Glazko GV, Nei M. Estimation of divergence times for major lineages of primate species. Mol Biol Evol. 2003;20(3):424–34.
Article
CAS
PubMed
Google Scholar
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020;182(3):713–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Southwick CH, Siddiqi MF. Population status of nonhuman primates in Asia, with emphasis on rhesus macaques in India. Am J Primatol. 1994;34(1):51–9.
Article
PubMed
Google Scholar
Almond N, Berry N, Stebbings R, Preston M, Ham C, Page M, et al. Vaccination of macaques with DNA followed by adenoviral vectors encoding simian immunodeficiency virus (SIV) Gag alone delays infection by repeated mucosal challenge with SIV. J Virol. 2019;93(21):e00606-e619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dijkman K, Vervenne RA, Sombroek CC, Boot C, Hofman SO, Van Meijgaarden KE, et al. Disparate tuberculosis disease development in macaque species is associated with innate immunity. Front Immunol. 2019;10:2479.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon Y, Lee KW, Park H, Son JK, Lee J, Hong J, et al. Comparative study of human and cynomolgus T-cell depletion with rabbit anti-thymocyte globulin (rATG) treatment-for dose adjustment in a non-human primate kidney transplantation model. Am J Transl Res. 2019;11(10):6422–32.
CAS
PubMed
PubMed Central
Google Scholar
Rivera-Hernandez T, Carnathan DG, Moyle PM, Toth I, Walker MJ. The contribution of non-human primate models to the development of human vaccines. Discov Med. 2014;18(101):313–22.
PubMed
PubMed Central
Google Scholar
Boyson JE, Iwanaga KK, Golos TG, Watkins DI. Identification of a novel MHC class I gene, Mamu-AG, expressed in the placenta of a primate with an inactivated G locus. J Immunol. 1997;159(7):3311–21.
CAS
PubMed
Google Scholar
Heijmans CM, de Groot NG, Bontrop RE. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int J Immunogenet. 2020;47(3):243–60.
Article
CAS
PubMed
Google Scholar
Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE. Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res. 2004;14(8):1501–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiseman RW, Karl JA, Bimber BN, O’ Leary CE, Lank SM, Tuscher JJ, et al. Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med. 2009;15(11):1322–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doxiadis GG, de Groot N, Otting N, de Vos-Rouweler AJ, Bolijn MJ, Heijmans C, et al. Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics. 2013;65(8):569–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM, Starrett GJ, et al. Major histocompatibility complex class I haplotype diversity in chinese rhesus macaques. G3 Genes Genomes Genet. 2013;3(7):1195–201.
Google Scholar
Otting N, Heijmans CM, Noort RC, De Groot NG, Doxiadis GG, Van Rood JJ, et al. Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci. 2005;102(5):1626–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otting N, de Vos-Rouweler AJ, Heijmans C, de Groot NG, Doxiadis GG, Bontrop RE. MHC class I a region diversity and polymorphism in macaque species. Immunogenetics. 2007;59(5):367–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Groot NG, Otting N, Maccari G, Robinson J, Hammond JA, Blancher A, et al. Nomenclature report 2019: major histocompatibility complex genes and alleles of great and small ape and old and new world monkey species. Immunogenetics. 2020;72(1):25–36.
Article
PubMed
Google Scholar
Shiina T, Yamada Y, Aarnink A, Suzuki S, Masuya A, Ito S, et al. Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and sanger sequencing. Immunogenetics. 2015;67(10):563–78.
Article
CAS
PubMed
Google Scholar
Doxiadis GG, de Groot N, Otting N, Blokhuis JH, Bontrop RE. Genomic plasticity of the MHC class I a region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetic. 2011;63(2):73–83.
Article
Google Scholar
Westbrook CJ, Karl JA, Wiseman RW, Mate S, Koroleva G, Garcia K, et al. No assembly required: full-length MHC class I allele discovery by Pacbio circular consensus sequencing. Hum Immunol. 2015;76(12):891–6.
Article
CAS
PubMed
Google Scholar
de Groot N, Doxiadis GG, Otting N, de Vos-Rouweler AJ, Bontrop RE. Differential recombination dynamics within the MHC of macaque species. Immunogenetics. 2014;66(9):535–44.
