Farquhar MG, Palade GE: Junctional complexes in various epithelia. J Cell Biol 1963, 17: 375-412. 10.1083/jcb.17.2.375
PubMed
CAS
PubMed Central
Google Scholar
Hull BE, Staehelin LA: The terminal web. A reevaluation of its structure and function. J Cell Biol 1979,81(1):67-82. 10.1083/jcb.81.1.67
PubMed
CAS
Google Scholar
Hirokawa N, Tilney LG: Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol 1982,95(1):249-261. 10.1083/jcb.95.1.249
PubMed
CAS
Google Scholar
Walton J, Yoshiyama JM, Vanderlaan M: Ultrastructure of the rat urothelium in en face section. J Submicrosc Cytol 1982,14(1):1-15.
PubMed
CAS
Google Scholar
Connell CJ: The effect of HCG on pinocytosis wthin the canine inter-sertoli cell tight junction. A preliminary report. Am J Anat 1977,148(1):149-153. 10.1002/aja.1001480113
PubMed
CAS
Google Scholar
Claude P, Goodenough DA: Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol 1973,58(2):390-400. 10.1083/jcb.58.2.390
PubMed
CAS
PubMed Central
Google Scholar
Martinez-Palomo A, Erlij D: Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A 1975,72(11):4487-4491. 10.1073/pnas.72.11.4487
PubMed
CAS
PubMed Central
Google Scholar
von Bulow F, Mollgard K, van Deurs B: Tight junction structure in relation to transepithelial resistance in the frog choroid plexus. Eur J Cell Biol 1984,33(1):90-94.
PubMed
CAS
Google Scholar
Lane NJ, Reese TS, Kachar B: Structural domains of the tight junctional intramembrane fibrils. Tissue Cell 1992,24(2):291-300. 10.1016/0040-8166(92)90102-D
PubMed
CAS
Google Scholar
Hirokawa N: The intramembrane structure of tight junctions: an experimental analysis of the single-fibril and two-fibril models using the quick-freeze method. J Ultrastruct Res 1982,80(3):288-301. 10.1016/S0022-5320(82)80042-7
PubMed
CAS
Google Scholar
Madara JL: Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol 1990,116(2):177-184. 10.1007/BF01868675
PubMed
CAS
Google Scholar
Baron DA, Miller DH: Extrusion of colonic epithelial cells in vitro. J Electron Microsc Tech 1990,16(1):15-24. 10.1002/jemt.1060160104
PubMed
CAS
Google Scholar
Jinguji Y, Ishikawa H: Electron microscopic observations on the maintenance of the tight junction during cell division in the epithelium of the mouse small intestine. Cell Struct Funct 1992,17(1):27-37.
PubMed
CAS
Google Scholar
Nash S, Stafford J, Madara JL: Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1987,80(4):1104-1113.
PubMed
CAS
PubMed Central
Google Scholar
Pitelka DR, Taggart BN: Mechanical tension induces lateral movement of intramembrane components of\ the tight junction: studies on mouse mammary cells in culture. J Cell Biol\ 1983,96\(3\):606-12\. 10.1083/jcb.96.3.606
PubMed
Google Scholar
Bement WM, Forscher P, Mooseker MS: A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol 1993,121(3):565-578. 10.1083/jcb.121.3.565
PubMed
CAS
Google Scholar
Florian P, Schoneberg T, Schulzke JD, Fromm M, Gitter AH: Single-cell epithelial defects close rapidly by an actinomyosin purse string mechanism with functional tight junctions. J Physiol 2002,545(Pt 2):485-499. 10.1113/jphysiol.2002.031161
PubMed
CAS
PubMed Central
Google Scholar
Merzdorf CS, Chen YH, Goodenough DA: Formation of functional tight junctions in Xenopus embryos. Dev Biol 1998,195(2):187-203. 10.1006/dbio.1997.8846
PubMed
CAS
Google Scholar
Kohler K, Zahraoui A: Tight junction: a co-ordinator of cell signalling and membrane trafficking. Biol Cell 2005,97(8):659-665. 10.1042/BC20040147
PubMed
Google Scholar
Meyer HW, Freytag C, Freytag T, Richter W: Effect of proteases and other treatments on the proliferative assembly of tight junction strands in the rat prostate tissue. Exp Pathol 1988,34(4):237-244.
