Wildung M, Esser TU, Grausam KB, Wiedwald C, Volceanov-Hahn L, Riedel D, et al. Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis. Cell Death Differ. 2019;26(12):2740–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozenberg JM, Rogovaya OS, Melino G, Barlev NA, Kagansky A. Distinct p63 and p73 protein interactions predict specific functions in mRNA splicing and polyploidy control in Epithelia. Cells. 2020;10(1).
Ikawa S, Nakagawara A, Ikawa Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 1999;6(12):1154–61.
Article
CAS
PubMed
Google Scholar
Alonso ME, Bello MJ, Lomas J, Gonzalez-Gomez P, Arjona D, De Campos JM, et al. Absence of mutation of the p73 gene in astrocytic neoplasms. Int J Oncol. 2001;19(3):609–12.
CAS
PubMed
Google Scholar
Zaika AI, Kovalev S, Marchenko ND, Moll UM. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res. 1999;59(13):3257–63.
CAS
PubMed
Google Scholar
Yokozaki H, Shitara Y, Fujimoto J, Hiyama T, Yasui W, Tahara E. Alterations of p73 preferentially occur in gastric adenocarcinomas with foveolar epithelial phenotype. Int J Cancer. 1999;83(2):192–6.
Article
CAS
PubMed
Google Scholar
Yasui W, Yokozaki H, Fujimoto J, Naka K, Kuniyasu H, Tahara E. Genetic and epigenetic alterations in multistep carcinogenesis of the stomach. J Gastroenterol. 2000;35(Suppl 12):111–5.
CAS
PubMed
Google Scholar
Ganini C, Amelio I, Bertolo R, Bove P, Buonomo OC, Candi E, et al. Global mapping of cancers: the cancer genome atlas and beyond. Mol Oncol. 2021.
Mai M, Yokomizo A, Qian C, Yang P, Tindall DJ, Smith DI, et al. Activation of p73 silent allele in lung cancer. Cancer Res. 1998;58(11):2347–9.
CAS
PubMed
Google Scholar
He Y, Fan S, Jiang Y, Chen J, Li Z, Zhang H. Study on the transcript expression of p73 gene in human non-small cell lung cancer tissues. Zhongguo Fei Ai Za Zhi. 2000;3(1):17–9.
CAS
PubMed
Google Scholar
He Y, Fan S, Jiang Y, Xue Z. Expression of ΔNp73 in human NSCLC and clinical implication. Zhongguo Fei Ai Za Zhi. 2006;9(3):263–6.
CAS
PubMed
Google Scholar
Dominguez G, Silva JM, Silva J, Garcia JM, Sanchez A, Navarro A, et al. Wild type p73 overexpression and high-grade malignancy in breast cancer. Breast Cancer Res Treat. 2001;66(3):183–90.
Article
CAS
PubMed
Google Scholar
Ahomadegbe JC, Tourpin S, Kaghad M, Zelek L, Vayssade M, Mathieu MC, et al. Loss of heterozygosity, allele silencing and decreased expression of p73 gene in breast cancers: prevalence of alterations in inflammatory breast cancers. Oncogene. 2000;19(47):5413–8.
Article
CAS
PubMed
Google Scholar
Tomkova K, Belkhiri A, El-Rifai W, Zaika AI. p73 isoforms can induce T-cell factor-dependent transcription in gastrointestinal cells. Cancer Res. 2004;64(18):6390–3.
Article
CAS
PubMed
Google Scholar
Kamiya M, Nakazato Y. The expression of p73, p21 and MDM2 proteins in gliomas. J Neurooncol. 2002;59(2):143–9.
Article
PubMed
Google Scholar
Wager M, Guilhot J, Blanc JL, Ferrand S, Milin S, Bataille B, et al. Prognostic value of increase in transcript levels of Tp73 DeltaEx2-3 isoforms in low-grade glioma patients. Br J Cancer. 2006;95(8):1062–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ugur H, Sayan AE, Ozdamar SO, Kanpolat Y, Ozturk M. Expression of TAP73 and DeltaNP73 in malignant gliomas. Oncol Rep. 2004;11(6):1337–41.
CAS
PubMed
Google Scholar
Inoue K, Fry EA. Alterations of p63 and p73 in human cancers. Subcell Biochem. 2014;85:17–40.
Article
PubMed
PubMed Central
Google Scholar
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene. 2015;34(33):4287–99.
Article
CAS
PubMed
Google Scholar
Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008;22(19):2677–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cam M, Charan M, Welker AM, Dravid P, Studebaker AW, Leonard JR, et al. ΔNp73/ETS2 complex drives glioblastoma pathogenesis-targeting downstream mediators by rebastinib prolongs survival in preclinical models of glioblastoma. Neuro Oncol. 2020;22(3):345–56.
Article
CAS
PubMed
Google Scholar
Ye H, Guo X. TP73 is a credible biomarker for predicting clinical progression and prognosis in cervical cancer patients. Biosci Rep. 2019;39(8)
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucl Acids Res. 2017;45(W1):W98-102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontemaggi G, Kela I, Amariglio N, Rechavi G, Krishnamurthy J, Strano S, et al. Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem. 2002;277(45):43359–68.
Article
CAS
PubMed
Google Scholar
Urist M, Tanaka T, Poyurovsky MV, Prives C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 2004;18(24):3041–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sang M, Ando K, Okoshi R, Koida N, Li Y, Zhu Y, et al. Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. Genes Cells. 2009;14(7):775–88.
Article
CAS
PubMed
Google Scholar
Logotheti S, Michalopoulos I, Sideridou M, Daskalos A, Kossida S, Spandidos DA, et al. Sp1 binds to the external promoter of the p73 gene and induces the expression of TAp73gamma in lung cancer. FEBS J. 2010;277(14):3014–27.
Article
CAS
PubMed
Google Scholar
Gaiddon C, Lokshin M, Gross I, Levasseur D, Taya Y, Loeffler J-P, et al. Cyclin-dependent kinases phosphorylate p73 at threonine 86 in a cell cycle-dependent manner and negatively regulate p73. J Biol Chem. 2003;278(30):27421–31.
Article
CAS
PubMed
Google Scholar
Koida N, Ozaki T, Yamamoto H, Ono S, Koda T, Ando K, et al. Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation. J Biol Chem. 2008;283(13):8555–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostecka A, Sznarkowska A, Meller K, Acedo P, Shi Y, Mohammad Sakil HA, et al. JNK-NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress. Cell Death Dis. 2014;5:e1484.
Ren C, Zhang J, Yan W, Zhang Y, Chen X. RNA-binding protein PCBP2 regulates p73 expression and p73-dependent antioxidant defense. J Biol Chem. 2016;291(18):9629–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang P, Du W, Yang X. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle. 2013;12(24):3720–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Li L, Li W, Chen T, Bin Z, Zhao L, et al. TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation. Nat Commun. 2018;9(1):4683.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vikhreva P, Petrova V, Gokbulut T, Pestlikis I, Mancini M, Di Daniele N, et al. TAp73 upregulates IL-1β in cancer cells: potential biomarker in lung and breast cancer? Biochem Biophys Res Commun. 2017;482(3):498–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Morita M, et al. Expression of deltaNp73 predicts poor prognosis in lung cancer. Clin Cancer Res. 2004;10(20):6905–11.
