Martin W, Muller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392(6671):37–41.
Article
CAS
PubMed
Google Scholar
Ettema TJ. Evolution: Mitochondria in the second act. Nature. 2016;531(7592):39–40.3.
Article
CAS
PubMed
Google Scholar
Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76(2):444–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degli Esposti M. Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol Evol. 2014;6(12):3238–51.
Article
PubMed
Google Scholar
Gray MW. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A. 2015;112(33):10133–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lane N, Martin WF, Raven JA, Allen JF. Energy, genes and evolution: introduction to an evolutionary synthesis. Philos Trans R Soc Lond B Biol Sci. 2013;368(1622):20120253.
Article
PubMed
PubMed Central
Google Scholar
Lopez-Garcia P, Moreira D. Open questions on the origin of eukaryotes. Trends Ecol Evol. 2015;30(11):697–708.
Article
PubMed
PubMed Central
Google Scholar
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. Endosymbiotic origin and differential loss of eukaryotic genes. Nature. 2015;524(7566):427–32.
Article
CAS
PubMed
Google Scholar
Pittis AA, Gabaldon T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature. 2016;531(7592):101–4.
CAS
PubMed
Google Scholar
Degli Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PM, Daffonchio D, Bandi C. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One. 2014;9(5):e96566.
Article
PubMed
PubMed Central
Google Scholar
Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ. Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature. 2004;431(7012):1103–7.
Article
CAS
PubMed
Google Scholar
Meyer J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci. 2007;64(9):1063–84.
Article
CAS
PubMed
Google Scholar
Hug LA, Stechmann A, Roger AJ. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol. 2010;27(2):311–24.
Article
CAS
PubMed
Google Scholar
Voncken FG, Boxma B, van Hoek AH, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JH. A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene. 2002;284(1-2):103–12.
Article
CAS
PubMed
Google Scholar
Calusinska M, Happe T, Joris B, Wilmotte A. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology. 2010;156(Pt 6):1575–88.
Article
CAS
PubMed
Google Scholar
Jerlstrom-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svard SG. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4:2493.
Article
PubMed
PubMed Central
Google Scholar
Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature. 2010;465(7295):248–51.
Article
CAS
PubMed
Google Scholar
Nyvltova E, Stairs CW, Hrdy I, Ridl J, Mach J, Paces J, Roger AJ, Tachezy J. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol. 2015;32(4):1039–55.
Article
PubMed
PubMed Central
Google Scholar
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci. 2015;370(1678):20140326.
Article
PubMed
Google Scholar
Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol. 2014;32(8):822–8.
Article
CAS
PubMed
Google Scholar
Duquesne K, Prima V, Ji B, Rouy Z, Medigue C, Talla E, Sturgis JN. Draft genome sequence of the purple photosynthetic bacterium Phaeospirillum molischianum DSM120, a particularly versatile bacterium. J Bacteriol. 2012;194(13):3559–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie CH, Yokota A. Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int J Syst Evol Microbiol. 2005;55(Pt 3):1233–7.
Article
CAS
PubMed
Google Scholar
Balk J, Pierik AJ, Netz DJ, Muhlenhoff U, Lill R. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J. 2004;23(10):2105–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem. 2004;279(24):25711–20.
Article
CAS
PubMed
Google Scholar
Dinis P, Suess DL, Fox SJ, Harmer JE, Driesener RC, De La Paz L, Swartz JR, Essex JW, Britt RD, Roach PL. X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proc Natl Acad Sci U S A. 2015;112(5):1362–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Roger AJ, Hampl V. Eukaryote without a mitochondrial organelle. Cur Biol. 2016;26(10):1274–84.
Article
CAS
Google Scholar
Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure. 2011;19(8):1038–52.
Article
CAS
PubMed
Google Scholar
Duquesne K, Sturgis JN. Shotgun genome sequence of the large purple photosynthetic bacterium Rhodospirillum photometricum DSM122. J Bacteriol. 2012;194(9):2380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lakshmi KV, Divyasree B, Ramprasad EV, Sasikala C, Ramana CV. Reclassification of Rhodospirillum photometricum Molisch 1907, Rhodospirillum sulfurexigens Anil Kumar et al. 2008 and Rhodospirillum oryzae Lakshmi et al. 2013 in a new genus, Pararhodospirillum gen. nov., as Pararhodospirillum photometricum comb. nov., Pararhodospirillum sulfurexigens comb. nov. and Pararhodospirillum oryzae comb. nov., respectively, and emended description of the genus Rhodospirillum. Int J Syst Evol Microbiol. 2014;64(Pt 4):1154–9.
Article
CAS
PubMed
Google Scholar
Madhaiyan M, Jin TY, Roy JJ, Kim SJ, Weon HY, Kwon SW, Ji L. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol. 2013;63(Pt 7):2477–83.
Article
CAS
PubMed
Google Scholar
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature. 2013;494(7438):443–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degli Esposti M. Genome analysis of structure-function relationships in respiratory complex I, an ancient bioenergetic enzyme. Genome Biol Evol. 2016;8(1):126–47.
Article
Google Scholar
Degli Esposti M, Martinez Romero E. A survey of the energy metabolism of nodulating symbionts reveals a new form of respiratory complex I. FEMS Microbiol Ecol. 2016;92(6). pii: fiw084.
Sazanov LA. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol. 2015;16(6):375–88.
Article
CAS
PubMed
Google Scholar
Barbera' MJ, Ruiz-Trillo I, Tufts JY, Bery A, Silberman JD, Roger AJ. Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell. 2010;9(12):1913–24.
Article
Google Scholar
Graentzdoerffer A, Rauh D, Pich A, Andreesen JR. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol. 2003;179(2):116–30.
CAS
PubMed
Google Scholar
Wang S, Huang H, Kahnt J, Mueller AP, Kopke M, Thauer RK. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol. 2013;195(19):4373–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh JI, Bowien B. Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha. J Biol Chem. 1998;273(41):26349–60.
Article
CAS
PubMed
Google Scholar
Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, et al. An anaerobic mitochondrion that produces hydrogen. Nature. 2005;434(7029):74–9.
Article
CAS
PubMed
Google Scholar
Winkler M, Esselborn J, Happe T. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Biochim Biophys Acta. 2013;1827(8-9):974–85.
Article
CAS
PubMed
Google Scholar
Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure. 1999;7(1):13–23.
Article
CAS
PubMed
Google Scholar
Nixon JE, Field J, McArthur AG, Sogin ML, Yarlett N, Loftus BJ, Samuelson J. Iron-dependent hydrogenases of Entamoeba histolytica and Giardia lamblia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol Bull. 2003;204(1):1–9.
Article
CAS
PubMed
Google Scholar
Hampl V, Silberman JD, Stechmann A, Diaz-Trivino S, Johnson PJ, Roger AJ. Genetic evidence for a mitochondriate ancestry in the 'amitochondriate' flagellate Trimastix pyriformis. PLoS One. 2008;3(1):e1383.
Article
PubMed
PubMed Central
Google Scholar
Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–34.
Article
CAS
PubMed
Google Scholar
Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. Domain enhanced lookup time accelerated BLAST. Biol Direct. 2012;7:12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degli Esposti M, Rosas-Perez T, Servin-Garciduenas LE, Bolanos LM, Rosenblueth M, Martinez-Romero E. Molecular evolution of cytochrome bd oxidases across proteobacterial genomes. Genome Biol Evol. 2015;7(3):801–20.
Article
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696–704.
Article
PubMed
Google Scholar
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55(4):539–52.
Article
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–226.
Article
PubMed
Google Scholar