PubMed
CAS
Google Scholar
Lynch RD, Tkachuk-Ross LJ, McCormack JM, McCarthy KM, Rogers RA, Schneeberger EE: Basolateral but not apical application of protease results in a rapid rise of transepithelial electrical resistance and formation of aberrant tight junction strands in MDCK cells. Eur J Cell Biol 1995,66(3):257-267.
PubMed
CAS
Google Scholar
Balkovetz DF: Claudins at the gate: determinants of renal epithelial tight junction paracellular permeability. Am J Physiol Renal Physiol 2006,290(3):F572-9. 10.1152/ajprenal.00135.2005
PubMed
CAS
Google Scholar
Clarke H, Soler AP, Mullin JM: Protein kinase C activation leads to dephosphorylation of occludin and tight junction permeability increase in LLC-PK1 epithelial cell sheets. J Cell Sci 2000, 113 ( Pt 18): 3187-3196.
CAS
Google Scholar
Kim J, Gye MC, Kim MK: Role of occludin, a tight junction protein, in blastocoel formation, and in the paracellular permeability and differentiation of trophectoderm in preimplantation mouse embryos. Mol Cells 2004,17(2):248-254.
PubMed
CAS
Google Scholar
Scudamore CL, Jepson MA, Hirst BH, Miller HR: The rat mucosal mast cell chymase, RMCP-II, alters epithelial cell monolayer permeability in association with altered distribution of the tight junction proteins ZO-1 and occludin. Eur J Cell Biol 1998,75(4):321-330.
PubMed
CAS
Google Scholar
Vietor I, Bader T, Paiha K, Huber LA: Perturbation of the tight junction permeability barrier by occludin loop peptides activates beta-catenin/TCF/LEF-mediated transcription. EMBO Rep 2001,2(4):306-312. 10.1093/embo-reports/kve066
PubMed
CAS
PubMed Central
Google Scholar
Wong V, Gumbiner BM: A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 1997,136(2):399-409. 10.1083/jcb.136.2.399
PubMed
CAS
PubMed Central
Google Scholar
Matter K, Aijaz S, Tsapara A, Balda MS: Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol 2005,17(5):453-458. 10.1016/j.ceb.2005.08.003
PubMed
CAS
Google Scholar
Balda MS, Garrett MD, Matter K: The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003,160(3):423-432. 10.1083/jcb.200210020
PubMed
CAS
PubMed Central
Google Scholar
Sourisseau T, Georgiadis A, Tsapara A, Ali RR, Pestell R, Matter K, Balda MS: Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol Cell Biol 2006,26(6):2387-2398. 10.1128/MCB.26.6.2387-2398.2006
PubMed
CAS
PubMed Central
Google Scholar
Aijaz S, D'Atri F, Citi S, Balda MS, Matter K: Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev Cell 2005,8(5):777-786. 10.1016/j.devcel.2005.03.003
PubMed
CAS
Google Scholar
Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM: OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 2001,153(2):295-305. 10.1083/jcb.153.2.295
PubMed
CAS
PubMed Central
Google Scholar
Reichert M, Muller T, Hunziker W: The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 2000,275(13):9492-9500. 10.1074/jbc.275.13.9492
PubMed
CAS
Google Scholar
Ryeom SW, Paul D, Goodenough DA: Truncation mutants of the tight junction protein ZO-1 disrupt corneal epithelial cell morphology. Mol Biol Cell 2000,11(5):1687-1696.
PubMed
CAS
PubMed Central
Google Scholar
Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005,307(5715):1603-1609. 10.1126/science.1105718
PubMed
CAS
Google Scholar
Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK, Beauchamp RD: Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 2005,115(7):1765-1776. 10.1172/JCI24543
PubMed
CAS
PubMed Central
Google Scholar
Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S: Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000,11(12):4131-4142.