Article
PubMed
PubMed Central
Google Scholar
de Groot NG, Otting N, Robinson J, Blancher A, Lafont BA, Marsh SG, et al. Nomenclature report on the major histocompatibility complex genes and alleles of great ape, old and new world monkey species. Immunogenetics. 2012;64(8):615–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nomura T, Matano T. Association of MHC-I genotypes with disease progression in HIV/SIV infections. Front Microbiol. 2012;3:234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin MP, Carrington M. Immunogenetics of HIV disease. Immunol Rev. 2013;254(1):245–64.
Article
PubMed
PubMed Central
Google Scholar
Loffredo JT, Maxwell J, Qi Y, Glidden CE, Borchardt GJ, Soma T, Bean AT, Beal DR, Wilson NA, Rehrauer WM, et al. Mamu-B*08-positive macaques control simian immunodeficiency virus replication. J Virol. 2007;81(16):8827–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yant LJ, Friedrich TC, Johnson RC, May GE, Maness NJ, Enz AM, Lifson JD, O’Connor DH, Carrington M, Watkins DI. The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication. J Virol. 2006;80(10):5074–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dzuris JL, Sidney J, Appella E, Chesnut RW, Watkins DI, Sette A. Conserved MHC class I peptide binding motif between humans and rhesus macaques. J Immunol. 2000;164(1):283–91.
Article
CAS
PubMed
Google Scholar
Loffredo JT, Sidney J, Bean AT, Beal DR, Bardet W, Wahl A, Hawkins OE, Piaskowski S, Wilson NA, Hildebrand WH, et al. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity. J Immunol. 2009;182(12):7763–75.
Article
CAS
PubMed
Google Scholar
Bakker NP, Van Erck MG, Otting N, Lardy NM, Noort RC, Hart BA’t, Jonker M, Bontrop RE. Resistance to collagen-induced arthritis in a nonhuman primate species maps to the major histocompatibility complex class I region. J Exper Med. 1992;175(4):933–7.
Article
CAS
Google Scholar
Mothe BR, Sidney J, Dzuris JL, Liebl ME, Fuenger S, Watkins DI, Sette A. Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins. J Immunol. 2002;169(1):210–9.
Article
CAS
PubMed
Google Scholar
Albrecht C, Malzahn D, Brameier M, Hermes M, Ansari AA, Walter L. Progression to AIDS in SIV-infected rhesus macaques is associated with distinct KIR and MHC class I polymorphisms and NK cell dysfunction. Front Immunol. 2014;5:600.
Article
PubMed
PubMed Central
Google Scholar
Walter L, Ansari AA. MHC and KIR polymorphisms in rhesus macaque SIV infection. Front Immunol. 2015;6:540.
Article
PubMed
PubMed Central
Google Scholar
Battistini L, Borsellino G, Sawicki G, Poccia F, Salvetti M, Ristori G, et al. Phenotypic and cytokine analysis of human peripheral blood gamma delta T cells expressing NK cell receptors. J Immunol. 1997;159(8):3723–30.
CAS
PubMed
Google Scholar
Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in human disease. Semin Immunol. 2008;20(6):343–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 2019;16(5):430–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity. 2001;15(3):363–74.
Article
CAS
PubMed
Google Scholar
Roe D, Vierra-Green C, Pyo C-W, Eng K, Hall R, Kuang R, et al. Revealing complete complex KIR haplotypes phased by long-read sequencing technology. Genes Immun. 2017;18(3):127–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roe D, Williams J, Ivery K, Brouckaert J, Downey N, Locklear C, et al. Efficient sequencing, assembly, and annotation of human kir haplotypes. Front Immunol. 2020;11:582927.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dębska-Zielkowska J, Moszkowska G, Zieliński M, Zielińska H, Dukat-Mazurek A, Trzonkowski P, et al. KIR receptors as key regulators of NK cells activity in health and disease. Cells. 2021;10(7):1777.
Article
PubMed
PubMed Central
Google Scholar
Martin AM, Freitas EM, Witt CS, Christiansen FT. The genomic organization and evolution of the natural killer immunoglobulin-like receptor (KIR) gene cluster. Immunogenetics. 2000;51(4):268–80.
Article
CAS
PubMed
Google Scholar
Martin AM, Kulski JK, Gaudieri S, Witt CS, Freitas EM, Trowsdale J, et al. Comparative genomic analysis, diversity and evolution of two KIR haplotypes A and B. Gene. 2004;335:121–31.
