Jee WJBMH. Integrated bone tissue physiology: anatomy and physiology. 2001. p. 1.1–68.
Aaron JE. Periosteal sharpey’s fibers: a novel bone matrix regulatory system? Front Endocrinol. 2012;3:98. https://doi.org/10.3389/fendo.2012.00098.
Article
Google Scholar
Matsushima S, Isogai N, Jacquet R, Lowder E, Tokui T, Landis WJ. The nature and role of periosteum in bone and cartilage regeneration. Cells Tissues Organs. 2011;194:320–5. https://doi.org/10.1159/000324642.
Article
PubMed
PubMed Central
CAS
Google Scholar
McBride SH, Evans SF, Knothe Tate ML. Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation. J Biomech. 2011;44:1954–9. https://doi.org/10.1016/j.jbiomech.2011.04.036.
Article
PubMed
PubMed Central
Google Scholar
Dwek JR. The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol. 2010;39:319–23. https://doi.org/10.1007/s00256-009-0849-9.
Article
PubMed
PubMed Central
Google Scholar
Ellender G, Feik SA, Carach BJ. Periosteal structure and development in a rat caudal vertebra. J Anat. 1988;158:173–87.
PubMed
PubMed Central
CAS
Google Scholar
Simpson AH. The blood supply of the periosteum. J Anat. 1985;140(Pt 4):697–704.
PubMed
PubMed Central
Google Scholar
Foolen J, van Donkelaar C, Nowlan N, Murphy P, Huiskes R, Ito K. Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth. J Orthop Res. 2008;26:1263–8. https://doi.org/10.1002/jor.20586.
Article
PubMed
Google Scholar
Ruberti JW, Hallab NJ. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun. 2005;336:483–9. https://doi.org/10.1016/j.bbrc.2005.08.128.
Article
PubMed
CAS
Google Scholar
Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med. 2012;1:480–91. https://doi.org/10.5966/sctm.2011-0056.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ball MD, Bonzani IC, Bovis MJ, Williams A, Stevens MM. Human periosteum is a source of cells for orthopaedic tissue engineering: a pilot study. Clin Orthop Relat Res. 2011;469:3085–93. https://doi.org/10.1007/s11999-011-1895-x.
Article
PubMed
PubMed Central
Google Scholar
Choi YS, Lim SM, Shin HC, Lee CW, Kim SL, Kim DI. Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnol Lett. 2007;29:323–9. https://doi.org/10.1007/s10529-006-9240-2.
Article
PubMed
CAS
Google Scholar
Lim SM, Choi YS, Shin HC, Lee CW, Kim DI. Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis. Biotechnol Lett. 2005;27:607–11. https://doi.org/10.1007/s10529-005-3625-5.
Article
PubMed
CAS
Google Scholar
Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327:449–62. https://doi.org/10.1007/s00441-006-0308-z.
Article
PubMed
CAS
Google Scholar
Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408:535–6. https://doi.org/10.1038/35046196.
Article
PubMed
CAS
Google Scholar
Agata K, Saito Y, Nakajima E. Unifying principles of regeneration I: epimorphosis versus morphallaxis. Dev Growth Differ. 2007;49:73–8. https://doi.org/10.1111/j.1440-169X.2007.00919.x.
Article
PubMed
Google Scholar
De Bari C, Dell’Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 2001;44:85–95. https://doi.org/10.1002/1529-0131(200101)44:1%3c85::Aid-anr12%3e3.0.Co;2-6.
Article
PubMed
Google Scholar
de Lageneste OD, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by periostin. Nat Commun. 2018;9:773. https://doi.org/10.1038/s41467-018-03124-z.
Article
CAS
Google Scholar
De Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 2006;54:1209–21. https://doi.org/10.1002/art.21753.
Article
PubMed
CAS
Google Scholar
Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33:919–26. https://doi.org/10.1016/j.bone.2003.07.005.
Article
PubMed
Google Scholar
Chen X, Wang J, Yu L, Zhou J, Zheng D, Zhang B. Effect of concentrated growth factor (CGF) on the promotion of osteogenesis in bone marrow stromal cells (BMSC) in vivo. Sci Rep. 2018;8:5876. https://doi.org/10.1038/s41598-018-24364-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sassoli C, Pini A, Chellini F, Mazzanti B, Nistri S, Nosi D, Saccardi R, Quercioli F, Zecchi-Orlandini S, Formigli L. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF. PLoS ONE. 2012;7: e37512. https://doi.org/10.1371/journal.pone.0037512.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan BC, Jiang D, Wang J, Zhang Y, Zhu X, Xu P, Yu X, Won MH, Su PQ. Both decreased akt expression and mtor phosphorylation are related to decreased neuronal differentiation in the hippocampal alveus of aged mice. Aging Clin Exp Res. 2018;30:737–43. https://doi.org/10.1007/s40520-017-0833-5.
Article
PubMed
Google Scholar
Squier CA, Ghoneim S, Kremenak CR. Ultrastructure of the periosteum from membrane bone. J Anat. 1990;171:233–9.
PubMed
PubMed Central
CAS
Google Scholar
Bruns RR, Palade GE. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968;37:244–76. https://doi.org/10.1083/jcb.37.2.244.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res. 1992;275:280–6.