PubMed
CAS
PubMed Central
Google Scholar
Arabzadeh A, Troy TC, Turksen K: Role of the Cldn6 cytoplasmic tail domain in membrane targeting and epidermal differentiation in vivo. Mol Cell Biol 2006,26(15):5876-5887. 10.1128/MCB.02342-05
PubMed
CAS
PubMed Central
Google Scholar
Schneeberger EE, Lynch RD: The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 2004,286(6):C1213-28. 10.1152/ajpcell.00558.2003
PubMed
CAS
Google Scholar
Hewitt KJ, Agarwal R, Morin PJ: The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 2006, 6: 186. 10.1186/1471-2407-6-186
PubMed
PubMed Central
Google Scholar
Tight Junction [http://www.zonapse.net/tight_junction]
Stevenson BR, Goodenough DA: Zonulae occludentes in junctional complex-enriched fractions from mouse liver: preliminary morphological and biochemical characterization. J Cell Biol 1984,98(4):1209-1221. 10.1083/jcb.98.4.1209
PubMed
CAS
Google Scholar
Zhong Y, Saitoh T, Minase T, Sawada N, Enomoto K, Mori M: Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J Cell Biol 1993,120(2):477-483. 10.1083/jcb.120.2.477
PubMed
CAS
Google Scholar
Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J: Cingulin, a new peripheral component of tight junctions. Nature 1988,333(6170):272-276. 10.1038/333272a0
PubMed
CAS
Google Scholar
Keon BH, Schafer S, Kuhn C, Grund C, Franke WW: Symplekin, a novel type of tight junction plaque protein. J Cell Biol 1996,134(4):1003-1018. 10.1083/jcb.134.4.1003
PubMed
CAS
Google Scholar
Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S: Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993,123(6 Pt 2):1777-1788. 10.1083/jcb.123.6.1777
PubMed
CAS
Google Scholar
Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S: Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998,141(7):1539-1550. 10.1083/jcb.141.7.1539
PubMed
CAS
PubMed Central
Google Scholar
Gumbiner B, Lowenkopf T, Apatira D: Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci U S A 1991,88(8):3460-3464. 10.1073/pnas.88.8.3460
PubMed
CAS
PubMed Central
Google Scholar
Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR: ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998,141(1):199-208. 10.1083/jcb.141.1.199
PubMed
CAS
PubMed Central
Google Scholar
Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T, Tabuse Y, Kemphues KJ, Ohno S: An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998,143(1):95-106. 10.1083/jcb.143.1.95
PubMed
CAS
PubMed Central
Google Scholar
Hirose T, Izumi Y, Nagashima Y, Tamai-Nagai Y, Kurihara H, Sakai T, Suzuki Y, Yamanaka T, Suzuki A, Mizuno K, Ohno S: Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J Cell Sci 2002,115(Pt 12):2485-2495.
PubMed
CAS
Google Scholar
Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL 3rd, Sontag E: Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 2002,158(5):967-978. 10.1083/jcb.200206114
PubMed
CAS
PubMed Central
Google Scholar
Gopalakrishnan S, Hallett MA, Atkinson S, Marrs JA: aPKC-Par complex dysfunction and tight junction disassembly in renal epithelial cells during ATP-depletion. Am J Physiol Cell Physiol 2006.
Google Scholar
TJ Proteomics [http://www.zonapse.net/tjproteomics]
Elmslie KS: Neurotransmitter modulation of neuronal calcium channels. J Bioenerg Biomembr 2003,35(6):477-489. 10.1023/B:JOBB.0000008021.55853.18
PubMed
CAS
Google Scholar
Bronk P, Wenniger JJ, Dawson-Scully K, Guo X, Hong S, Atwood HL, Zinsmaier KE: Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron 2001,30(2):475-488. 10.1016/S0896-6273(01)00292-6
PubMed
CAS
Google Scholar
Sugita S, Han W, Butz S, Liu X, Fernandez-Chacon R, Lao Y, Sudhof TC: Synaptotagmin VII as a plasma membrane Ca(2+) sensor in exocytosis. Neuron 2001,30(2):459-473. 10.1016/S0896-6273(01)00290-2
PubMed
CAS
Google Scholar
Neve RL, Coopersmith R, McPhie DL, Santeufemio C, Pratt KG, Murphy CJ, Lynn SD: The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis. J Neurosci 1998,18(19):7757-7767.
