Danchin A: Homeotopic transformation and the origin of translation. Prog Biophys Mol Biol. 1989, 54 (1): 81-86. 10.1016/0079-6107(89)90010-2.
PubMed
CAS
Google Scholar
De Duve C, Miller SL: Two-dimensional life?. Proc Natl Acad Sci USA. 1991, 88 (22): 10014-10017. 10.1073/pnas.88.22.10014.
PubMed
CAS
PubMed Central
Google Scholar
Trevors JT: Early assembly of cellular life. Prog Biophys Mol Biol. 2003, 81 (3): 201-217. 10.1016/S0079-6107(03)00018-X.
PubMed
CAS
Google Scholar
Pross A: Causation and the origin of life. Metabolism or replication first?. Orig Life Evol Biosph. 2004, 34 (3): 307-321. 10.1023/B:ORIG.0000016446.51012.bc.
PubMed
CAS
Google Scholar
Pascal R, Boiteau L, Forterre P, Gargaud M, Lazcano A, Lopez-Garcia P, Moreira D, Maurel MC, Pereto J, Prieur D, et al: Prebiotic chemistry – Biochemistry – Emergence of life (4.4-2 Ga). Earth Moon and Planets. 2006, 98 (1–4): 153-203. 10.1007/s11038-006-9089-3.
CAS
Google Scholar
Bada JL, Fegley B, Miller SL, Lazcano A, Cleaves HJ, Hazen RM, Chalmers J: Debating evidence for the origin of life on Earth. Science. 2007, 315 (5814): 937-939. 10.1126/science.315.5814.937c.
PubMed
CAS
Google Scholar
Copley SD, Smith E, Morowitz HJ: The origin of the RNA world: Co-evolution of genes and metabolism. Bioorg Chem. 2007, 35 (6): 430-443. 10.1016/j.bioorg.2007.08.001.
PubMed
CAS
Google Scholar
Mulkidjanian AY, Galperin MY: Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: Towards the consensus paradigm of the abiogenic origin of life. Chem Biodivers. 2007, 4 (9): 2003-2015. 10.1002/cbdv.200790167.
PubMed
CAS
Google Scholar
Orgel LE: The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 2008, 6 (1): 5-13. 10.1371/journal.pbio.0060018.
CAS
Google Scholar
Trefil J, Morowitz HJ, Smith E: The Origin of Life. A case is made for the descent of electrons. Am Sci. 2009, 97 (3): 206-213. 10.1511/2009.78.206.
Google Scholar
Oparin AI: The Origin of Life. 1924, Moscow: Moskowskiy rabochiy
Google Scholar
Oparin AI: The Origin of Life. 1938, New York: Macmillan
Google Scholar
Miller SL: A production of amino acids under possible primitive Earth conditions. Science. 1953, 117 (3046): 528-529. 10.1126/science.117.3046.528.
PubMed
CAS
Google Scholar
Miller SL, Urey HC: Origin of life. Science. 1959, 130 (3389): 1622-1624. 10.1126/science.130.3389.1622-a.
PubMed
CAS
Google Scholar
Ponnamperuma C: Primordial organic chemistry and the origin of life. Q Rev Biophys. 1971, 4 (2): 77-106. 10.1017/S0033583500000603.
PubMed
CAS
Google Scholar
Miller SL, Cleaves HJ: Prebiotic chemistry on the primitive Earth. Systems Biology, Genomics. Edited by: Rigoutsos I, Stephanopoulos G. 2006, Oxford: Oxford University Press, I: 4-56.
Google Scholar
Belozersky AN: On the species specificity of the nucleic acids of bacteria. The Origin of Life on the Earth. Edited by: Oparin AI, Pasynskii AG, Braunshtein AE, Pavlovskaya TE, Clark F, Synge RLM. 1959, London: Pergamon Publishers, 322-331.
Google Scholar
Woese CR: The Genetic Code. 1967, New York: Harper and Row
Google Scholar
Crick FH: The origin of the genetic code. J Mol Biol. 1968, 38 (3): 367-379. 10.1016/0022-2836(68)90392-6.
PubMed
CAS
Google Scholar
Orgel LE: Evolution of the genetic apparatus. J Mol Biol. 1968, 38 (3): 381-393. 10.1016/0022-2836(68)90393-8.
PubMed
CAS
Google Scholar
Eigen M: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971, 58 (10): 465-523. 10.1007/BF00623322.
PubMed
CAS
Google Scholar
Gilbert W: The RNA world. Nature. 1986, 319: 618-10.1038/319618a0.