Google Scholar
Brighton CT, Lorich DG, Kupcha R, Reilly TM, Jones AR, Woodbury RA 2nd. The pericyte as a possible osteoblast progenitor cell. Clin Orthop Relat Res. 1992;275:287–99.
Google Scholar
Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone. 2004;35:1003–12. https://doi.org/10.1016/j.bone.2004.07.014.
Article
PubMed
CAS
Google Scholar
Augustin G, Antabak A, Davila S. The periosteum. Part 1: anatomy, histology and molecular biology. Injury. 2007;38:1115–30. https://doi.org/10.1016/j.injury.2007.05.017.
Article
PubMed
Google Scholar
Reilly TM, Seldes R, Luchetti W, Brighton CT. Similarities in the phenotypic expression of pericytes and bone cells. Clin Orthop Relat Res. 1998;346:95–103.
Article
Google Scholar
Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, Kronenberg MS, Jiang X, Maye P, Adams DJ, Rowe DW, Aguila HL, Kalajzic I. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells. 2012;30:187–96. https://doi.org/10.1002/stem.780.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao B, Deng R, Chai Y, Chen H, Hu B, Wang X, Zhu S, Cao Y, Ni S, Wan M, Yang L, Luo Z, Cao X. Macrophage-lineage trap+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Investig. 2019;129:2578–94. https://doi.org/10.1172/jci98857.
Article
PubMed
PubMed Central
Google Scholar
Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44. https://doi.org/10.4049/jimmunol.181.2.1232.
Article
PubMed
CAS
Google Scholar
Gordon S. The macrophage. BioEssays. 1995;17:977–86. https://doi.org/10.1002/bies.950171111.
Article
PubMed
CAS
Google Scholar
Hume DA. The mononuclear phagocyte system. Curr Opin Immunol. 2006;18:49–53. https://doi.org/10.1016/j.coi.2005.11.008.
Article
PubMed
CAS
Google Scholar
Fan W, Crawford R, Xiao Y. Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats. Bone. 2008;42:81–9. https://doi.org/10.1016/j.bone.2007.08.048.
Article
PubMed
Google Scholar
Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC. Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res. 2007;22:1492–501. https://doi.org/10.1359/jbmr.070518.
Article
PubMed
Google Scholar
Chanavaz M. The periosteum: the “umbilical cord” of bone. Quantification of the blood supply of cortical bone of periosteal origin. Rev Stomatol Chir Maxillofac. 1995;96:262–7.
PubMed
CAS
Google Scholar
Brookes M, Revell WJ. Blood supply of bone. London: Springer; 1998.
Book
Google Scholar
Manning CW. The blood supply of the lower limb bones in man. Proc R Soc Med. 1967;60:1187.
PubMed Central
Google Scholar
King KF. Periosteal pedicle grafting in dogs. J Bone Joint Surg Br. 1976;58:117–21. https://doi.org/10.1302/0301-620x.58b1.1270488.
Article
PubMed
CAS
Google Scholar
Mauprivez C, Bataille C, Baroukh B, Llorens A, Lesieur J, Marie PJ, Saffar JL, Biosse Duplan M, Cherruau M. Periosteum metabolism and nerve fiber positioning depend on interactions between osteoblasts and peripheral innervation in rat mandible. PLoS ONE. 2015;10: e0140848. https://doi.org/10.1371/journal.pone.0140848.
Article
PubMed
PubMed Central
CAS
Google Scholar
Asmus SE, Parsons S, Landis SC. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci. 2000;20:1495–504. https://doi.org/10.1523/jneurosci.20-04-01495.2000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17. https://doi.org/10.1016/s0092-8674(02)01049-8.
Article
PubMed
CAS
Google Scholar
Elefteriou F. Neuronal signaling and the regulation of bone remodeling. Cell Mol Life Sci. 2005;62:2339–49. https://doi.org/10.1007/s00018-005-5175-3.
Article
PubMed
CAS
Google Scholar
Kimura A, Inose H, Yano F, Fujita K, Ikeda T, Sato S, Iwasaki M, Jinno T, Ae K, Fukumoto S, Takeuchi Y, Itoh H, Imamura T, Kawaguchi H, Chung UI, Martin JF, Iseki S, Shinomiya K, Takeda S. Runx1 and runx2 cooperate during sternal morphogenesis. Development. 2010;137:1159–67. https://doi.org/10.1242/dev.045005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hassan B, Fouilloux I, Baroukh B, Llorens A, Biosse Duplan M, Gosset M, Cherruau M, Saffar JL. Coordination of early cellular reactions during activation of bone resorption in the rat mandible periosteum: an immunohistochemical study. Heliyon. 2017;3: e00430. https://doi.org/10.1016/j.heliyon.2017.e00430.
Article
PubMed
PubMed Central
Google Scholar
Bataille C, Mauprivez C, Haÿ E, Baroukh B, Brun A, Chaussain C, Marie PJ, Saffar JL, Cherruau M. Different sympathetic pathways control the metabolism of distinct bone envelopes. Bone. 2012;50:1162–72. https://doi.org/10.1016/j.bone.2012.01.023.