PubMed
CAS
Google Scholar
Amara SG, Fontana AC: Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 2002,41(5):313-318. 10.1016/S0197-0186(02)00018-9
PubMed
CAS
Google Scholar
Ozawa S, Kamiya H, Tsuzuki K: Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 1998,54(5):581-618. 10.1016/S0301-0082(97)00085-3
PubMed
CAS
Google Scholar
Hannan AJ, Blakemore C, Katsnelson A, Vitalis T, Huber KM, Bear M, Roder J, Kim D, Shin HS, Kind PC: PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 2001,4(3):282-288. 10.1038/85132
PubMed
CAS
Google Scholar
Misonou H, Mohapatra DP, Trimmer JS: Kv2.1: a voltage-gated k+ channel critical to dynamic control of neuronal excitability. Neurotoxicology 2005,26(5):743-752. 10.1016/j.neuro.2005.02.003
PubMed
CAS
Google Scholar
Dresbach T, Torres V, Wittenmayer N, Altrock WD, Zamorano P, Zuschratter W, Nawrotzki R, Ziv NE, Garner CC, Gundelfinger ED: Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi compartment. J Biol Chem 2006,281(9):6038-6047. 10.1074/jbc.M508784200
PubMed
CAS
Google Scholar
Xiao B, Tu JC, Worley PF: Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol 2000,10(3):370-374. 10.1016/S0959-4388(00)00087-8
PubMed
CAS
Google Scholar
Dong H, Zhang P, Liao D, Huganir RL: Characterization, expression, and distribution of GRIP protein. Ann N Y Acad Sci 1999, 868: 535-540. 10.1111/j.1749-6632.1999.tb11323.x
PubMed
CAS
Google Scholar
Julien C, Coulombe P, Meloche S: Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression. J Biol Chem 2003,278(43):42615-42624. 10.1074/jbc.M302724200
PubMed
CAS
Google Scholar
Coulombe P, Rodier G, Pelletier S, Pellerin J, Meloche S: Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitin-proteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation. Mol Cell Biol 2003,23(13):4542-4558. 10.1128/MCB.23.13.4542-4558.2003
PubMed
CAS
PubMed Central
Google Scholar
Johnson LR, McCormack SA, Yang CH, Pfeffer SR, Pfeffer LM: EGF induces nuclear translocation of STAT2 without tyrosine phosphorylation in intestinal epithelial cells. Am J Physiol 1999,276(2 Pt 1):C419-25.
PubMed
CAS
Google Scholar
Banninger G, Reich NC: STAT2 nuclear trafficking. J Biol Chem 2004,279(38):39199-39206. 10.1074/jbc.M400815200
PubMed
CAS
Google Scholar
Madara JL: Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 1987,253(1 Pt 1):C171-5.
PubMed
CAS
Google Scholar
Matsuda M, Kubo A, Furuse M, Tsukita S: A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 2004,117(Pt 7):1247-1257. 10.1242/jcs.00972
PubMed
CAS
Google Scholar
Shen L, Turner JR: Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell 2005,16(9):3919-3936. 10.1091/mbc.E04-12-1089
PubMed
CAS
PubMed Central
Google Scholar
Ivanov AI, Nusrat A, Parkos CA: The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. Novartis Found Symp 2004, 263: 115-24; discussion 124-32, 211-8.
PubMed
CAS
Google Scholar
Meyer RA, McGinley D, Posalaky Z: The gastric mucosal barrier: structure of intercellular junctions in the dog. J Ultrastruct Res 1984,86(2):192-201. 10.1016/S0022-5320(84)80058-1
PubMed
CAS
Google Scholar
Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N: Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 2006,54(8):933-944. 10.1369/jhc.6A6944.2006
PubMed
CAS
Google Scholar
Rahner C, Mitic LL, Anderson JM: Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 2001,120(2):411-422. 10.1053/gast.2001.21736
PubMed
CAS
Google Scholar
Gottardi CJ, Arpin M, Fanning AS, Louvard D: The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci U S A 1996,93(20):10779-10784. 10.1073/pnas.93.20.10779
PubMed
CAS
PubMed Central
Google Scholar
Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC, Bauer H: The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J Biol Chem 2003,278(4):2692-2700. 10.1074/jbc.M206821200
PubMed
CAS
Google Scholar
Nakamura T, Blechman J, Tada S, Rozovskaia T, Itoyama T, Bullrich F, Mazo A, Croce CM, Geiger B, Canaani E: huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc Natl Acad Sci U S A 2000,97(13):7284-7289. 10.1073/pnas.97.13.7284
PubMed
CAS
PubMed Central
Google Scholar
Pierce JP, Mayer T, McCarthy JB: Evidence for a satellite secretory pathway in neuronal dendritic spines. Curr Biol 2001,11(5):351-355. 10.1016/S0960-9822(01)00077-X
PubMed
CAS
Google Scholar
Martin KC, Barad M, Kandel ER: Local protein synthesis and its role in synapse-specific plasticity. Curr Opin Neurobiol 2000,10(5):587-592. 10.1016/S0959-4388(00)00128-8
PubMed
CAS
Google Scholar
Waites CL, Craig AM, Garner CC: Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 2005, 28: 251-274. 10.1146/annurev.neuro.27.070203.144336
PubMed
CAS
Google Scholar
Yamada A, Fujita N, Sato T, Okamoto R, Ooshio T, Hirota T, Morimoto K, Irie K, Takai Y: Requirement of nectin, but not cadherin, for formation of claudin-based tight junctions in annexin II-knockdown MDCK cells. Oncogene 2006,25(37):5085-5102.