Article
CAS
PubMed
Google Scholar
Wang B, Liu X, Liu H, Guo J, Zhang T, Zhou N, et al. Differential expressions of MDM2 and TAP73 in cancer and cancer-adjacent tissues in patients with non-small-cell lung carcinoma. Pulmonology. 2018.
Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW, et al. TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci USA. 2015;112(1):226–31.
Article
CAS
PubMed
Google Scholar
Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Nozoe T, et al. Expression of the p53 family in lung cancer. Anticancer Res. 2006;26(3A):1785–90.
CAS
PubMed
Google Scholar
Wang J, Zheng T, Chen X, Song X, Meng X, Bhatta N, et al. MDM2 antagonist can inhibit tumor growth in hepatocellular carcinoma with different types of p53 in vitro. J Gastroenterol Hepatol. 2011;26(2):371–7.
Article
CAS
PubMed
Google Scholar
Yang A, Zhu Z, Kettenbach A, Kapranov P, McKeon F, Gingeras TR, et al. Genome-wide mapping indicates that p73 and p63 co-occupy target sites and have similar dna-binding profiles in vivo. PLoS ONE. 2010;5(7):e11572.
Zhang Q, Di C, Yan J, Wang F, Qu T, Wang Y, et al. Inhibition of SF3b1 by pladienolide B evokes cycle arrest, apoptosis induction and p73 splicing in human cervical carcinoma cells. Artif Cells Nanomed Biotechnol. 2019;47(1):1273–80.
Article
CAS
PubMed
Google Scholar
Oh YK, Lee HJ, Jeong M-H, Rhee M, Mo J-W, Song EH, et al. Role of activating transcription factor 3 on TAp73 stability and apoptosis in paclitaxel-treated cervical cancer cells. Mol Cancer Res. 2008;6(7):1232–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wakatsuki M, Ohno T, Iwakawa M, Ishikawa H, Noda S, Ohta T, et al. p73 protein expression correlates with radiation-induced apoptosis in the lack of p53 response to radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2008;70(4):1189–94.
Article
CAS
PubMed
Google Scholar
Mega Tiber P, Baloglu L, Ozden S, Ozgen Z, Ozyurt H, Eren M, et al. The association of apoptotic protein expressions sensitive to apoptosis gene, p73 and p53 with the prognosis of cervical carcinoma. Onco Targets Ther. 2014;26(7):2161–8.
Google Scholar
Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenröder O, Pützer BM. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget. 2014;5(15):5893–907.
Article
PubMed
PubMed Central
Google Scholar
Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Fürst K, et al. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell. 2013;24(4):512–27.
Article
CAS
PubMed
Google Scholar
Koeppel M, van Heeringen SJ, Kramer D, Smeenk L, Janssen-Megens E, Hartmann M, et al. Crosstalk between c-Jun and TAp73alpha/beta contributes to the apoptosis-survival balance. Nucl Acids Res. 2011;39(14):6069–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Hao Q, Zhang Q, Liao JM, Ke JW, Liao P, et al. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ. 2015;22(5):755–66.
Article
CAS
PubMed
Google Scholar
Ohtsuka T, Ryu H, Minamishima YA, Ryo A, Lee SW. Modulation of p53 and p73 levels by cyclin G: implication of a negative feedback regulation. Oncogene. 2003;22(11):1678–87.
Article
CAS
PubMed
Google Scholar
Ozaki T, Sugimoto H, Nakamura M, Hiraoka K, Yoda H, Sang M, et al. Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity. FEBS J. 2015;282(1):114–28.
Article
CAS
PubMed
Google Scholar
Pediconi N, Guerrieri F, Vossio S, Bruno T, Belloni L, Schinzari V, et al. hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Mol Cell Biol. 2009;29(8):1989–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R, et al. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev. 2010;24(6):549–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa T, Takahashi M, Ozaki T, Watanabe Ki K, Todo S, Mizuguchi H, et al. Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol Cell Biol. 2002;22(8):2575–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P, et al. p73 regulates serine biosynthesis in cancer. Oncogene. 2014;33(42):5039–46.
Article
CAS
PubMed
Google Scholar
Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol. 2013;15(8):991–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funato K, Hayashi T, Echizen K, Negishi L, Shimizu N, Koyama-Nasu R, et al. SIRT2-mediated inactivation of p73 is required for glioblastoma tumorigenicity. EMBO Rep. 2018;19(11).
Cheng C, Feng S, Jiao J, Huang W, Huang J, Wang L, et al. DLC2 inhibits development of glioma through regulating the expression ratio of TAp73α/TAp73β. Am J Cancer Res. 2018;8(7):1200–13.
CAS
PubMed
PubMed Central
Google Scholar
Casciano I, Mazzocco K, Boni L, Pagnan G, Banelli B, Allemanni G, et al. Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ. 2002;9(3):246–51.
Article
CAS
PubMed
Google Scholar
Landré V, Antonov A, Knight R, Melino G. p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget. 2016;7(11):11785–802.
Article
PubMed
PubMed Central
Google Scholar
Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 2010;29(4):613–39.
Article
CAS
PubMed
Google Scholar
Niklison-Chirou MV, Erngren I, Engskog M, Haglöf J, Picard D, Remke M, et al. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes Dev. 2017;31(17):1738–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zitterbart K, Zavrelova I, Kadlecova J, Spesna R, Kratochvilova A, Pavelka Z, et al. p73 expression in medulloblastoma: TAp73/DeltaNp73 transcript detection and possible association of p73alpha/DeltaNp73 immunoreactivity with survival. Acta Neuropathol. 2007;114(6):641–50.
Article
CAS
PubMed
Google Scholar
Drakos E, Singh RR, Rassidakis GZ, Schlette E, Li J, Claret FX, et al. Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21). Leukemia. 2011;25(5):856–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wang X, Flores ER, Yu J, Chang S. Dysfunctional telomeres induce p53-dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation. Aging Cell. 2016;15(4):646–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riley MF, You MJ, Multani AS, Lozano G. Mdm2 overexpression and p73 loss exacerbate genomic instability and dampen apoptosis, resulting in B-cell lymphoma. Oncogene. 2016;35(3):358–65.
Article
CAS
PubMed
Google Scholar
Nemajerova A, Petrenko O, Trümper L, Palacios G, Moll UM. Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. J Clin Invest. 2010;120(6):2070–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feeley KP, Adams CM, Mitra R, Eischen CM. Mdm2 is required for survival and growth of p53-deficient cancer cells. Cancer Res. 2017;77(14):3823–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaida A, Ariumi Y, Ueda Y, Lin JY, Hijikata M, Ikawa S, et al. Functional impairment of p73 and p51, the p53-related proteins, by the human T-cell leukemia virus type 1 Tax oncoprotein. Oncogene. 2000;19(6):827–30.
Article
CAS
PubMed
Google Scholar
Chakraborty J, Banerjee S, Ray P, Hossain DMS, Bhattacharyya S, Adhikary A, et al. Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells. J Biol Chem. 2010;285(43):33104–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanks TS, Gauss KA. Pleomorphic adenoma gene-like 2 regulates expression of the p53 family member, p73, and induces cell cycle block and apoptosis in human promonocytic U937 cells. Apoptosis. 2012;17(3):236–47.