Article
PubMed
CAS
Google Scholar
Cherruau M, Morvan FO, Schirar A, Saffar JL. Chemical sympathectomy-induced changes in th-, vip-, and cgrp-immunoreactive fibers in the rat mandible periosteum: influence on bone resorption. J Cell Physiol. 2003;194:341–8. https://doi.org/10.1002/jcp.10209.
Article
PubMed
CAS
Google Scholar
Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR, Kingery WS. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits rankl induced nf-kappab activation, osteoclastogenesis and bone resorption. Bone. 2010;46:1369–79. https://doi.org/10.1016/j.bone.2009.11.029.
Article
PubMed
CAS
Google Scholar
Jaffee EM, Dranoff G, Cohen LK, Hauda KM, Clift S, Marshall FF, Mulligan RC, Pardoll DM. High efficiency gene transfer into primary human tumor explants without cell selection. Cancer Res. 1993;53:2221–6.
PubMed
CAS
Google Scholar
Tonna EA. Electron microscopy of aging skeletal cells. III. The periosteum. Lab Investig. 1974;31:609–32.
PubMed
CAS
Google Scholar
Fan W, Bouwense SA, Crawford R, Xiao Y. Structural and cellular features in metaphyseal and diaphyseal periosteum of osteoporotic rats. J Mol Histol. 2010;41:51–60. https://doi.org/10.1007/s10735-010-9261-y.
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Driscoll SW, Fitzsimmons JS. The role of periosteum in cartilage repair. Clin Orthop Relat Res. 2001. https://doi.org/10.1097/00003086-200110001-00019.
Article
PubMed
Google Scholar
Uchiyama E, Yamakoshi K, Sasaki T. Measurement of mechanical characteristics of tibial periosteum and evaluation of local differences. J Biomech Eng. 1998;120:85–91. https://doi.org/10.1115/1.2834311.
Article
PubMed
CAS
Google Scholar
Bilkay U, Tokat C, Helvaci E, Ozek C, Zekioglu O, Onat T, Songur E. Osteogenic capacities of tibial and cranial periosteum: a biochemical and histologic study. J Craniofac Surg. 2008;19:453–8. https://doi.org/10.1097/SCS.0b013e318052fe3d.
Article
PubMed
Google Scholar
Uddströmer L. The osteogenic capacity of tubular and membranous bone periosteum. A qualitative and quantitative experimental study in growing rabbits. Scand J Plast Reconstr Surg. 1978;12:195–205. https://doi.org/10.3109/02844317809012995.
Article
PubMed
Google Scholar
Gallay SH, Miura Y, Commisso CN, Fitzsimmons JS, O’Driscoll SW. Relationship of donor site to chondrogenic potential of periosteum in vitro. J Orthop Res. 1994;12:515–25. https://doi.org/10.1002/jor.1100120408.
Article
PubMed
CAS
Google Scholar
Ogita M, Rached MT, Dworakowski E, Bilezikian JP, Kousteni S. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology. 2008;149(11):5713–23. https://doi.org/10.1210/en.2008-0369.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin Z, Fateh A, Salem DM, Intini G. Periosteum: biology and applications in craniofacial bone regeneration. J Dent Res. 2014;93:109–16. https://doi.org/10.1177/0022034513506445.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA. Embryonic origin and hox status determine progenitor cell fate during adult bone regeneration. Development. 2008;135:2845–54. https://doi.org/10.1242/dev.023788.
Article
PubMed
CAS
Google Scholar
Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993;117:409–29.
Article
CAS
Google Scholar
Noden DM. Patterns and organization of craniofacial skeletogenic and myogenic mesenchyme: a perspective. Prog Clin Biol Res. 1982;101:167–203.
PubMed
CAS
Google Scholar
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn. 2020. https://doi.org/10.1002/dvdy.278.
Article
PubMed
PubMed Central
Google Scholar
D’Addona A, Nowzari H. Intramembranous autogenous osseous transplants in aesthetic treatment of alveolar atrophy. Periodontol. 2000;2001(27):148–61. https://doi.org/10.1034/j.1600-0757.2001.027001148.x.
Article
Google Scholar
Turner RT, Bleiberg B, Colvard DS, Keeting PE, Evans G, Spelsberg TC. Failure of isolated rat tibial periosteal cells to 5 alpha reduce testosterone to 5 alpha-dihydrotestosterone. J Bone Miner Res. 1990;5:775–9. https://doi.org/10.1002/jbmr.5650050715.
Article
PubMed
CAS
Google Scholar
Bikle D, Majumdar S, Laib A, Powell-Braxton L, Rosen C, Beamer W, Nauman E, Leary C, Halloran B. The skeletal structure of insulin-like growth factor i-deficient mice. J Bone Miner Res. 2001;16:2320–9. https://doi.org/10.1359/jbmr.2001.16.12.2320.
Article
PubMed
CAS
Google Scholar
Eyckmans J, Luyten FP. Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng. 2006;12:2203–13. https://doi.org/10.1089/ten.2006.12.2203.
Article
PubMed
CAS
Google Scholar
Ivanov AA, Danilova TI, Popova OP, Erohin AI, Semenihina ES. Peculiarities of osteogenesis by periosteal cells after experimental ectopic transplantation. Bull Exp Biol Med. 2018;165:408–11. https://doi.org/10.1007/s10517-018-4181-z.