PubMed
CAS
Google Scholar
Sakisaka T, Takai Y: Cell adhesion molecules in the CNS. J Cell Sci 2005,118(Pt 23):5407-5410. 10.1242/jcs.02672
PubMed
CAS
Google Scholar
Fukuhara A, Irie K, Yamada A, Katata T, Honda T, Shimizu K, Nakanishi H, Takai Y: Role of nectin in organization of tight junctions in epithelial cells. Genes Cells 2002,7(10):1059-1072. 10.1046/j.1365-2443.2002.00578.x
PubMed
CAS
Google Scholar
Salinas PC, Price SR: Cadherins and catenins in synapse development. Curr Opin Neurobiol 2005,15(1):73-80. 10.1016/j.conb.2005.01.001
PubMed
CAS
Google Scholar
Takai Y, Shimizu K, Ohtsuka T: The roles of cadherins and nectins in interneuronal synapse formation. Curr Opin Neurobiol 2003,13(5):520-526. 10.1016/j.conb.2003.09.003
PubMed
CAS
Google Scholar
Troxell ML, Gopalakrishnan S, McCormack J, Poteat BA, Pennington J, Garringer SM, Schneeberger EE, Nelson WJ, Marrs JA: Inhibiting cadherin function by dominant mutant E-cadherin expression increases the extent of tight junction assembly. J Cell Sci 2000, 113 ( Pt 6): 985-996.
CAS
Google Scholar
Tanaka M, Kamata R, Sakai R: EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem 2005,280(51):42375-42382. 10.1074/jbc.M503786200
PubMed
CAS
Google Scholar
Tanaka M, Kamata R, Sakai R: Phosphorylation of ephrin-B1 via the interaction with claudin following cell-cell contact formation. Embo J 2005,24(21):3700-3711. 10.1038/sj.emboj.7600831
PubMed
CAS
PubMed Central
Google Scholar
Scheiffele P: Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci 2003, 26: 485-508. 10.1146/annurev.neuro.26.043002.094940
PubMed
CAS
Google Scholar
Martinez A, Soriano E: Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res Brain Res Rev 2005,49(2):211-226. 10.1016/j.brainresrev.2005.02.001
PubMed
CAS
Google Scholar
Yamaguchi Y, Pasquale EB: Eph receptors in the adult brain. Curr Opin Neurobiol 2004,14(3):288-296. 10.1016/j.conb.2004.04.003
PubMed
CAS
Google Scholar
Dillon C, Goda Y: The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 2005, 28: 25-55. 10.1146/annurev.neuro.28.061604.135757
PubMed
CAS
Google Scholar
Luton F, Klein S, Chauvin JP, Le Bivic A, Bourgoin S, Franco M, Chardin P: EFA6, exchange factor for ARF6, regulates the actin cytoskeleton and associated tight junction in response to E-cadherin engagement. Mol Biol Cell 2004,15(3):1134-1145. 10.1091/mbc.E03-10-0751
PubMed
CAS
PubMed Central
Google Scholar
Kim E, Sheng M: PDZ domain proteins of synapses. Nat Rev Neurosci 2004,5(10):771-781. 10.1038/nrn1517
PubMed
CAS
Google Scholar
Montgomery JM, Zamorano PL, Garner CC: MAGUKs in synapse assembly and function: an emerging view. Cell Mol Life Sci 2004,61(7-8):911-929. 10.1007/s00018-003-3364-5
PubMed
CAS
Google Scholar
Funke L, Dakoji S, Bredt DS: Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 2005, 74: 219-245. 10.1146/annurev.biochem.74.082803.133339
PubMed
CAS
Google Scholar
Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S: Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 2002,277(1):455-461. 10.1074/jbc.M109005200
PubMed
CAS
Google Scholar
Coyne CB, Voelker T, Pichla SL, Bergelson JM: The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 2004,279(46):48079-48084. 10.1074/jbc.M409061200
PubMed
CAS