Article
CAS
PubMed
Google Scholar
Kawahara M, Hori T, Chonabayashi K, Oka T, Sudol M, Uchiyama T. Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood. 2008;112(9):3856–66.
Article
CAS
PubMed
Google Scholar
Meier M, den Boer ML, Meijerink JPP, Broekhuis MJC, Passier MMCJ, van Wering ER, et al. Differential expression of p73 isoforms in relation to drug resistance in childhood T-lineage acute lymphoblastic leukaemia. Leukemia. 2006;20(8):1377–84.
Article
CAS
PubMed
Google Scholar
Tebbi A, Guittet O, Cottet M-H, Vesin M-F, Lepoivre M. TAp73 induction by nitric oxide: regulation by checkpoint kinase 1 (CHK1) and protection against apoptosis. J Biol Chem. 2011;286(10):7873–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Oliveira RH, Cortez AP, de Ávila RI, da Silva ACG, de Carvalho FS, Menegatti R, et al. Small-molecule MDM2 inhibitor LQFM030-induced apoptosis in p53-null K562 chronic myeloid leukemia cells. Fundam Clin Pharmacol. 2020;34(4):444–57.
Article
CAS
Google Scholar
Sampath D, Calin GA, Puduvalli VK, Gopisetty G, Taccioli C, Liu C-G, et al. Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood. 2009;113(16):3744–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soond SM, Barry SP, Melino G, Knight RA, Latchman DS, Stephanou A. p73-mediated transcriptional activity is negatively regulated by polo-like kinase 1. Cell Cycle. 2008;7(9):1214–23.
Article
CAS
PubMed
Google Scholar
Tiwary R, Yu W, Sanders BG, Kline K. α-TEA cooperates with chemotherapeutic agents to induce apoptosis of p53 mutant, triple-negative human breast cancer cells via activating p73. Breast Cancer Res. 2011;13(1):R1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domínguez G, García JM, Peña C, Silva J, García V, Martínez L, et al. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F–1. J Clin Oncol. 2006;24(5):805–15.
Article
PubMed
CAS
Google Scholar
Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L, et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem. 2000;275(38):29503–12.
Article
CAS
PubMed
Google Scholar
Avraham A, Feldman S, Cho SS, Kol A, Heler L, Riklin-Nahmias E, et al. Breast-specific epigenetic regulation of DeltaNp73 and its role in DNA-damage-response of BRCA1-mutated human mammary epithelial cells. Cancers (Basel). 2020;12(9).
Lefkimmiatis K, Caratozzolo MF, Merlo P, D’Erchia AM, Navarro B, Levrero M, et al. p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. Cancer Res. 2009;69(22):8563–71.
Article
CAS
PubMed
Google Scholar
Gomez LC, Sottile ML, Guerrero-Gimenez ME, Zoppino FCM, Redondo AL, Gago FE, et al. TP73 DNA methylation and upregulation of ΔNp73 are associated with an adverse prognosis in breast cancer. J Clin Pathol. 2018;71(1):52–8.
Article
CAS
PubMed
Google Scholar
Lemos A, Gomes AS, Loureiro JB, Brandão P, Palmeira A, Pinto MMM, et al. Synthesis, biological evaluation, and in silico studies of novel aminated xanthones as potential p53-activating agents. Molecules. 2019;24(10)
Soldevilla B, Díaz R, Silva J, Campos-Martín Y, Muñoz C, García V, et al. Prognostic impact of ΔTAp73 isoform levels and their target genes in colon cancer patients. Clin Cancer Res. 2011;17(18):6029–39.
Article
CAS
PubMed
Google Scholar
Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS, et al. p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene. 2001;20(41):5818–25.
Article
CAS
PubMed
Google Scholar
Wojdyla L, Stone AL, Sethakorn N, Uppada SB, Devito JT, Bissonnette M, et al. T-oligo as an anticancer agent in colorectal cancer. Biochem Biophys Res Commun. 2014;446(2):596–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rufini A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, et al. TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev. 2012;26(18):2009–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong H, Zhang Y, Jiang K, Ye S, Chen S, Zhang Q, et al. p73 coordinates with Δ133p53 to promote DNA double-strand break repair. Cell Death Differ. 2018;25(6):1063–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domínguez G, Peña C, Silva J, García JM, García V, Rodríguez R, et al. The presence of an intronic deletion in p73 and high levels of ZEB1 alter the TAp73/DeltaTAp73 ratio in colorectal carcinomas. J Pathol. 2006;210(4):390–7.
Article
PubMed
CAS
Google Scholar
Deng X, Sheng J, Liu H, Wang N, Dai C, Wang Z, et al. Cinobufagin promotes cell cycle arrest and apoptosis to block human esophageal squamous cell carcinoma cells growth via the p73 signalling pathway. Biol Pharm Bull. 2019;42(9):1500–9.
Article
CAS
PubMed
Google Scholar
Zaika E, Bhardwaj V, Wei J, Washington MK, Souza R, El-Rifai W, et al. Proinflammatory cytokines and bile acids upregulate ΔNp73 protein, an inhibitor of p53 and p73 tumor suppressors. PLoS ONE. 2013;8(5):e64306.
Bhardwaj V, Horvat A, Korolkova O, Washington MK, El-Rifai W, Dikalov SI, et al. Prevention of DNA damage in Barrett’s esophageal cells exposed to acidic bile salts. Carcinogenesis. 2016;37(12):1161–9.
CAS
PubMed
PubMed Central
Google Scholar
Zaika E, Wei J, Yin D, Andl C, Moll U, El-Rifai W, et al. p73 protein regulates DNA damage repair. FASEB J. 2011;25(12):4406–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilgelm AE, Hong SM, Washington MK, Wei J, Chen H, El-Rifai W, et al. Characterization of ΔNp73 expression and regulation in gastric and esophageal tumors. Oncogene. 2010;29(43):5861–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malaguarnera R, Vella V, Pandini G, Sanfilippo M, Pezzino V, Vigneri R, et al. TAp73 alpha increases p53 tumor suppressor activity in thyroid cancer cells via the inhibition of Mdm2-mediated degradation. Mol Cancer Res. 2008;6(1):64–77.
Article
CAS
PubMed
Google Scholar
Concin N, Hofstetter G, Berger A, Gehmacher A, Reimer D, Watrowski R, et al. Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53–p73 cross-talk in vivo. Clin Cancer Res. 2005;11(23):8372–83.
Article
CAS
PubMed
Google Scholar
Vikhanskaya F, D’Incalci M, Broggini M. p73 competes with p53 and attenuates its response in a human ovarian cancer cell line. Nucl Acids Res. 2000;28(2):513–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofstetter G, Berger A, Chamson M, Müller-Holzner E, Reimer D, Ulmer H, et al. Clinical relevance of TAp73 and ΔNp73 protein expression in ovarian cancer: a series of 83 cases and review of the literature. Int J Gynecol Pathol. 2011;30(6):527–31.
Article
PubMed
Google Scholar
Chen J, Li D, Killary AM, Sen S, Amos CI, Evans DB, et al. Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Ann Surg Oncol. 2009;16(2):431–9.
Article
PubMed
Google Scholar
Ito Y, Takeda T, Wakasa K, Tsujimoto M, Sakon M, Matsuura N. Expression of p73 and p63 proteins in pancreatic adenocarcinoma: p73 overexpression is inversely correlated with biological aggressiveness. Int J Mol Med. 2001;8(1):67–71.