Article
CAS
PubMed
Google Scholar
Bruijnesteijn J, de Groot N, de Vos-Rouweler AJ, de Groot NG, Bontrop RE. Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics. 2022;74(3):313–26.
Article
CAS
PubMed
Google Scholar
Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE. The mosaic of KIR haplotypes in rhesus macaques. Immunogenetics. 2010;62(5):295–306.
Article
PubMed
PubMed Central
Google Scholar
Robinson J, Guethlein LA, Maccari G, Blokhuis J, Bimber BN, de Groot NG, et al. Nomenclature for the KIR of non-human species. Immunogenetics. 2018;70(9):571–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE. The extreme plasticity of killer cell Ig-like receptor (KIR) haplotypes differentiates rhesus macaques from humans. Eur J Immunol. 2011;41(9):2719–28.
Article
CAS
PubMed
Google Scholar
Sambrook JG, Bashirova A, Palmer S, Sims S, Trowsdale J, Abi-Rached L, et al. Single haplotype analysis demonstrates rapid evolution of the killer immunoglobulin-like receptor (KIR) loci in primates. Genome Res. 2005;15(1):25–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruijnesteijn J, Van der Wiel M, De Groot NG, Bontrop RE. Rapid characterization of complex killer cell immunoglobulin-like receptor (Kir) regions using Cas9 enrichment and nanopore sequencing. Front Immunol. 2021;12:722181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruijnesteijn J, de Groot N, van der Wiel MK, Otting N, de Vos-Rouweler AJ, de Groot NG, et al. Unparalleled rapid evolution of KIR genes in rhesus and cynomolgus macaque populations. J Immunol. 2020;204(7):1770–86.
Article
CAS
PubMed
Google Scholar
Bruijnesteijn J, van der Wiel MK, Swelsen WT, Otting N, de Vos-Rouweler AJ, Elferink D, et al. Human and rhesus macaque KIR haplotypes defined by their transcriptomes. J Immunol. 2018;200(5):1692–701.
CAS
PubMed
Google Scholar
Kruse PH, Rosner C, Walter L. Characterization of rhesus macaque KIR genotypes and haplotypes. Immunogenetics. 2010;62(5):281–93.
Article
PubMed
Google Scholar
Hershberger KL, Shyam R, Miura A, Letvin NL. Diversity of the killer cell Ig-like receptors of rhesus monkeys. J Immunol. 2001;166(7):4380–90.
Article
CAS
PubMed
Google Scholar
Moreland AJ, Guethlein LA, Reeves RK, Broman KW, Johnson RP, Parham P, et al. Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genom. 2011;12(1):1–13.
Article
Google Scholar
Bruijnesteijn J, De Groot NG, Bontrop RE. The genetic mechanisms driving diversification of the KIR gene cluster in primates. Front Immunol. 2020;11:582804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruijnesteijn J, Van der Wiel MK, De Groot N, Otting N, de Vos-Rouweler AJ, Lardy NM, et al. Extensive alternative splicing of KIR transcripts. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02846.
Article
PubMed
PubMed Central
Google Scholar
Bimber BN, Evans DT. The killer-cell immunoglobulin-like receptors of macaques. Immunol Rev. 2015;267(1):246–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prall TM, Graham ME, Karl JA, Wiseman RW, Ericsen AJ, Raveendran M, et al. Improved full-length killer cell immunoglobulin-like receptor transcript discovery in mauritian cynomolgus macaques. Immunogenetics. 2017;69(5):325–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium MS. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999;401(6756):921–3.
Article
Google Scholar
Watanabe A, Shiina T, Shimizu S, Hosomichi K, Yanagiya K, Kita YF, et al. A BAC-based contig map of the cynomolgus macaque (Macaca fascicularis) major histocompatibility complex genomic region. Genomics. 2007;89(3):402–12.
Article
CAS
PubMed
Google Scholar
Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, et al. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nat Biotechnol. 2011;29(11):1019–23.
Article
CAS
PubMed
Google Scholar
Marx V. Long road to long-read assembly. Nat Methods. 2021;18(2):125–9.