Google Scholar
Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE: SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 2004,43(4):563-574. 10.1016/j.neuron.2004.08.003
PubMed
CAS
Google Scholar
Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ, Wood J, Ross C, Sawyers CL, Whang YE: Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A 2000,97(8):4233-4238. 10.1073/pnas.97.8.4233
PubMed
CAS
PubMed Central
Google Scholar
Deng F, Price MG, Davis CF, Mori M, Burgess DL: Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain. J Neurosci 2006,26(30):7875-7884. 10.1523/JNEUROSCI.1851-06.2006
PubMed
CAS
Google Scholar
Price MG, Davis CF, Deng F, Burgess DL: The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator "stargazin" is related to the claudin family of proteins by Its ability to mediate cell-cell adhesion. J Biol Chem 2005,280(20):19711-19720. 10.1074/jbc.M500623200
PubMed
CAS
PubMed Central
Google Scholar
Yeaman C, Grindstaff KK, Nelson WJ: Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J Cell Sci 2004,117(Pt 4):559-570. 10.1242/jcs.00893
PubMed
CAS
PubMed Central
Google Scholar
Grindstaff KK, Yeaman C, Anandasabapathy N, Hsu SC, Rodriguez-Boulan E, Scheller RH, Nelson WJ: Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 1998,93(5):731-740. 10.1016/S0092-8674(00)81435-X
PubMed
CAS
Google Scholar
Riefler GM, Balasingam G, Lucas KG, Wang S, Hsu SC, Firestein BL: Exocyst complex subunit sec8 binds to postsynaptic density protein-95 (PSD-95): a novel interaction regulated by cypin (cytosolic PSD-95 interactor). Biochem J 2003,373(Pt 1):49-55. 10.1042/BJ20021838
PubMed
CAS
PubMed Central
Google Scholar
Vik-Mo EO, Oltedal L, Hoivik EA, Kleivdal H, Eidet J, Davanger S: Sec6 is localized to the plasma membrane of mature synaptic terminals and is transported with secretogranin II-containing vesicles. Neuroscience 2003,119(1):73-85. 10.1016/S0306-4522(03)00065-4
PubMed
CAS
Google Scholar
Hsu SC, Hazuka CD, Foletti DL, Scheller RH: Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Trends Cell Biol 1999,9(4):150-153. 10.1016/S0962-8924(99)01516-0
PubMed
CAS
Google Scholar
Schluter OM, Basu J, Sudhof TC, Rosenmund C: Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J Neurosci 2006,26(4):1239-1246. 10.1523/JNEUROSCI.3553-05.2006
PubMed
CAS
Google Scholar
Lledo PM, Vernier P, Vincent JD, Mason WT, Zorec R: Inhibition of Rab3B expression attenuates Ca(2+)-dependent exocytosis in rat anterior pituitary cells. Nature 1993,364(6437):540-544. 10.1038/364540a0
PubMed
CAS
Google Scholar
Weber E, Berta G, Tousson A, St John P, Green MW, Gopalokrishnan U, Jilling T, Sorscher EJ, Elton TS, Abrahamson DR, et al.: Expression and polarized targeting of a rab3 isoform in epithelial cells. J Cell Biol 1994,125(3):583-594. 10.1083/jcb.125.3.583
PubMed
CAS
Google Scholar
Pennetta G, Hiesinger PR, Fabian-Fine R, Meinertzhagen IA, Bellen HJ: Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron 2002,35(2):291-306. 10.1016/S0896-6273(02)00769-9
PubMed
CAS
Google Scholar
Lapierre LA, Tuma PL, Navarre J, Goldenring JR, Anderson JM: VAP-33 localizes to both an intracellular vesicle population and with occludin at the tight junction. J Cell Sci 1999, 112 ( Pt 21): 3723-3732.