Article
PubMed
CAS
Google Scholar
Eyre-Brook AL. The periosteum: its function reassessed. Clin Orthop Relat Res. 1984;189:300–7.
Google Scholar
Knothe UR, Springfield DS. A novel surgical procedure for bridging of massive bone defects. World J Surg Oncol. 2005;3:7. https://doi.org/10.1186/1477-7819-3-7.
Article
PubMed
PubMed Central
Google Scholar
Keskin M, Kelly CP, Moreira-Gonzalez A, Lobocki C, Yarim M, Kaplan S, Jackson IT. Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer. Plast Reconstr Surg. 2008;122:400–9. https://doi.org/10.1097/PRS.0b013e31817d6206.
Article
PubMed
CAS
Google Scholar
Mahajan A. Periosteum: a highly underrated tool in dentistry. Int J Dent. 2012;2012: 717816. https://doi.org/10.1155/2012/717816.
Article
PubMed
Google Scholar
Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res. 2009;24:274–82. https://doi.org/10.1359/jbmr.081003.
Article
PubMed
Google Scholar
Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88:873–84. https://doi.org/10.1002/jcb.10435.
Article
PubMed
CAS
Google Scholar
Arnsdorf EJ, Jones LM, Carter DR, Jacobs CR. The periosteum as a cellular source for functional tissue engineering. Tissue Eng Part A. 2009;15:2637–42. https://doi.org/10.1089/ten.TEA.2008.0244.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ueno T, Kagawa T, Fukunaga J, Mizukawa N, Sugahara T, Yamamoto T. Evaluation of osteogenic/chondrogenic cellular proliferation and differentiation in the xenogeneic periosteal graft. Ann Plast Surg. 2002;48(5):539–45. https://doi.org/10.1097/00000637-200205000-00016.
Article
PubMed
Google Scholar
Ochareon P, Herring SW. Growing the mandible: role of the periosteum and its cells. Anat Rec (Hoboken). 2007;290:1366–76. https://doi.org/10.1002/ar.20588.
Article
Google Scholar
Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res. 2012;30:1869–78. https://doi.org/10.1002/jor.22181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. https://doi.org/10.1186/1741-7015-9-66.
Article
PubMed
PubMed Central
Google Scholar
Breitbart AS, Grande DA, Kessler R, Ryaby JT, Fitzsimmons RJ, Grant RT. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg. 1998;101:567–74. https://doi.org/10.1097/00006534-199803000-00001 (discussion 575-566).
Article
PubMed
CAS
Google Scholar
Redlich A, Perka C, Schultz O, Spitzer R, Häupl T, Burmester GR, Sittinger M. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J Mater Sci Mater Med. 1999;10:767–72. https://doi.org/10.1023/a:1008994715605.
Article
PubMed
CAS
Google Scholar
Chen JJ, Zhang NF, Mao GX, He XB, Zhan YC, Deng HB, Song DQ, Li DD, Li ZR, Si SY, Qiu Q, Wang Z. Salidroside stimulates osteoblast differentiation through bmp signaling pathway. Food Chem Toxicol. 2013;62:499–505. https://doi.org/10.1016/j.fct.2013.09.019.
Article
PubMed
CAS
Google Scholar
Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA. Bone regeneration is regulated by wnt signaling. J Bone Miner Res. 2007;22:1913–23. https://doi.org/10.1359/jbmr.070802.
Article
PubMed
CAS
Google Scholar
Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D, Han CY, Yu L, Lee J, Lee E, Barrero M, Kurimoto P, Niu QT, Geng Z, Winters A, Horan T, Steavenson S, Jacobsen F, Chen Q, Haldankar R, Lavallee J, Tipton B, Daris M, Sheng J, Lu HS, Daris K, Deshpande R, Valente EG, Salimi-Moosavi H, Kostenuik PJ, Li J, Liu M, Li C, Lacey DL, Simonet WS, Ke HZ, Babij P, Stolina M, Ominsky MS, Richards WG. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res. 2011;26:2610–21. https://doi.org/10.1002/jbmr.472.
Article
PubMed
CAS
Google Scholar
Chen M, Lichtler AC, Sheu TJ, Xie C, Zhang X, O’Keefe RJ, Chen D. Generation of a transgenic mouse model with chondrocyte-specific and tamoxifen-inducible expression of Cre recombinase. Genesis. 2007;45:44–50. https://doi.org/10.1002/dvg.20261.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C. Canonical wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8:727–38. https://doi.org/10.1016/j.devcel.2005.02.013.
Article
PubMed
CAS
Google Scholar
Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by wnt signaling. Science. 2000;289:950–3. https://doi.org/10.1126/science.289.5481.950.
Article
PubMed
CAS
Google Scholar
Gaur T, Wixted JJ, Hussain S, O’Connell SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS, Lian JB. Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol. 2009;220:174–81. https://doi.org/10.1002/jcp.21747.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu L, Han M, Yan M, Lee EC, Lee J, Muneoka K. Bmp signaling induces digit regeneration in neonatal mice. Development. 2010;137:551–9. https://doi.org/10.1242/dev.042424.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. Bmp2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–9. https://doi.org/10.1038/ng1916.
