PubMed
Google Scholar
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.
Article
CAS
PubMed
Google Scholar
Hoofnagle JH, Serrano J, Knoben JE, Navarro VJ. LiverTox: a website on drug-induced liver injury. Hepatol Baltim Md. 2013;57(3):873–4.
Article
Google Scholar
Hawks A, Hicks RM, Holsman JW, Magee PN. Morphological and biochemical effects of 1,2-Dimethylhydrazine and 1-Methylhydrazine in rats and mice. Br J Cancer. 1974;30(5):429–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S-H, Yoo H, Chang JH, Kim C-Y, Chung DS, Kim SH, et al. Procarbazine and CCNU chemotherapy for recurrent Glioblastoma with MGMT promoter methylation. J Korean Med Sci. 2018;33(24):e167.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang H, Sun L, Li W, Liu G, Tang Y. In Silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greene N, Fisk L, Naven RT, Note RR, Patel ML, Pelletier DJ. Developing structure−activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol. 2010;23(7):1215–22.
Article
CAS
PubMed
Google Scholar
Pizzo F, Lombardo A, Manganaro A, Benfenati E. A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts. Front Pharmacol. 2016;7. [cited 2020 Nov 9] Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphar.2016.00442/full.
Naven RT, Louise-May S. Computational toxicology: its essential role in reducing drug attrition. Hum Exp Toxicol. 2015;34(12):1304–9.
Article
CAS
PubMed
Google Scholar
Allen TEH, Goodman JM, Gutsell S, Russell PJ. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment. Chem Res Toxicol. 2014;27(12):2100–12.
Article
CAS
PubMed
Google Scholar
Atkinson F. flatkinson/standardiser [Internet]. 2019 [cited 2019 Oct 28]. Available from: https://github.com/flatkinson/standardiser.
Landrum G. RDKit: Open-Source Cheminformatics Software [Internet]. [cited 2019 Oct 28]. Available from: https://www.rdkit.org/.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 2020;17(3):261-72.
Cortes C, Vapnik V. Support-vector networks: Machine Learning; 1995. p. 273–97.
Breiman, L. Random Forests. Machine Learning 2001;45:5–32. https://doi.org/10.1023/A:1010933404324
Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform. 2015;7:20. https://doi.org/10.1186/s13321-015-0069-3.
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol. 2012;16(5):284–7.
Article
CAS
Google Scholar
Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–55.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018;46(D1):D661–7.
Article
CAS
PubMed
Google Scholar
Yang H, Li J, Wu Z, Li W, Liu G, Tang Y. Evaluation of different methods for identification of structural alerts using chemical Ames mutagenicity data set as a benchmark. Chem Res Toxicol. 2017;30(6):1355–64.
Article
CAS
PubMed
Google Scholar