CAS
PubMed
Google Scholar
Ozaki T, Hosoda M, Miyazaki K, Hayashi S, Watanabe K-I, Nakagawa T, et al. Functional implication of p73 protein stability in neuronal cell survival and death. Cancer Lett. 2005;228(1–2):29–35.
Article
CAS
PubMed
Google Scholar
Gomes S, Raimundo L, Soares J, Loureiro JB, Leão M, Ramos H, et al. New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Lett. 2019;1(446):90–102.
Article
CAS
Google Scholar
Rossi M, Sayan AE, Terrinoni A, Melino G, Knight RA. Mechanism of induction of apoptosis by p73 and its relevance to neuroblastoma biology. Ann N Y Acad Sci. 2004;1028:143–9.
Article
CAS
PubMed
Google Scholar
Zekri A, Ghaffari SH, Yaghmaie M, Estiar MA, Alimoghaddam K, Modarressi MH, et al. Inhibitor of aurora kinase B induces differentially cell death and polyploidy via DNA damage response pathways in neurological malignancy: shedding new light on the challenge of resistance to AZD1152-HQPA. Mol Neurobiol. 2016;53(3):1808–23.
Article
CAS
PubMed
Google Scholar
Sinha N, Panda PK, Naik PP, Das DN, Mukhopadhyay S, Maiti TK, et al. Abrus agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma. Mol Carcinog. 2017;56(11):2400–13.
Article
CAS
PubMed
Google Scholar
Lu H, Yang X, Duggal P, Allen CT, Yan B, Cohen J, et al. TNF-α promotes c-REL/ΔNp63α interaction and TAp73 dissociation from key genes that mediate growth arrest and apoptosis in head and neck cancer. Cancer Res. 2011;71(21):6867–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Jiang X, Zhou X. Expression and prognosis significance of p73 and PCNA in laryngeal squamous cell carcinoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2005;19(24):1121–4.
PubMed
Google Scholar
Choi H-R, Batsakis JG, Zhan F, Sturgis E, Luna MA, El-Naggar AK. Differential expression of p53 gene family members p63 and p73 in head and neck squamous tumorigenesis. Hum Pathol. 2002;33(2):158–64.
Article
CAS
PubMed
Google Scholar
Velletri T, Huang Y, Wang Y, Li Q, Hu M, Xie N, et al. Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin. Cell Death Differ. 2021;28(1):156–69.
Article
CAS
PubMed
Google Scholar
Radine C, Peters D, Reese A, Neuwahl J, Budach W, Jänicke RU, et al. The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53–p21-axis. Cell Death Differ. 2020;27(4):1274–85.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Article
CAS
PubMed
Google Scholar
Marin MC, Marques MM. Novel role of p73 as a regulator of developmental angiogenesis: implication for cancer therapy. Mol Cell Oncol. 2016;3(1):e1019973.
Sabapathy K. p73: a positive or negative regulator of angiogenesis, or both? Mol Cell Biol. 2015;36(6):848–54.
Article
PubMed
CAS
Google Scholar
Napoli M, Flores ER. The p53 family orchestrates the regulation of metabolism: physiological regulation and implications for cancer therapy. Br J Cancer. 2017;116(2):149–55.
Article
CAS
PubMed
Google Scholar
Itahana Y, Itahana K. Emerging roles of p53 family members in glucose metabolism. Int J Mol Sci. 2018;19(3).
Nemajerova A, Amelio I, Gebel J, Dötsch V, Melino G, Moll UM. Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death Differ. 2018;25(1):144–53.
Article
CAS
PubMed
Google Scholar
Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, et al. The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol. 2010;2(6):a001198.
Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13(6):962–72.
Article
CAS
PubMed
Google Scholar
Jost CA, Marin MC, Kaelin WG. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature. 1997;389(6647):191–4.
Article
CAS
PubMed
Google Scholar
Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90(4):809–19.
Article
CAS
PubMed
Google Scholar
Zeng X, Li X, Miller A, Yuan Z, Yuan W, Kwok RP, et al. The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Mol Cell Biol. 2000;20(4):1299–310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature. 2000;404(6773):99–103.
Article
CAS
PubMed
Google Scholar
Stiewe T, Theseling CC, Pützer BM. Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem. 2002;277(16):14177–85.
Article
CAS
PubMed
Google Scholar
Pozniak CD, Radinovic S, Yang A, McKeon F, Kaplan DR, Miller FD. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science. 2000;289(5477):304–6.
Article
CAS
PubMed
Google Scholar
Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H, et al. Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res. 2004;64(7):2449–60.
Nakagawa T, Takahashi M, Ozaki T, Watanabe K, Hayashi S, Hosoda M, et al. Negative autoregulation of p73 and p53 by DeltaNp73 in regulating differentiation and survival of human neuroblastoma cells. Cancer Lett. 2003;197(1–2):105–9.
Article
CAS
PubMed
Google Scholar
Liu G, Nozell S, Xiao H, Chen X. DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol. 2004;24(2):487–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beeler JS, Marshall CB, Gonzalez-Ericsson PI, Shaver TM, Santos Guasch GL, Lea ST, et al. p73 regulates epidermal wound healing and induced keratinocyte programming. PLoS ONE. 2019;14(6):e0218458.
Sánchez-Carrera D, García-Puga M, Yáñez L, Romón Í, Pipaón C. ∆Np73 is capable of inducing apoptosis by co-ordinately activating several BH3-only proteins. Biosci Rep. 2015;35(3).
Nyman U, Vlachos P, Cascante A, Hermanson O, Zhivotovsky B, Joseph B. Protein kinase C-dependent phosphorylation regulates the cell cycle-inhibitory function of the p73 carboxy terminus transactivation domain. Mol Cell Biol. 2009;29(7):1814–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho WC, Fitzgerald MX, Marmorstein R. Structure of the p53 core domain dimer bound to DNA. J Biol Chem. 2006;281(29):20494–502.
Article
CAS
PubMed
Google Scholar
Joerger AC, Wilcken R, Andreeva A. Tracing the evolution of the p53 tetramerization domain. Structure. 2014;22(9):1301–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113(Pt 10):1661–70.
Article
CAS
PubMed
Google Scholar
Gebel J, Luh LM, Coutandin D, Osterburg C, Löhr F, Schäfer B, et al. Mechanism of TAp73 inhibition by ΔNp63 and structural basis of p63/p73 hetero-tetramerization. Cell Death Differ. 2016;23(12):1930–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol. 2019;13(5):981–1001.
Article
PubMed
PubMed Central
Google Scholar
Liu G, Chen X. The C-terminal sterile alpha motif and the extreme C terminus regulate the transcriptional activity of the alpha isoform of p73. J Biol Chem. 2005;280(20):20111–9.
Article
CAS
PubMed
Google Scholar
Vikhreva P, Melino G, Amelio I. p73 alternative splicing: exploring a biological role for the C-terminal isoforms. J Mol Biol. 2018;430(13):1829–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vikhanskaya F, Toh WH, Dulloo I, Wu Q, Boominathan L, Ng HH, et al. p73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nat Cell Biol. 2007;9(6):698–705.