Article
PubMed
CAS
Google Scholar
Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17:513–20. https://doi.org/10.1359/jbmr.2002.17.3.513.
Article
PubMed
CAS
Google Scholar
Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006;366:51–7. https://doi.org/10.1016/j.gene.2005.10.011.
Article
PubMed
CAS
Google Scholar
Onishi T, Ishidou Y, Nagamine T, Yone K, Imamura T, Kato M, Sampath TK, ten Dijke P, Sakou T. Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone. 1998;22:605–12. https://doi.org/10.1016/s8756-3282(98)00056-8.
Article
PubMed
CAS
Google Scholar
Huang C, Tang M, Yehling E, Zhang X. Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol Ther. 2014;22:430–9. https://doi.org/10.1038/mt.2013.222.
Article
PubMed
CAS
Google Scholar
Xie C, Liang B, Xue M, Lin AS, Loiselle A, Schwarz EM, Guldberg RE, O’Keefe RJ, Zhang X. Rescue of impaired fracture healing in cox-2−/− mice via activation of prostaglandin e2 receptor subtype 4. Am J Pathol. 2009;175:772–85. https://doi.org/10.2353/ajpath.2009.081099.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Investig. 2002;109:1405–15. https://doi.org/10.1172/jci15681.
Article
PubMed
PubMed Central
CAS
Google Scholar
Joyce ME, Roberts AB, Sporn MB, Bolander ME. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol. 1990;110:2195–207. https://doi.org/10.1083/jcb.110.6.2195.
Article
PubMed
CAS
Google Scholar
Zhou S. Tgf-β regulates β-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem. 2011;112:1651–60. https://doi.org/10.1002/jcb.23079.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Q, Huang C, Zeng F, Xue M, Zhang X. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J Pathol. 2010;177:3100–11. https://doi.org/10.2353/ajpath.2010.100060.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bandyopadhyay A, Kubilus JK, Crochiere ML, Linsenmayer TF, Tabin CJ. Identification of unique molecular subdomains in the perichondrium and periosteum and their role in regulating gene expression in the underlying chondrocytes. Dev Biol. 2008;321:162–74. https://doi.org/10.1016/j.ydbio.2008.06.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Evdokimova V, Ovchinnikov LP, Sorensen PH. Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle. 2006;5(11):1143–7. https://doi.org/10.4161/cc.5.11.2784.
Article
PubMed
CAS
Google Scholar
Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Broadus AE. Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development. 1998;125:1285–94.
Article
CAS
Google Scholar
Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts JT Jr, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both camp and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA. 1992;89:2732–6. https://doi.org/10.1073/pnas.89.7.2732.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, Philbrick WM, Broadus AE. Initial characterization of pth-related protein gene-driven lacz expression in the mouse. J Bone Miner Res. 2006;21:113–23. https://doi.org/10.1359/jbmr.051005.
Article
PubMed
CAS
Google Scholar
Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71:65–76. https://doi.org/10.1016/s0925-4773(97)00203-7.
Article
PubMed
CAS
Google Scholar
Parfitt AM. Parathyroid hormone and periosteal bone expansion. J Bone Miner Res. 2002;17:1741–3. https://doi.org/10.1359/jbmr.2002.17.10.1741.
Article
PubMed
CAS
Google Scholar
Mogi M, Kondo A, Kinpara K, Togari A. Anti-apoptotic action of nerve growth factor in mouse osteoblastic cell line. Life Sci. 2000;67:1197–206. https://doi.org/10.1016/s0024-3205(00)00705-0.
Article
PubMed
CAS
Google Scholar
Cabrera-Vásquez S, Navarro-Tableros V, Sánchez-Soto C, Gutiérrez-Ospina G, Hiriart M. Remodelling sympathetic innervation in rat pancreatic islets ontogeny. BMC Dev Biol. 2009;9:34. https://doi.org/10.1186/1471-213x-9-34.
Article
PubMed
PubMed Central
Google Scholar
Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H. Osteoprotection by semaphorin 3a. Nature. 2012;485:69–74. https://doi.org/10.1038/nature11000.
Article
PubMed
CAS
Google Scholar
Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, Shibata S, Yoshida Y, Gu Z, Kimura A, Ma C, Xu C, Bando W, Fujita K, Shinomiya K, Hirai T, Asou Y, Enomoto M, Okano H, Okawa A, Itoh H. Sema3a regulates bone-mass accrual through sensory innervations. Nature. 2013;497:490–3. https://doi.org/10.1038/nature12115.
Article
PubMed
CAS
Google Scholar
Lundberg P, Lie A, Bjurholm A, Lehenkari PP, Horton MA, Lerner UH, Ransjö M. Vasoactive intestinal peptide regulates osteoclast activity via specific binding sites on both osteoclasts and osteoblasts. Bone. 2000;27:803–10. https://doi.org/10.1016/s8756-3282(00)00394-x.
Article
PubMed
CAS
Google Scholar
Andrew JG, Hoyland J, Freemont AJ, Marsh D. Insulinlike growth factor gene expression in human fracture callus. Calcif Tissue Int. 1993;53:97–102. https://doi.org/10.1007/bf01321886.