Google Scholar
Spirin AS: Omnipotent RNA. FEBS Lett. 2002, 530 (1–3): 4-8. 10.1016/S0014-5793(02)03434-8.
PubMed
CAS
Google Scholar
Orgel LE: Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol. 2004, 39 (2): 99-123. 10.1080/10409230490460765.
PubMed
CAS
Google Scholar
Yarus M, Caporaso JG, Knight R: Origins of the genetic code: The escaped triplet theory. Annu Rev Biochem. 2005, 74: 179-198. 10.1146/annurev.biochem.74.082803.133119.
PubMed
CAS
Google Scholar
Szathmáry E: The origin of replicators and reproducers. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1474): 1761-1776. 10.1098/rstb.2006.1912.
PubMed
PubMed Central
Google Scholar
Joyce GF: Forty years of in vitro evolution. Angew Chem Int Ed Engl. 2007, 46 (34): 6420-6436. 10.1002/anie.200701369.
PubMed
CAS
Google Scholar
Wolf YI, Koonin EV: On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct. 2007, 2: 14-10.1186/1745-6150-2-14.
PubMed
PubMed Central
Google Scholar
Chen X, Li N, Ellington AD: Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers. 2007, 4 (4): 633-655. 10.1002/cbdv.200790055.
PubMed
CAS
Google Scholar
Schuster P, Stadler PF: Early replicons: origin and evolution. Origin and Evolution of Viruses. Edited by: Domingo E, Parrish CR, Holland JJ. 2008, Academic Press, 1-41. 2
Google Scholar
Lincoln TA, Joyce GF: Self-sustained replication of an RNA enzyme. Science. 2009, 323 (5918): 1229-1232. 10.1126/science.1167856.
PubMed
CAS
PubMed Central
Google Scholar
Bokov K, Steinberg SV: A hierarchical model for evolution of 23S ribosomal RNA. Nature. 2009, 457 (7232): 977-980. 10.1038/nature07749.
PubMed
CAS
Google Scholar
Powner MW, Gerland B, Sutherland JD: Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009, 459 (7244): 239-242. 10.1038/nature08013.
PubMed
CAS
Google Scholar
Curtis EA, Bartel DP: New catalytic structures from an existing ribozyme. Nat Struct Mol Biol. 2005, 12 (11): 994-1000.
PubMed
CAS
Google Scholar
Scott WG: Ribozymes. Curr Opin Struct Biol. 2007, 17 (3): 280-286. 10.1016/j.sbi.2007.05.003.
PubMed
CAS
Google Scholar
Van Roode JHG, Orgel LE: Template-directed synthesis of oligoguanylates in the presence of metal-ions. J Mol Biol. 1980, 144 (4): 579-585. 10.1016/0022-2836(80)90338-1.
PubMed
CAS
Google Scholar
Lohrmann R, Bridson PK, Bridson PK, Orgel LE: Efficient metal-ion catalyzed template-directed oligonucleotide synthesis. Science. 1980, 208 (4451): 1464-1465. 10.1126/science.6247762.
PubMed
CAS
Google Scholar
Bridson PK, Orgel LE: Catalysis of accurate poly(C)-directed synthesis of 3'-5'-linked oligoguanylates by Zn2+. J Mol Biol. 1980, 144 (4): 567-577. 10.1016/0022-2836(80)90337-X.
PubMed
CAS
Google Scholar
Ferris JP: Montmorillonite catalysis of 30–50 mer oligonucleotides: Laboratory demonstration of potential steps in the origin of the RNA world. Orig Life Evol Biosph. 2002, 32 (4): 311-332. 10.1023/A:1020543312109.
PubMed
CAS
Google Scholar
Ferris JP, Hill AR, Liu R, Orgel LE: Synthesis of long prebiotic oligomers on mineral surfaces. Nature. 1996, 381 (6577): 59-61. 10.1038/381059a0.
PubMed
CAS
Google Scholar
Joshi PC, Pitsch S, Ferris JP: Selectivity of montmorillonite catalyzed prebiotic reactions of D, L-nucleotides. Orig Life Evol Biosph. 2007, 37 (1): 3-26. 10.1007/s11084-006-9013-x.
PubMed
CAS
Google Scholar
Miyakawa S, Joshi PC, Gaffey MJ, Gonzalez-Toril E, Hyland C, Ross T, Rybij K, Ferris JP: Studies in the mineral and salt-catalyzed formation of RNA oligomers. Orig Life Evol Biosph. 2006, 36 (4): 343-361. 10.1007/s11084-006-9009-6.