Article
CAS
PubMed
Google Scholar
Subramanian D, Bunjobpol W, Sabapathy K. Interplay between TAp73 protein and selected activator protein-1 (AP-1) family members promotes AP-1 target gene activation and cellular growth. J Biol Chem. 2015;290(30):18636–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Si H, Lu H, Yang X, Mattox A, Jang M, Bian Y, et al. TNF-α modulates genome-wide redistribution of ΔNp63α/TAp73 and NF-κB cREL interactive binding on TP53 and AP-1 motifs to promote an oncogenic gene program in squamous cancer. Oncogene. 2016;35(44):5781–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watson IR, Blanch A, Lin DCC, Ohh M, Irwin MS. Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem. 2006;281(45):34096–103.
Article
CAS
PubMed
Google Scholar
Nieto A, Hara MR, Quereda V, Grant W, Saunders V, Xiao K, et al. βarrestin-1 regulates DNA repair by acting as an E3-ubiquitin ligase adaptor for 53BP1. Cell Death Differ. 2020;27(4):1200–13.
Article
PubMed
Google Scholar
Li X, Guo M, Cai L, Du T, Liu Y, Ding H-F, et al. Competitive ubiquitination activates the tumor suppressor p53. Cell Death Differ. 2020;27(6):1807–18.
Article
CAS
PubMed
Google Scholar
Long JS, Schoonen PM, Graczyk D, O’Prey J, Ryan KM. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34(40):5152–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozaki T, Nakagawara A. p73, a sophisticated p53 family member in the cancer world. Cancer Sci. 2005;96(11):729–37.
Article
CAS
PubMed
Google Scholar
Vossio S, Palescandolo E, Pediconi N, Moretti F, Balsano C, Levrero M, et al. DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest. Oncogene. 2002;21(23):3796–803.
Article
CAS
PubMed
Google Scholar
Grob TJ, Novak U, Maisse C, Barcaroli D, Lüthi AU, Pirnia F, et al. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 2001;8(12):1213–23.
Article
CAS
PubMed
Google Scholar
Kartasheva NN, Contente A, Lenz-Stöppler C, Roth J, Dobbelstein M. p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene. 2002;21(31):4715–27.
Article
CAS
PubMed
Google Scholar
Oswald C, Stiewe T. In good times and bad: p73 in cancer. Cell Cycle. 2008;7(12):1726–31.
Article
CAS
PubMed
Google Scholar
Meier C, Hardtstock P, Joost S, Alla V, Pützer BM. p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Res. 2016;76(2):197–205.
Article
CAS
PubMed
Google Scholar
Logotheti S, Pavlopoulou A, Galtsidis S, Vojtesek B, Zoumpourlis V. Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer Metastasis Rev. 2013;32(3–4):511–34.
Article
CAS
PubMed
Google Scholar
Li W, Zhang X, Xi X, Li Y, Quan H, Liu S, et al. PLK2 modulation of enriched TAp73 affects osteogenic differentiation and prognosis in human osteosarcoma. Cancer Med. 2020;9(12):4371–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fürst K, Steder M, Logotheti S, Angerilli A, Spitschak A, Marquardt S, et al. DNp73-induced degradation of tyrosinase links depigmentation with EMT-driven melanoma progression. Cancer Lett. 2019;1(442):299–309.
Article
CAS
Google Scholar
Di C, Yang L, Zhang H, Ma X, Zhang X, Sun C, et al. Mechanisms, function and clinical applications of DNp73. Cell Cycle. 2013;12(12):1861–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conforti F, Yang AL, Agostini M, Rufini A, Tucci P, Nicklison-Chirou MV, et al. Relative expression of TAp73 and ΔNp73 isoforms. Aging (Albany NY). 2012;4(3):202–5.
Article
CAS
PubMed Central
Google Scholar
Kravchenko JE, Ilyinskaya GV, Komarov PG, Agapova LS, Kochetkov DV, Strom E, et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA. 2008;105(17):6302–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alsafadi S, Tourpin S, André F, Vassal G, Ahomadegbe J-C. P53 family: at the crossroads in cancer therapy. Curr Med Chem. 2009;16(32):4328–44.
Article
CAS
PubMed
Google Scholar
Sonnemann J, Grauel D, Blümel L, Hentschel J, Marx C, Blumrich A, et al. RETRA exerts anticancer activity in Ewing’s sarcoma cells independent of their TP53 status. Eur J Cancer. 2015;51(7):841–51.
Article
CAS
PubMed
Google Scholar
Fernandez-Alonso R, Martin-Lopez M, Gonzalez-Cano L, Garcia S, Castrillo F, Diez-Prieto I, et al. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death Differ. 2015;22(8):1287–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niklison-Chirou MV, Steinert JR, Agostini M, Knight RA, Dinsdale D, Cattaneo A, et al. TAp73 knockout mice show morphological and functional nervous system defects associated with loss of p75 neurotrophin receptor. Proc Natl Acad Sci USA. 2013;110(47):18952–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG, Levrero M, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999;399(6738):806–9.
Article
CAS
PubMed
Google Scholar
Wang X, Zeng L, Wang J, Chau JFL, Lai KP, Jia D, et al. A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ. 2011;18(1):5–15.
Article
PubMed
CAS
Google Scholar
Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature. 1999;399(6738):814–7.
Article
CAS
PubMed
Google Scholar
Reuven N, Shaul Y. The c-Abl/YAP/p73 apoptotic module and the HIPPO pathway. In: Oren M, Aylon Y, editors. The hippo signaling pathway and cancer. Springer, New York; 2013. p. 173–95.
Ibrahim N, He L, Leong C-O, Xing D, Karlan BY, Swisher EM, et al. BRCA1-associated epigenetic regulation of p73 mediates an effector pathway for chemosensitivity in ovarian carcinoma. Cancer Res. 2010;70(18):7155–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hastak K, Alli E, Ford JM. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 2010;70(20):7970–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rishi V, Bhattacharya P, Chatterjee R, Rozenberg J, Zhao J, Glass K, et al. CpG methylation of half-CRE sequences creates C/EBPalpha binding sites that activate some tissue-specific genes. Proc Natl Acad Sci USA. 2010;107(47):20311–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozenberg JM, Bhattacharya P, Chatterjee R, Glass K, Vinson C. Combinatorial recruitment of CREB, C/EBPβ and c-Jun determines activation of promoters upon keratinocyte differentiation. PLoS ONE. 2013;8(11):e78179.
Rozenberg JM, Taylor JM, Mack CP. RBPJ binds to consensus and methylated cis elements within phased nucleosomes and controls gene expression in human aortic smooth muscle cells in cooperation with SRF. Nucl Acids Res. 2018;46(16):8232–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281(5383):1674–7.
Article
CAS
PubMed
Google Scholar
Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281(5383):1677–9.
Article
CAS
PubMed
Google Scholar
Zhang Y-X, Pan W-Y, Chen J. p53 and its isoforms in DNA double-stranded break repair. J Zhejiang Univ Sci B. 2019;20(6):457–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Y-L, Sengupta S, Gurdziel K, Bell GW, Jacks T, Flores ER. p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet. 2009;5(10):e1000680.
Wakasugi T, Izumi H, Uchiumi T, Suzuki H, Arao T, Nishio K, et al. ZNF143 interacts with p73 and is involved in cisplatin resistance through the transcriptional regulation of DNA repair genes. Oncogene. 2007;26(36):5194–203.