Article
PubMed
CAS
Google Scholar
Okazaki K, Jingushi S, Ikenoue T, Urabe K, Sakai H, Iwamoto Y. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res. 2003;21:511–20. https://doi.org/10.1016/s0736-0266(02)00161-4.
Article
PubMed
CAS
Google Scholar
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7. https://doi.org/10.1126/science.296.5573.1655.
Article
PubMed
CAS
Google Scholar
Tahimic CG, Wang Y, Bikle DD. Anabolic effects of IGF-1 signaling on the skeleton. Front Endocrinol. 2013;4:6. https://doi.org/10.3389/fendo.2013.00006.
Article
Google Scholar
Raucci A, Bellosta P, Grassi R, Basilico C, Mansukhani A. Osteoblast proliferation or differentiation is regulated by relative strengths of opposing signaling pathways. J Cell Physiol. 2008;215:442–51. https://doi.org/10.1002/jcp.21323.
Article
PubMed
CAS
Google Scholar
Stegen S, Deprez S, Eelen G, Torrekens S, Van Looveren R, Goveia J, Ghesquière B, Carmeliet P, Carmeliet G. Adequate hypoxia inducible factor 1α signaling is indispensable for bone regeneration. Bone. 2016;87:176–86. https://doi.org/10.1016/j.bone.2016.03.014.
Article
PubMed
CAS
Google Scholar
Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res. 1999;14:1239–49. https://doi.org/10.1359/jbmr.1999.14.7.1239.
Article
PubMed
CAS
Google Scholar
Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP, Safadi FF. Expression and function of periostin-isoforms in bone. J Cell Biochem. 2004;92(5):1044–61. https://doi.org/10.1002/jcb.20115.
Article
PubMed
CAS
Google Scholar
Ding G, Zhao J, Jiang D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells. Exp Ther Med. 2016;11:2553–60. https://doi.org/10.3892/etm.2016.3179.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsumoto T, Nakayama K, Kodama Y, Fuse H, Nakamura T, Fukumoto S. Effect of mechanical unloading and reloading on periosteal bone formation and gene expression in tail-suspended rapidly growing rats. Bone. 1998;22:89s–93s. https://doi.org/10.1016/s8756-3282(98)00018-0.
Article
PubMed
CAS
Google Scholar
Pead MJ, Skerry TM, Lanyon LE. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res. 1988;3(6):647–56. https://doi.org/10.1002/jbmr.5650030610.
Article
PubMed
CAS
Google Scholar
van der Meulen MCHAM, Kiratli BJ. Determinants of femoral geometry and structure during adolescent growth. J Pediatric Orthop Part B. 1996;16:694.
Google Scholar
Kameo Y, Adachi T, Sato N, Hojo M. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity. J Mech Behav Biomed Mater. 2010;3:240–8. https://doi.org/10.1016/j.jmbbm.2009.10.005.
Article
PubMed
Google Scholar
Simon TM, Sickle DCV, Kunishima DH, Jackson DW. Cambium cell stimulation from surgical release of the periosteum. Orthop Res. 2003;21(3):470–80. https://doi.org/10.1016/S0736-0266(02)00206-1.
Article
Google Scholar
Tonna Eugene P, Cronkite JJ. The effects of extraperiosteal injections of blood components on periosteal cell proliferation. J Cell Biol. 1964;23(1):79–87. https://doi.org/10.1083/jcb.23.1.79.
Article
Google Scholar
Goss RJ. Deer antlers. Regeneration, function and evolution. New York, NY: Academic Press; 1983.
Google Scholar
Li C, Suttie JM. Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). Anat Rec. 1994;239:198–215. https://doi.org/10.1002/ar.1092390211.
Article
PubMed
CAS
Google Scholar
Li C, Suttie JM. Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embryol (Berl). 2001;204:375–88. https://doi.org/10.1007/s004290100204.
Article
CAS
Google Scholar
Lincoln GA. Appearance of antler pedicles in early foetal life in red deer. J Embryol Exp Morphol. 1973;29:431–7.
PubMed
CAS
Google Scholar
Brown RD, editor. Endocrine regulation of the antler cycle. In: Proceedings of the antler development in Cervidae; 1982. p. 73–107.
Suttie JM, Fennessy PF, Lapwood KR, Corson ID. Role of steroids in antler growth of red deer stags. J Exp Zool. 1995;271:120–30. https://doi.org/10.1002/jez.1402710207.
Article
PubMed
CAS
Google Scholar
Goss RJ. Of antlers and embryos. In: Bubenik G, Bubenik A, editors. Horns, pronghorns, and antlers. New York: Springer-Verlag; 1990. p. 299–312.
Google Scholar
Hartwig H, Schrudde J. Experimentelle untersuchungen zur bildung der primaren stirnauswuchse beim reh (Capreolus capreolus l.). Z Jagdwiss. 1974;20:1–13.
Google Scholar
Kierdorf U, Stoffels E, Stoffels D, Kierdorf H, Szuwart T, Clemen G. Histological studies of bone formation during pedicle restoration and early antler regeneration in roe deer and fallow deer. Anat Rec. 2003;273A:741–51. https://doi.org/10.1002/ar.a.10082.