Article
CAS
PubMed
Google Scholar
Zhou F, Cao H, Zuo X, Zhang T, Zhang X, Liu X, et al. Deep sequencing of the Mhc region in the Chinese population contributes to studies of complex disease. Nat Genet. 2016;48(7):740–6.
Article
CAS
PubMed
Google Scholar
He Y, Luo X, Zhou B, Hu T, Meng X, Audano PA, et al. Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nat Commun. 2019;10(1):4233.
Article
PubMed
PubMed Central
Google Scholar
Warren WC, Harris RA, Haukness M, Fiddes IT, Murali SC, Fernandes J, et al. Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science. 2020;370(6523):eabc6617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayakumar V, Nishimura O, Kadota M, Hirose N, Sano H, Murakawa Y, et al. Chromosomal-scale de novo genome assemblies of cynomolgus macaque and common marmoset. Scientific Data. 2021;8(1):159.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenger AM, Peluso P, Rowell WJ, Chang PC, Hunkapiller MW. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with Hifiasm. Nat Methods. 2021;18(2):170–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan J, Li H. Fast and accurate long-read assembly with Wtdbg2. Nat Methods. 2019;17(2):155–8.
Article
PubMed
PubMed Central
Google Scholar
Flynn JM, Hubley R, Rosen J, Clark AG, Smit AF. Repeatmodeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci. 2020;117(17):9451–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC, Myers EW. Piler: identification and classification of genomic repeats. Bioinformatics. 2005;21(Suppl 1):i152–8.
Article
CAS
PubMed
Google Scholar
Price AL, Jones NC, Pevzner PA. De Novo identification of repeat families in large genomes. Bioinformatics. 2005;21(Suppl 1):i351–8.
Article
CAS
PubMed
Google Scholar
Gary B. Tandem repeats finder: a program to Analyze DNA sequences. Nucl Acids Res. 1999;27(2):573–80.
Article
Google Scholar
Zhao X, Hao W. LTR_Finder: an efficient tool for the prediction of full-length Ltr retrotransposons. Nucl Acids Res. 2007;35(Suppl 2):W265-8.
Google Scholar
Fábio M, Mi P, Joon L, Nicola B, Tamer G, Nandana M, et al. The EMBL-EBI search and sequence analysis tools Apis in 2019. Nucl Acids Res. 2019;47(W1):W636–41.
Article
Google Scholar
Mario S, Oliver K, Irfan G, Alec H, Stephan W, Burkhard M. AUGUSTUS: ab initio prediction of alternative transcripts. Nucl Acids Res. 2006;34:W435-9.
Article
Google Scholar
Burge C. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997;268(1):78–94.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, et al. Improving the arabidopsis genome annotation using maximal transcript alignment assemblies. Nucl Acids Res. 2003;31(19):5654–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7.
Article
PubMed
PubMed Central
Google Scholar
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000;28(1):45–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucl Acids Res. 2019;47(D1):D351–60.
Article
CAS
PubMed
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res. 1997;25(5):955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karin L, Peter H, Andreas RE, Hans-Henrik S, Torbjørn R, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl Acids Res. 2007;35(9):3100–8.
Article
Google Scholar
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucl Acids Res. 2005;33:D121-4.
Article
CAS
PubMed
Google Scholar
Groot N, Otting N, Maccari G, Robinson J, Hammond JA, Blancher A, et al. Nomenclature report 2019: major histocompatibility complex genes and alleles of great and small ape and old and new world monkey species. Immunogenetics. 2020;72(1–2):25–36.
Article
PubMed
Google Scholar
Giuseppe M, James R, Keith B, Guethlein LA, Unni G, Jim K, et al. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucl Acids Res. 2017;45(D1):D860–4.
Article
Google Scholar
Burland TG. DNASTAR’s lasergene sequence analysis software. In: Bioinformatics Methods and Protocols. Totowa: Humana Press; 2000. p. 71–91.
Google Scholar
Hall T. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/Nt. Nucl Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar
Uda A, Tanabayashi K, Fujita O, Hotta A, Terao K, Yamada A. Identification of the MHC Class I B locus in cynomolgus monkeys. Immunogenetics. 2005;57(3):189–97.
Article
CAS
PubMed
Google Scholar
Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SG. IPD-IMGT/HLA database. Nucl Acids Res. 2020;48(D1):D948–55.