Article
CAS
PubMed
Google Scholar
Gong L, Pan X, Abali GK, Little JB, Yuan Z-M. Functional interplay between p53 and Δ133p53 in adaptive stress response. Cell Death Differ. 2020;27(5):1618–32.
Article
CAS
PubMed
Google Scholar
Li LS, Morales JC, Hwang A, Wagner MW, Boothman DA. DNA mismatch repair-dependent activation of c-Abl/p73alpha/GADD45alpha-mediated apoptosis. J Biol Chem. 2008;283(31):21394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson JG, Pereira-Smith OM. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res. 2006;66(17):8356–60.
Article
CAS
PubMed
Google Scholar
Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25(1):114–32.
Article
CAS
PubMed
Google Scholar
Vanzo R, Bartkova J, Merchut-Maya JM, Hall A, Bouchal J, Dyrskjøt L, et al. Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ. 2020;27(3):1134–53.
Article
CAS
PubMed
Google Scholar
Li L, Yang G, Ren C, Tanimoto R, Hirayama T, Wang J, et al. Glioma pathogenesis-related protein 1 induces prostate cancer cell death through Hsc70-mediated suppression of AURKA and TPX2. Mol Oncol. 2013;7(3):484–96.
Article
CAS
PubMed
Google Scholar
Liu H, Weng W, Guo R, Zhou J, Xue J, Zhong S, et al. Olig2 SUMOylation protects against genotoxic damage response by antagonizing p53 gene targeting. Cell Death Differ. 2020;27(11):3146–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG. Chemosensitivity linked to p73 function. Cancer Cell. 2003;3(4):403–10.
Article
CAS
PubMed
Google Scholar
Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 2002;416(6880):560–4.
Article
CAS
PubMed
Google Scholar
Tozluoğlu M, Karaca E, Haliloglu T, Nussinov R. Cataloging and organizing p73 interactions in cell cycle arrest and apoptosis. Nucl Acids Res. 2008;36(15):5033–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gonzalez S, Prives C, Cordon-Cardo C. p73alpha regulation by Chk1 in response to DNA damage. Mol Cell Biol. 2003;23(22):8161–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merlo P, Fulco M, Costanzo A, Mangiacasale R, Strano S, Blandino G, et al. A role of p73 in mitotic exit. J Biol Chem. 2005;280(34):30354–60.
Article
CAS
PubMed
Google Scholar
Vayssade M, Haddada H, Faridoni-Laurens L, Tourpin S, Valent A, Bénard J, et al. P73 functionally replaces p53 in Adriamycin-treated, p53-deficient breast cancer cells. Int J Cancer. 2005;116(6):860–9.
Article
CAS
PubMed
Google Scholar
Fulco M, Costanzo A, Merlo P, Mangiacasale R, Strano S, Blandino G, et al. p73 is regulated by phosphorylation at the G2/M transition. J Biol Chem. 2003;278(49):49196–202.
Article
CAS
PubMed
Google Scholar
Seelan RS, Irwin M, van der Stoop P, Qian C, Kaelin WG, Liu W. The human p73 promoter: characterization and identification of functional E2F binding sites. Neoplasia. 2002;4(3):195–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JY, Ki SW. Choosing between growth arrest and apoptosis through the retinoblastoma tumour suppressor protein, Abl and p73. Biochem Soc Trans. 2001;29(Pt 6):666–73.
Article
CAS
PubMed
Google Scholar
Finzer P, Krueger A, Stöhr M, Brenner D, Soto U, Kuntzen C, et al. HDAC inhibitors trigger apoptosis in HPV-positive cells by inducing the E2F–p73 pathway. Oncogene. 2004;23(28):4807–17.
Article
CAS
PubMed
Google Scholar
Innocente SA, Lee JM. p73 is a p53-independent, Sp1-dependent repressor of cyclin B1 transcription. Biochem Biophys Res Commun. 2005;329(2):713–8.
Article
CAS
PubMed
Google Scholar
Lee CW, La Thangue NB. Promoter specificity and stability control of the p53-related protein p73. Oncogene. 1999;18(29):4171–81.
Article
CAS
PubMed
Google Scholar
Paruthiyil S, Cvoro A, Tagliaferri M, Cohen I, Shtivelman E, Leitman DC. Estrogen receptor β causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res Treat. 2011;129(3):777–84.
Article
CAS
PubMed
Google Scholar
Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA. 1999;96(7):3706–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XQ, Ongkeko WM, Lau AW, Leung KM, Poon RY. A possible role of p73 on the modulation of p53 level through MDM2. Cancer Res. 2001;61(4):1598–603.
CAS
PubMed
Google Scholar
Vernole P, Neale MH, Barcaroli D, Munarriz E, Knight RA, Tomasini R, et al. TAp73alpha binds the kinetochore proteins Bub1 and Bub3 resulting in polyploidy. Cell Cycle. 2009;8(3):421–9.
Article
CAS
PubMed
Google Scholar
Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Rufini A, et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci USA. 2009;106(3):797–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marrazzo E, Marchini S, Tavecchio M, Alberio T, Previdi S, Erba E, et al. The expression of the DeltaNp73beta isoform of p73 leads to tetraploidy. Eur J Cancer. 2009;45(3):443–53.
Article
CAS
PubMed
Google Scholar
Mikulenkova E, Neradil J, Zitterbart K, Sterba J, Veselska R. Overexpression of the ∆Np73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumour Biol. 2015;36(10):7483–91.
Article
CAS
PubMed
Google Scholar
Katayama H, Wang J, Treekitkarnmongkol W, Kawai H, Sasai K, Zhang H, et al. Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer Cell. 2012;21(2):196–211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasai K, Treekitkarnmongkol W, Kai K, Katayama H, Sen S. Functional significance of aurora kinases-p53 protein family interactions in cancer. Front Oncol. 2016;25(6):247.
Google Scholar
Zhang M, Zhang J, Yan W, Chen X. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Oncotarget. 2016;7(48):78255–68.
Article
PubMed
PubMed Central
Google Scholar
Yan W, Zhang J, Zhang Y, Jung Y-S, Chen X. p73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol. 2012;32(13):2336–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salama M, Benitez-Riquelme D, Elabd S, Munoz L, Zhang P, Glanemann M, et al. Fam83F induces p53 stabilisation and promotes its activity. Cell Death Differ. 2019;26(10):2125–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu T, Tsuji T, Chen C. Roles of PKC isoforms in the induction of apoptosis elicited by aberrant Ras. Oncogene. 2010;29(7):1050–61.
Article
CAS
PubMed
Google Scholar
Sayan BS, Yang AL, Conforti F, Tucci P, Piro MC, Browne GJ, et al. Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proc Natl Acad Sci USA. 2010;107(29):12877–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun G, Jin S, Baskaran R. MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N’-nitro-N-nitrosoguanidine. Exp Cell Res. 2009;315(18):3163–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones EV, Dickman MJ, Whitmarsh AJ. Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem J. 2007;405(3):617–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernassola F, Salomoni P, Oberst A, Di Como CJ, Pagano M, Melino G, et al. Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med. 2004;199(11):1545–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimodaira H, Yoshioka-Yamashita A, Kolodner RD, Wang JYJ. Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc Natl Acad Sci USA. 2003;100(5):2420–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo N, Okoshi R, Nakashima K, Shimozato O, Nakagawara A, Ozaki T. MDM2 promotes the proteasomal degradation of p73 through the interaction with Itch in HeLa cells. Biochem Biophys Res Commun. 2010;403(3–4):405–11.