PubMed
CAS
Google Scholar
Zagorevskii DV, Aldersley MF, Ferris JP: MALDI analysis of oligonucleotides directly from montmorillonite. J Am Soc Mass Spectrom. 2006, 17 (9): 1265-1270. 10.1016/j.jasms.2006.05.012.
PubMed
CAS
Google Scholar
Ferris JP: Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1474): 1777-1786. 10.1098/rstb.2006.1903.
PubMed
CAS
PubMed Central
Google Scholar
Nisbet EG: Living Earth: A Short History of Life and its Home. 1991, London: HarperCollins Academic
Google Scholar
Martin H, Claeys P, Gargaud M, Pinti DL, Selsis F: Environmental context. Earth Moon and Planets. 2006, 98 (1–4): 205-245. 10.1007/s11038-006-9090-x.
CAS
Google Scholar
Nisbet E, Fowler CMR: The early history of life. Biogeochemistry. Edited by: Schelsinger WH. 2003, Oxford.: Elsevier-Pergamon, 8: 1-39.
Google Scholar
Nisbet E, Zahnle K, Gerasimov MV, Helbert J, Jaumann R, Hofmann BA, Benzerara K, Westall F: Creating habitable zones, at all scales, from planets to mud micro-habitats, on earth and on mars. Space Sci Rev. 2007, 129 (1–3): 79-121. 10.1007/s11214-007-9175-5.
CAS
Google Scholar
Nisbet EG, Sleep NH: The habitat and nature of early life. Nature. 2001, 409 (6823): 1083-1091. 10.1038/35059210.
PubMed
CAS
Google Scholar
Kasting JF, Howard MT: Atmospheric composition and climate on the early Earth. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1474): 1733-1741. 10.1098/rstb.2006.1902.
PubMed
CAS
PubMed Central
Google Scholar
Kasting JF, Ono S: Palaeoclimates: the first two billion years. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1470): 917-929. 10.1098/rstb.2006.1839.
PubMed
CAS
PubMed Central
Google Scholar
Sleep NH, Zahnle K, Neuhoff PS: Initiation of clement surface conditions on the earliest Earth. Proc Natl Acad Sci USA. 2001, 98 (7): 3666-3672. 10.1073/pnas.071045698.
PubMed
CAS
PubMed Central
Google Scholar
Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep NH: Emergence of a habitable planet. Space Sci Rev. 2007, 129 (1–3): 35-78. 10.1007/s11214-007-9225-z.
CAS
Google Scholar
Miller S: The endogenous synthesis of organic compounds. The Molecular Origins of Life: Assembling the Pieces of the Puzzle. Edited by: Brack A. 1998, Cambridge: Cambridge University Press, 59-85.
Google Scholar
Kauffman S: Origin of life and the living state. Orig Life Evol Biosph. 2007, 37 (4–5): 315-322. 10.1007/s11084-007-9093-2.
PubMed
CAS
Google Scholar
Wächtershäuser G: Before enzymes and templates: theory of surface metabolism. Microbiol Rev. 1988, 52 (4): 452-484.
PubMed
PubMed Central
Google Scholar
Wächtershäuser G: Evolution of the first metabolic cycles. Proc Natl Acad Sci USA. 1990, 87 (1): 200-204. 10.1073/pnas.87.1.200.
PubMed
PubMed Central
Google Scholar
Wächtershäuser G: Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol. 1992, 58 (2): 85-201. 10.1016/0079-6107(92)90022-X.
PubMed
Google Scholar
Huber C, Wächtershäuser G: Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science. 1997, 276 (5310): 245-247. 10.1126/science.276.5310.245.
PubMed
CAS
Google Scholar
Wächtershäuser G: From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1474): 1787-1808. 10.1098/rstb.2006.1904.
PubMed
PubMed Central
Google Scholar
Wächtershäuser G: On the chemistry and evolution of the pioneer organism. Chem Biodivers. 2007, 4 (4): 584-602. 10.1002/cbdv.200790052.
PubMed
Google Scholar
Russell MJ, Hall AJ, Cairns-Smith AG, Braterman PS: Submarine hot springs and the origin of life. Nature. 1988, 336 (6195): 117-117. 10.1038/336117a0.
Google Scholar
Russell MJ, Hall AJ: The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London. 1997, 154 (3): 377-402. 10.1144/gsjgs.154.3.0377.
PubMed
CAS
Google Scholar
Martin W, Russell MJ: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci. 2003, 358 (1429): 59-83. 10.1098/rstb.2002.1183.
PubMed
CAS
PubMed Central
Google Scholar
Russell MJ, Arndt NT: Geodynamic and metabolic cycles in the Hadean. Biogeosciences. 2005, 2 (1): 97-111.