CAS
Google Scholar
Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP, Choudhary JS, Grant SG: Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 2006, 97 Suppl 1: 16-23. 10.1111/j.1471-4159.2005.03507.x
PubMed
Google Scholar
Grant SG, Marshall MC, Page KL, Cumiskey MA, Armstrong JD: Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum Mol Genet 2005, 14 Spec No. 2: R225-34. 10.1093/hmg/ddi330
PubMed
Google Scholar
Thomas-Reetz AC, De Camilli P: A role for synaptic vesicles in non-neuronal cells: clues from pancreatic beta cells and from chromaffin cells. Faseb J 1994,8(2):209-216.
PubMed
CAS
Google Scholar
Moriyama Y, Yamamoto A: Glutamatergic chemical transmission: look! Here, there, and anywhere. J Biochem (Tokyo) 2004,135(2):155-163.
CAS
Google Scholar
Miyauchi N, Saito A, Karasawa T, Harita Y, Suzuki K, Koike H, Han GD, Shimizu F, Kawachi H: Synaptic Vesicle Protein 2B Is Expressed in Podocyte, and Its Expression Is Altered in Proteinuric Glomeruli. J Am Soc Nephrol 2006,17(10):2748-2759. 10.1681/ASN.2005121293
PubMed
CAS
Google Scholar
Moriyama Y, Yamamoto A: Microvesicles isolated from bovine pineal gland specifically accumulate L-glutamate. FEBS Lett 1995,367(3):233-236. 10.1016/0014-5793(95)00559-R
PubMed
CAS
Google Scholar
Pollard HB, Miller A, Cox GC: Synaptic vesicles: structure of chromaffin granule membranes. J Supramol Struct 1973,1(4):295-306. 10.1002/jss.400010407
PubMed
CAS
Google Scholar
Ogawa M, Ishikawa T, Irimajiri A: Adrenal chromaffin cells form functional cholinergic synapses in culture. Nature 1984,307(5946):66-68. 10.1038/307066a0
PubMed
CAS
Google Scholar
MacDonald PE, Obermuller S, Vikman J, Galvanovskis J, Rorsman P, Eliasson L: Regulated exocytosis and kiss-and-run of synaptic-like microvesicles in INS-1 and primary rat beta-cells. Diabetes 2005,54(3):736-743.
PubMed
CAS
Google Scholar
Reigada D, Lu W, Mitchell CH: Glutamate acts at NMDA receptors on fresh bovine and on cultured human retinal pigment epithelial cells to trigger release of ATP. J Physiol 2006,575(Pt 3):707-720. 10.1113/jphysiol.2006.114439
PubMed
CAS
PubMed Central
Google Scholar
Gonzalez-Cadavid NF, Ryndin I, Vernet D, Magee TR, Rajfer J: Presence of NMDA receptor subunits in the male lower urogenital tract. J Androl 2000,21(4):566-578.
PubMed
CAS
Google Scholar
Hinoi E, Fujimori S, Takemori A, Kurabayashi H, Nakamura Y, Yoneda Y: Demonstration of expression of mRNA for particular AMPA and kainate receptor subunits in immature and mature cultured rat calvarial osteoblasts. Brain Res 2002,943(1):112-116. 10.1016/S0006-8993(02)02726-9
PubMed
CAS
Google Scholar
Gu Y, Publicover SJ: Expression of functional metabotropic glutamate receptors in primary cultured rat osteoblasts. Cross-talk with N-methyl-D-aspartate receptors. J Biol Chem 2000,275(44):34252-34259. 10.1074/jbc.M004520200
PubMed
CAS
Google Scholar
Patton AJ, Genever PG, Birch MA, Suva LJ, Skerry TM: Expression of an N-methyl-D-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone. Bone 1998,22(6):645-649. 10.1016/S8756-3282(98)00061-1
PubMed
CAS
Google Scholar
Laketic-Ljubojevic I, Suva LJ, Maathuis FJ, Sanders D, Skerry TM: Functional characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone 1999,25(6):631-637. 10.1016/S8756-3282(99)00224-0
PubMed
CAS
Google Scholar
Nahm WK, Philpot BD, Adams MM, Badiavas EV, Zhou LH, Butmarc J, Bear MF, Falanga V: Significance of N-methyl-D-aspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 2004,200(2):309-317. 10.1002/jcp.20010
PubMed
CAS
Google Scholar
Uchida N, Kiuchi Y, Miyamoto K, Uchida J, Tobe T, Tomita M, Shioda S, Nakai Y, Koide R, Oguchi K: Glutamate-stimulated proliferation of rat retinal pigment epithelial cells. Eur J Pharmacol 1998,343(2-3):265-273. 10.1016/S0014-2999(97)01526-4
PubMed
CAS
Google Scholar
Prele CM, Horton MA, Caterina P, Stenbeck G: Identification of the molecular mechanisms contributing to polarized trafficking in osteoblasts. Exp Cell Res 2003,282(1):24-34. 10.1006/excr.2002.5668
PubMed
CAS
Google Scholar
Bhangu PS, Genever PG, Spencer GJ, Grewal TS, Skerry TM: Evidence for targeted vesicular glutamate exocytosis in osteoblasts. Bone 2001,29(1):16-23. 10.1016/S8756-3282(01)00482-3
PubMed
CAS
Google Scholar
Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD: Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 1998,22(4):295-299. 10.1016/S8756-3282(97)00295-0
PubMed
CAS
Google Scholar
Mollard P, Vacher P, Dufy B, Barker JL: Somatostatin blocks Ca2+ action potential activity in prolactin-secreting pituitary tumor cells through coordinate actions on K+ and Ca2+ conductances. Endocrinology 1988,123(2):721-732.