Article
CAS
PubMed
Google Scholar
Wu H, Zeinab RA, Flores ER, Leng RP. Pirh2, a ubiquitin E3 ligase, inhibits p73 transcriptional activity by promoting its ubiquitination. Mol Cancer Res. 2011;9(12):1780–90.
Article
PubMed
CAS
Google Scholar
Peschiaroli A, Scialpi F, Bernassola F, Pagano M, Melino G. The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene. 2009;28(35):3157–66.
Article
CAS
PubMed
Google Scholar
Chaudhary N, Maddika S. WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels. Mol Cell Biol. 2014;34(19):3754–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Munarriz E, Barcaroli D, Stephanou A, Townsend PA, Maisse C, Terrinoni A, et al. PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. Mol Cell Biol. 2004;24(24):10593–610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sznarkowska A, Kostecka A, Kawiak A, Acedo P, Lion M, Inga A, et al. Reactivation of TAp73 tumor suppressor by protoporphyrin IX, a metabolite of aminolevulinic acid, induces apoptosis in TP53-deficient cancer cells. Cell Div. 2018;26(13):10.
Article
CAS
Google Scholar
Miyazaki K, Ozaki T, Kato C, Hanamoto T, Fujita T, Irino S, et al. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun. 2003;308(1):106–13.
Article
CAS
PubMed
Google Scholar
Lu L, Hu S, Wei R, Qiu X, Lu K, Fu Y, et al. The HECT type ubiquitin ligase NEDL2 is degraded by anaphase-promoting complex/cyclosome (APC/C)-Cdh1, and its tight regulation maintains the metaphase to anaphase transition. J Biol Chem. 2013;288(50):35637–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganapathy S, Peng B, Shen L, Yu T, Lafontant J, Li P, et al. Suppression of PKC causes oncogenic stress for triggering apoptosis in cancer cells. Oncotarget. 2017;8(19):30992–1002.
Article
PubMed
PubMed Central
Google Scholar
Satija YK, Das S. Tyr99 phosphorylation determines the regulatory milieu of tumor suppressor p73. Oncogene. 2016;35(4):513–27.
Article
CAS
PubMed
Google Scholar
Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Mol Cell. 2005;18(4):447–59.
Article
CAS
PubMed
Google Scholar
Raj N, Bam R. Reciprocal crosstalk between yap1/hippo pathway and the p53 family proteins: mechanisms and outcomes in cancer. Front Cell Dev Biol. 2019;9(7):159.
Article
Google Scholar
Mantovani F, Piazza S, Gostissa M, Strano S, Zacchi P, Mantovani R, et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell. 2004;14(5):625–36.
Article
CAS
PubMed
Google Scholar
Dai JM, Wang ZY, Sun DC, Lin RX, Wang SQ. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol. 2007;210(1):161–6.
Article
CAS
PubMed
Google Scholar
Accardi R, Scalise M, Gheit T, Hussain I, Yue J, Carreira C, et al. IkappaB kinase beta promotes cell survival by antagonizing p53 functions through DeltaNp73alpha phosphorylation and stabilization. Mol Cell Biol. 2011;31(11):2210–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otkur W, Wang F, Liu W, Hayashi T, Tashiro S-I, Onodera S, et al. Persistent IKKα phosphorylation induced apoptosis in UVB and Poly I: C co-treated HaCaT cells plausibly through pro-apoptotic p73 and abrogation of IκBα. Mol Immunol. 2018;13(104):69–78.
Article
CAS
Google Scholar
Chen D, Ming L, Zou F, Peng Y, Van Houten B, Yu J, et al. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity. Oncotarget. 2014;5(18):8107–22.
Article
PubMed
PubMed Central
Google Scholar
Tracz-Gaszewska Z, Klimczak M, Biecek P, Herok M, Kosinski M, Olszewski MB, et al. Molecular chaperones in the acquisition of cancer cell chemoresistance with mutated TP53 and MDM2 up-regulation. Oncotarget. 2017;8(47):82123–43.
Article
PubMed
PubMed Central
Google Scholar
Wolf ER, McAtarsney CP, Bredhold KE, Kline AM, Mayo LD. Mutant and wild-type p53 form complexes with p73 upon phosphorylation by the kinase JNK. Sci Signal. 2018;11(524).
Tutaeva VV, Bobin AN, Ovsiannikova MR, Bulgakova MV, Kuchma YM, Kryukov EV, et al. Disseminated form of the Kaposi sarcoma in HIV-negative patient associated with Hodgkin’s lymphoma. Oxf Med Case Rep. 2020;2020(9):omaa069.
Yi SA, Lee DH, Kim GW, Ryu H-W, Park JW, Lee J, et al. HPV-mediated nuclear export of HP1γ drives cervical tumorigenesis by downregulation of p53. Cell Death Differ. 2020;27(9):2537–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan C, Thurnherr T, Wang J, Gallart-Palau X, Sze SK, Rozen S, et al. Global re-wiring of p53 transcription regulation by the hepatitis B virus X protein. Mol Oncol. 2016;10(8):1183–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deb D, Lanyi A, Scian M, Keiger J, Brown DR, Le Roith D, et al. Differential modulation of cellular and viral promoters by p73 and p53. Int J Oncol. 2001;18(2):401–9.
CAS
PubMed
Google Scholar
Lemasson I, Nyborg JK. Human T-cell leukemia virus type I tax repression of p73beta is mediated through competition for the C/H1 domain of CBP. J Biol Chem. 2001;276(19):15720–7.
Article
CAS
PubMed
Google Scholar
Uramoto H, Wetterskog D, Hackzell A, Matsumoto Y, Funa K. p73 competes with co-activators and recruits histone deacetylase to NF-Y in the repression of PDGF beta-receptor. J Cell Sci. 2004;117(Pt 22):5323–31.
Article
CAS
PubMed
Google Scholar
Sudhakar C, Jain N, Swarup G. Sp1-like sequences mediate human caspase-3 promoter activation by p73 and cisplatin. FEBS J. 2008;275(9):2200–13.
Article
CAS
PubMed
Google Scholar
Grande L, Bretones G, Rosa-Garrido M, Garrido-Martin EM, Hernandez T, Fraile S, et al. Transcription factors Sp1 and p73 control the expression of the proapoptotic protein NOXA in the response of testicular embryonal carcinoma cells to cisplatin. J Biol Chem. 2012;287(32):26495–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talos F, Nemajerova A, Flores ER, Petrenko O, Moll UM. p73 suppresses polyploidy and aneuploidy in the absence of functional p53. Mol Cell. 2007;27(4):647–59.
Article
CAS
PubMed
Google Scholar
Espinoza JA, Zisi A, Kanellis DC, Carreras-Puigvert J, Henriksson M, Hühn D, et al. The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy-inhibitory activity. Cell Death Differ. 2020;27(2):773–89.
Article
CAS
PubMed
Google Scholar
Wang JY. Regulation of cell death by the Abl tyrosine kinase. Oncogene. 2000;19(49):5643–50.