Article
Google Scholar
Li C, Mackintosh CG, Martin SK, Clark DE. Identification of key tissue type for antler regeneration through pedicle periosteum deletion. Cell Tissue Res. 2007;328:65–75. https://doi.org/10.1007/s00441-006-0333-y.
Article
PubMed
Google Scholar
Banks WJ, Newbrey JW. Light microscopic studies of the ossification process in developing antlers. In: Rown RD, editor. Proceedings of the antler development in Cervidae; 1982. p. 231–60.
Li C. Histogenetic aspects of deer antler development. Front Biosci (Elite Ed). 2013;5:479–89. https://doi.org/10.2741/e629.
Article
Google Scholar
Li C. Residual antler periosteum holds the potential to partially regenerate lost antler tissue. J Exp Zool A Ecol Integr Physiol. 2021;335:386–95. https://doi.org/10.1002/jez.2451.
Article
PubMed
CAS
Google Scholar
Goss RJ, Powel RS. Induction of deer antlers by transplanted periosteum. I. Graft size and shape. J Exp Zool. 1985;235:359–73. https://doi.org/10.1002/jez.1402350307.
Article
PubMed
CAS
Google Scholar
Li C, Gao X, Yang F, Martin SK, Haines SR, Deng X, Schofield J, Stanton JA. Development of a nude mouse model for the study of antlerogenesis–mechanism of tissue interactions and ossification pathway. J Exp Zool B Mol Dev Evol. 2009;312:118–35. https://doi.org/10.1002/jez.b.21252.
Article
PubMed
Google Scholar
Li C, Suttie JM. Electron microscopic studies of antlerogenic cells from five developmental stages during pedicle and early antler formation in red deer (Cervus elaphus). Anat Rec. 1998;252:587–99. https://doi.org/10.1002/(SICI)1097-0185(199812)252:4%3c587::AID-AR9%3e3.0.CO;2-I.
Article
PubMed
CAS
Google Scholar
Li C, Littlejohn RP, Suttie JM. Effects of insulin-like growth factor 1 and testosterone on the proliferation of antlerogenic cells in vitro. J Exp Zool. 1999;284:82–90.
Article
CAS
Google Scholar
Gao Z, Yang F, McMahon C, Li C. Mapping the morphogenetic potential of antler fields through deleting and transplanting subregions of antlerogenic periosteum in sika deer (Cervus nippon). J Anat. 2012;220:131–43. https://doi.org/10.1111/j.1469-7580.2011.01457.x.
Article
PubMed
Google Scholar
Goss RJ. Induction of deer antlers by transplanted periosteum: III. Orientation. J Exp Zool. 1991;259:246–51. https://doi.org/10.1002/jez.1402590214.
Article
Google Scholar
Li C, Harper A, Puddick J, Wang W, McMahon C. Proteomes and signalling pathways of antler stem cells. PLoS ONE. 2012;7: e30026. https://doi.org/10.1371/journal.pone.0030026.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang D, Berg D, Ba H, Sun H, Wang Z, Li C. Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ-deer antler. Cell Death Dis. 2019;10:443. https://doi.org/10.1038/s41419-019-1686-y.
Article
PubMed
PubMed Central
Google Scholar
Liu Z, Zhao H, Wang D, McMahon C, Li C. Differential effects of the PI3K/AKT pathway on antler stem cells for generation and regeneration of antlers in vitro. Front Biosci (Landmark Ed). 2018;23:1848–63. https://doi.org/10.2741/4676.
Article
CAS
Google Scholar
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L, Kierdorf U. Antlers—evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone. 2019;128: 115046. https://doi.org/10.1016/j.bone.2019.115046.
Article
PubMed
CAS
Google Scholar
Li C, Yang F, Sheppard A. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers. Curr Stem Cell Res Ther. 2009;4:237–51. https://doi.org/10.2174/157488809789057446.
Article
PubMed
CAS
Google Scholar
Li C, Yang F, Haines S, Zhao H, Wang W, Xing X, Sun H, Chu W, Lu X, Liu L, McMahon C. Stem cells responsible for deer antler regeneration are unable to recapitulate the process of first antler development-revealed through intradermal and subcutaneous tissue transplantation. J Exp Zool B Mol Dev Evol. 2010;314:552–70. https://doi.org/10.1002/jez.b.21361.
Article
PubMed
Google Scholar
Goss RJ. Experimental investigations of morphogenesis in the growing antler. J Embryol Exp Morphol. 1961;9:342–54.
PubMed
CAS
Google Scholar
Li C, Men T. Observation of antler growth after lossing its tip, the growth centre. Biol Bioprod. 1990;6:29–30.
Google Scholar
Suttie JM, Fennessy PF. Regrowth of amputated velvet antlers with and without innervation. J Exp Zool. 1985;234:359–66. https://doi.org/10.1002/jez.1402340305.
Article
PubMed
CAS
Google Scholar
Chapman DI. Antlers-bones of contention. Mammal Rev. 1975;5:121–72. https://doi.org/10.1111/j.1365-2907.1975.tb00194.x.