PubMed
CAS
Google Scholar
Matthews EK, Saffran M: Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells. J Physiol 1973,234(1):43-64.
PubMed
CAS
PubMed Central
Google Scholar
Matthews EK, Sakamoto Y: Electrical characteristics of pancreatic islet cells. J Physiol 1975,246(2):421-437.
PubMed
CAS
PubMed Central
Google Scholar
Ferrier J, Grygorczyk C, Grygorczyk R, Kesthely A, Lagan E, Xia SL: Ba(2+)-induced action potentials in osteoblastic cells. J Membr Biol 1991,123(3):255-259. 10.1007/BF01870408
PubMed
CAS
Google Scholar
Chan SA, Polo-Parada L, Smith C: Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices. Arch Biochem Biophys 2005,435(1):65-73. 10.1016/j.abb.2004.12.005
PubMed
CAS
Google Scholar
Brandt BL, Hagiwara S, Kidokoro Y, Miyazaki S: Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol 1976,263(3):417-439.
PubMed
CAS
PubMed Central
Google Scholar
Fain GL, Farahbakhsh NA: Voltage-activated currents recorded from rabbit pigmented ciliary body epithelial cells in culture. J Physiol 1989, 418: 83-103.
PubMed
CAS
PubMed Central
Google Scholar
Rao JN, Li L, Golovina VA, Platoshyn O, Strauch ED, Yuan JX, Wang JY: Ca2+-RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol 2001,280(4):C993-1007.
PubMed
CAS
Google Scholar
Rao JN, Platoshyn O, Li L, Guo X, Golovina VA, Yuan JX, Wang JY: Activation of K(+) channels and increased migration of differentiated intestinal epithelial cells after wounding. Am J Physiol Cell Physiol 2002,282(4):C885-98.
PubMed
CAS
Google Scholar
Chifflet S, Hernandez JA, Grasso S: A possible role for membrane depolarization in epithelial wound healing. Am J Physiol Cell Physiol 2005,288(6):C1420-30. 10.1152/ajpcell.00259.2004
PubMed
CAS
Google Scholar
Colosetti P, Tunwell RE, Cruttwell C, Arsanto JP, Mauger JP, Cassio D: The type 3 inositol 1,4,5-trisphosphate receptor is concentrated at the tight junction level in polarized MDCK cells. J Cell Sci 2003,116(Pt 13):2791-2803. 10.1242/jcs.00482
PubMed
CAS
Google Scholar
Larina O, Thorn P: Ca2+ dynamics in salivary acinar cells: distinct morphology of the acinar lumen underlies near-synchronous global Ca2+ responses. J Cell Sci 2005,118(Pt 18):4131-4139. 10.1242/jcs.02533
PubMed
CAS
Google Scholar
Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL: Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003,302(5651):1775-1779. 10.1126/science.1090772
PubMed
CAS
Google Scholar
Croci C, Brandstatter JH, Enz R: ZIP3, a new splice variant of the PKC-zeta-interacting protein family, binds to GABAC receptors, PKC-zeta, and Kv beta 2. J Biol Chem 2003,278(8):6128-6135. 10.1074/jbc.M205162200
PubMed
CAS
Google Scholar