Article
CAS
PubMed
Google Scholar
Chen C, Whitney IP, Banerjee A, Sacristan C, Sekhri P, Kern DM, et al. Ectopic activation of the spindle assembly checkpoint signaling cascade reveals its biochemical design. Curr Biol. 2019;29(1):104-119.e10.
Article
CAS
PubMed
Google Scholar
Dick AE, Gerlich DW. Kinetic framework of spindle assembly checkpoint signalling. Nat Cell Biol. 2013;15(11):1370–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musacchio A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol. 2015;25(20):R1002–18.
Article
CAS
PubMed
Google Scholar
Lischetti T, Nilsson J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol. 2015;2(1):e970484.
Frank T, Tuppi M, Hugle M, Dötsch V, van Wijk SJL, Fulda S. Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ. 2019;26(10):2046–60.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Li P, Song L, Bai L, Huen MSY, Liu Y, et al. 53BP1 loss rescues embryonic lethality but not genomic instability of BRCA1 total knockout mice. Cell Death Differ. 2020;27(9):2552–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toh WH, Nam SY, Sabapathy K. An essential role for p73 in regulating mitotic cell death. Cell Death Differ. 2010;17(5):787–800.
Article
CAS
PubMed
Google Scholar
Saadatzadeh MR, Elmi AN, Pandya PH, Bijangi-Vishehsaraei K, Ding J, Stamatkin CW, et al. The role of MDM2 in promoting genome stability versus instability. Int J Mol Sci. 2017;18(10).
Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292(5517):727–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24(8):1380–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412(6842):95–9.
Article
CAS
PubMed
Google Scholar
Asare PF, Roscioli E, Hurtado PR, Tran HB, Mah CY, Hodge S. LC3-associated phagocytosis (LAP): a potentially influential mediator of efferocytosis-related tumor progression and aggressiveness. Front Oncol. 2020;5(10):1298.
Article
Google Scholar
Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95–118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soond SM, Carroll C, Townsend PA, Sayan E, Melino G, Behrmann I, et al. STAT1 regulates p73-mediated Bax gene expression. FEBS Lett. 2007;581(6):1217–26.
Article
CAS
PubMed
Google Scholar
Cianfrocca R, Muscolini M, Marzano V, Annibaldi A, Marinari B, Levrero M, et al. RelA/NF-kappaB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells. Cell Death Differ. 2008;15(2):354–63.
Article
CAS
PubMed
Google Scholar
Marabese M, Mazzoletti M, Vikhanskaya F, Broggini M. HtrA2 enhances the apoptotic functions of p73 on bax. Cell Death Differ. 2008;15(5):849–58.
Article
CAS
PubMed
Google Scholar
Zhang H, Wu S, Xing D. YAP accelerates Aβ(25–35)-induced apoptosis through upregulation of Bax expression by interaction with p73. Apoptosis. 2011;16(8):808–21.
Article
CAS
PubMed
Google Scholar
Yi L, Huang X, Guo F, Zhou Z, Chang M, Tang J, et al. Lipopolysaccharide induces human pulmonary micro-vascular endothelial apoptosis via the YAP signaling pathway. Front Cell Infect Microbiol. 2016;19(6):133.
Google Scholar
Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem. 2004;279(9):8076–83.
Article
CAS
PubMed
Google Scholar
Ramadan S, Terrinoni A, Catani MV, Sayan AE, Knight RA, Mueller M, et al. p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun. 2005;331(3):713–7.
Article
CAS
PubMed
Google Scholar
Fricker M, Papadia S, Hardingham GE, Tolkovsky AM. Implication of TAp73 in the p53-independent pathway of Puma induction and Puma-dependent apoptosis in primary cortical neurons. J Neurochem. 2010;114(3):772–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ming L, Sakaida T, Yue W, Jha A, Zhang L, Yu J. Sp1 and p73 activate PUMA following serum starvation. Carcinogenesis. 2008;29(10):1878–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
John K, Alla V, Meier C, Pützer BM. GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ. 2011;18(5):874–86.
Article
CAS
PubMed
Google Scholar
Sasaki Y, Mita H, Toyota M, Ishida S, Morimoto I, Yamashita T, et al. Identification of the interleukin 4 receptor alpha gene as a direct target for p73. Cancer Res. 2003;63(23):8145–52.
CAS
PubMed
Google Scholar
Schuster A, Schilling T, De Laurenzi V, Koch AF, Seitz S, Staib F, et al. ΔNp73β is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria. Cell Cycle. 2010;9(13):2629–39.
Article
CAS
PubMed
Google Scholar
Sayan AE, Sayan BS, Gogvadze V, Dinsdale D, Nyman U, Hansen TM, et al. P73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene. 2008;27(31):4363–72.
Article
CAS
PubMed
Google Scholar
Yoon M-K, Kim B-Y, Lee J-Y, Ha J-H, Kim SA, Lee D-H, et al. Cytoplasmic pro-apoptotic function of the tumor suppressor p73 is mediated through a modified mode of recognition of the anti-apoptotic regulator Bcl-XL. J Biol Chem. 2018;293(51):19546–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 2000;407(6804):645–8.
Article
CAS
PubMed
Google Scholar
Stiewe T, Pützer BM. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet. 2000;26(4):464–9.
Article
CAS
PubMed
Google Scholar
Tophkhane C, Yang S-H, Jiang Y, Ma Z, Subramaniam D, Anant S, et al. p53 inactivation upregulates p73 expression through E2F-1 mediated transcription. PLoS ONE. 2012;7(8):e43564.
DeYoung MP, Johannessen CM, Leong C-O, Faquin W, Rocco JW, Ellisen LW. Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res. 2006;66(19):9362–8.
Article
CAS
PubMed
Google Scholar
Rocco JW, Leong C-O, Kuperwasser N, DeYoung MP, Ellisen LW. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell. 2006;9(1):45–56.
Article
CAS
PubMed
Google Scholar
Leong C-O, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 2007;117(5):1370–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Roh SE, Woo JA, Ryu H, Kang DE. Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis. 2013;4:e476.
Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell. 2002;9(1):175–86.
Article
CAS
PubMed
Google Scholar
He H, Wang C, Dai Q, Li F, Bergholz J, Li Z, et al. p53 and p73 regulate apoptosis but not cell-cycle progression in mouse embryonic stem cells upon DNA damage and differentiation. Stem Cell Rep. 2016;7(6):1087–98.
Article
CAS
Google Scholar
Agami R, Blandino G, Oren M, Shaul Y. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature. 1999;399(6738):809–13.
Article
CAS
PubMed
Google Scholar
Li Q, Huang Z, Gao M, Cao W, Xiao Q, Luo H, et al. Blockade of Y177 and nuclear translocation of Bcr-Abl inhibits proliferation and promotes apoptosis in chronic myeloid leukemia cells. Int J Mol Sci. 2017;18(3).
Tanwar K, Pati U. Inhibition of apoptosis via CHIP-mediated proteasomal degradation of TAp73α. J Cell Biochem. 2019.
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta. 2013;1830(5):3217–66.
Article
CAS
PubMed
Google Scholar
Geiger A. Rôle of glutathione in anaerobic tissue glycolysis. Biochem J. 1935;29(4):811–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, et al. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 2020;27(9):2635–50.
Article
CAS
PubMed
PubMed Central