Article
Google Scholar
Li C, Clark DE, Lord EA, Stanton JA, Suttie JM. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec. 2002;268:125–30. https://doi.org/10.1002/ar.10120.
Article
PubMed
CAS
Google Scholar
Akhtar RW, Liu Z, Wang D, Ba H, Shah SAH, Li C. Identification of proteins that mediate the role of androgens in antler regeneration using label free proteomics in sika deer (Cervus nippon). Gen Comp Endocrinol. 2019;283: 113235. https://doi.org/10.1016/j.ygcen.2019.113235.
Article
PubMed
CAS
Google Scholar
Ba H, Wang D, Li C. Microrna profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration. Mol Genet Genom. 2016;291:943–55. https://doi.org/10.1007/s00438-015-1158-8.
Article
CAS
Google Scholar
Dong Z, Ba H, Zhang W, Coates D, Li C. Itraq-based quantitative proteomic analysis of the potentiated and dormant antler stem cells. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17111778.
Article
PubMed
PubMed Central
Google Scholar
Dong Z, Li C, Coates D. Ptn-ptprz signalling is involved in deer antler stem cell regulation during tissue regeneration. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.30115.
Article
PubMed
PubMed Central
Google Scholar
Guo Q, Wang D, Liu Z, Li C. Effects of p21 gene down-regulation through RNAI on antler stem cells in vitro. PLoS ONE. 2015;10: e0134268. https://doi.org/10.1371/journal.pone.0134268.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li C, Littlejohn RP, Corson ID, Suttie JM. Effects of testosterone on pedicle formation and its transformation to antler in castrated male, freemartin and normal female red deer (Cervus elaphus). Gen Comp Endocrinol. 2003;131:21–31. https://doi.org/10.1016/s0016-6480(02)00625-1.
Article
PubMed
CAS
Google Scholar
Li C, Wang W, Manley T, Suttie J. No direct mitogenic effect of sex hormones on antlerogenic cells detected in vitro. Gen Comp Endocrinol. 2001;124:75–81. https://doi.org/10.1006/gcen.2001.7681.
Article
PubMed
CAS
Google Scholar
Handelsman D. Androgen action and pharmacologic uses. In: DeGroot LJJ, editor. Embryology of the human genital tract. Philadelphia: Elsevier Saunders; 2005. p. 3121–38.
Google Scholar
Adams JL. Innervation and blood supply of the antler pedicle of the red deer. N Z Vet J. 1979;27:200–1. https://doi.org/10.1080/00480169.1979.34649.
Article
PubMed
CAS
Google Scholar
Wislocki GB, Singer M. The occurrence and function of nerves in the growing antlers of deer. J Comp Neurol. 1946;85:1–19. https://doi.org/10.1002/cne.900850102.
Article
PubMed
CAS
Google Scholar
Li C, Sheard PW, Corson ID, Suttie JM. Pedicle and antler development following sectioning of the sensory nerves to the antlerogenic region of red deer (Cervus elaphus). J Exp Zool. 1993;267:188–97. https://doi.org/10.1002/jez.1402670212.
Article
PubMed
CAS
Google Scholar
Suttie JM, Li C, Sheard PW, Corson ID, Waldrup KA. Effects of unilateral cranial sympathectomy either alone or with sensory nerve sectioning on pedicle growth in red deer (Cervus elaphus). J Exp Zool. 1995;271:131–8. https://doi.org/10.1002/jez.1402710208.
Article
PubMed
CAS
Google Scholar
Li C, Stanton JA, Robertson TM, Suttie JM, Sheard PW, Harris AJ, Clark DE. Nerve growth factor mrna expression in the regenerating antler tip of red deer (Cervus elaphus). PLoS ONE. 2007;2: e148. https://doi.org/10.1371/journal.pone.0000148.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li C, Suttie JM. Histological studies of pedicle skin formation and its transformation to antler velvet in red deer (Cervus elaphus). Anat Rec. 2000;260:62–71. https://doi.org/10.1002/1097-0185(20000901)260:1%3c62::AID-AR70%3e3.0.CO;2-4.
Article
PubMed
CAS
Google Scholar
Li C, Yang F, Xing X, Gao X, Deng X, Mackintosh C, Suttie JM. Role of heterotypic tissue interactions in deer pedicle and first antler formation-revealed via a membrane insertion approach. J Exp Zool B Mol Dev Evol. 2008;310:267–77. https://doi.org/10.1002/jez.b.21210173.
Article
PubMed
Google Scholar
Li C, Suttie JM. Tissue collection methods for antler research. Eur J Morphol. 2003;41:23–30. https://doi.org/10.1076/ejom.41.1.23.28106.
Article
PubMed
CAS
Google Scholar
Li C, Yang F, Li G, Gao X, Xing X, Wei H, Deng X, Clark DE. Antler regeneration: a dependent process of stem tissue primed via interaction with its enveloping skin. J Exp Zool A Comp Exp Biol. 2007;307:95–105. https://doi.org/10.1002/jez.a.352.
Article
Google Scholar
Li C, Yang F, Suttie JJ. Stem cells, stem cell niche and antler development. Anim Prod Sci. 2011;51:267–76. https://doi.org/10.1071/AN10157.
Article
Google Scholar