CAS
PubMed
Google Scholar
Bontrop RE, Otting N, de Groot NG, Doxiadis GG. Major Histocompatibility complex class II polymorphisms in primates. Immunol Rev. 1999;167(1):339–50.
Article
CAS
PubMed
Google Scholar
Doxiadis GG, Otting N, de Groot NG, Noort R, Bontrop RE. Unprecedented polymorphism of MHC-DRB region configurations in rhesus macaques. J Immunol. 2000;164(6):3193–9.
Article
CAS
PubMed
Google Scholar
Otting N, Doxiadis GG, Bontrop RE. Definition of Mafa-A and-B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis). Immunogenetics. 2009;61(11):745–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otting N, de Groot N, de Vos-Rouweler AJ, Louwerse A, Doxiadis GG, Bontrop RE. Multilocus definition of MHC haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis). Immunogenetics. 2012;64(10):755–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karl JA, Graham ME, Wiseman RW, Heimbruch KE, Gieger SM, Doxiadis GG, et al. Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities. Immunogenetics. 2017;69(4):211–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shortreed CG, Wiseman RW, Karl JA, Bussan HE, Baker DA, Prall TM, et al. Characterization of 100 extended major histocompatibility complex haplotypes in indonesian cynomolgus macaques. Immunogenetics. 2020;72(4):225–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Groot NG, de Groot N, de Vos-Rouweler AJ, Louwerse A, Bruijnesteijn J, Bontrop RE. Dynamic evolution of MHC haplotypes in cynomolgus macaques of different geographic origins. Immunogenetics. 2022;74:1–21.
Article
Google Scholar
Otting N, Heijmans C, Van der Wiel M, De Groot NG, Doxiadis GG, Bontrop RE. A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin. Immunogenetics. 2008;60(9):507–14.
Article
PubMed
PubMed Central
Google Scholar
Huang S, Huang X, Li S, Zhu M, Zhuo M. MHC class I allele diversity in cynomolgus macaques of Vietnamese origin. PeerJ. 2019;7:e7941.
Article
PubMed
PubMed Central
Google Scholar
Salguero FJ, White AD, Slack GS, Fotheringham SA, Bewley KR, Gooch KE, et al. Comparison of rhesus and cynomolgus macaques as an infection model for COVID-19. Nat Commun. 2021;12(1):1260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doxiadis GG, Rouweler AJ, de Groot NG, Louwerse A, Otting N, Verschoor EJ, et al. Extensive sharing of MHC class II alleles between rhesus and cynomolgus macaques. Immunogenetics. 2006;58(4):259–68.
Article
CAS
PubMed
Google Scholar
Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31(4):429–34.
Article
CAS
PubMed
Google Scholar
Khakoo SI, Thio CL, Martin MP, Brooks CR, Carrington M. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science. 2004;305(5685):872–4.
Article
CAS
PubMed
Google Scholar
Hiby SE, Walker JJ, O’shaughnessy KM, Redman CW, Carrington M, Trowsdale J, et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200(8):957–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol. 2013;13(2):133–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahin U, Dalva K, Gungor F, Ustun C, Beksac M. Donor-recipient killer immunoglobulin like receptor (KIR) genotype matching has a protective effect on chronic graft versus host disease and relapse incidence following HLA-identical sibling hematopoietic stem cell transplantation. Ann Hematol. 2018;97(6):1027–39.
Article
CAS
PubMed
Google Scholar
Urvater JA, Otting N, Loehrke JH, Rudersdorf R, Slukvin II, Piekarczyk MS, et al. Mamu-I: a novel primate MHC class I B-related locus with unusually low variability. J Immunol. 2000;164(3):1386–98.
Article
CAS
PubMed
Google Scholar
Maness NJ, Walsh AD, Rudersdorf RA, Erickson PA, Piaskowski SM, Wilson NA, et al. Chinese origin rhesus macaque major histocompatibility complex class I molecules promiscuously present epitopes from SIV associated with molecules of Indian origin; implications for immunodominance and viral escape. Immunogenetics. 2011;63(9):587–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mothé BR, Weinfurter J, Wang C, Rehrauer W, Wilson N, Allen TM, et al. Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus Sivmac239 replication. J Virol. 2003;77(4):2736–40.
Article
PubMed
PubMed Central
Google Scholar