CAS
Google Scholar
Russell M: First Life. Am Sci. 2006, 94 (1): 32-39.
Google Scholar
Russell M, Hall AJ: The onset and early evolution of life. Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere – Constraints from Ore Deposits: Geological Society of America Memoir 198. Edited by: Kesler SE, Ohmoto H. 2006, 1-32. full_text.
Google Scholar
Russell M, Allen J, Milner-White E: Inorganic complexes in the onset of life and oxygenic photosynthesis. Photosynth Res. 2007, 91 (2–3): 269-
Google Scholar
Russell MJ: The alkaline solution to the emergence of life: Energy, entropy and early evolution. Acta Biotheoretica. 2007, 55 (2): 133-179. 10.1007/s10441-007-9018-5.
PubMed
Google Scholar
Martin W, Russell MJ: On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci. 2007, 362 (1486): 1887-1925. 10.1098/rstb.2006.1881.
PubMed
CAS
PubMed Central
Google Scholar
Martin W, Baross J, Kelley D, Russell MJ: Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008, 6 (11): 805-814. 10.1038/nrmicro1991.
PubMed
CAS
Google Scholar
Schoonen MAA, Xu Y, Bebie J: Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant. Orig Life Evol Biosph. 1999, 29 (1): 5-32. 10.1023/A:1006558802113.
PubMed
CAS
Google Scholar
Mulkidjanian AY, Galperin MY, Koonin EV: Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci. 2009, 34: 206-215. 10.1016/j.tibs.2009.01.005.
PubMed
CAS
PubMed Central
Google Scholar
Darwin E: The Temple of Nature; or, The Origin of Society. 1806, London: J. Johnson
Google Scholar
Moore B, Webster TA: Synthesis by sunlight in relationship to the origin of life. Synthesis of formaldehyde from carbon dioxide and water by inorganic colloids acting as transformers of light energy. Proc R Soc Lond B Biol Sci. 1913, 87: 163-176. 10.1098/rspb.1913.0068.
Google Scholar
Haldane JBS: The Origin of Life. The Rationalist Annual. Edited by: Watts CA. 1929, 3-10.
Google Scholar
Granick S: Speculations on the origins and evolution of photosynthesis. Ann N Y Acad Sci. 1957, 69 (2): 292-308. 10.1111/j.1749-6632.1957.tb49665.x.
PubMed
CAS
Google Scholar
Skulachev VP: Accumulation of Energy in the Cell. 1969, Moscow: Nauka
Google Scholar
Hartman H: Speculations on origin and evolution of metabolism. J Mol Evol. 1975, 4 (4): 359-370. 10.1007/BF01732537.
PubMed
CAS
Google Scholar
Krasnovsky AA: Chemical evolution of photosynthesis. Orig Life. 1976, 7 (2): 133-143. 10.1007/BF00935657.
PubMed
CAS
Google Scholar
Halmann M, Aurian-Blajeni B, Bloch S: Photoassisted carbon dioxide reduction and formation of two and three-carbon compounds. Third ISSOL Meeting and Sixth ICOL Meeting: 1980; Jerusalem, Israel. 1980, D. Reidel Publishing Co., Dordrecht, 143-150.
Google Scholar
Hartman H: Photosynthesis and the origin of life. Orig Life Evol Biosph. 1998, 28 (4–6): 515-521. 10.1023/A:1006548904157.
PubMed
CAS
Google Scholar
Mauzerall D: Light, iron, Sam Granik and the origin of life. Photosynth Res. 1992, 33 (2): 163-170. 10.1007/BF00039178.
PubMed
CAS
Google Scholar
Skulachev VP: Bioenergetics – the evolution of molecular mechanisms and the development of bioenergetic concepts. Antonie van Leeuwenhoek. 1994, 65 (4): 271-284. 10.1007/BF00872213.
PubMed
CAS
Google Scholar
Skulachev VP: Evolution of convertible energy currencies of the living cell: From ATP to DmH+ and DmNa+. Origin and Evolution of Biological Energy Conversion. Edited by: Baltscheffsky H. 1996, New York: VCH Publishers, 11-35.
Google Scholar
Calvin M: Chemical Evolution. 1969, Oxford: Clarendon Press
Google Scholar
Sagan C: Ultraviolet selection pressure on earliest organisms. J Theor Biol. 1973, 39 (1): 195-200. 10.1016/0022-5193(73)90216-6.
PubMed
CAS
Google Scholar
Vazquez M, Hanslmeier A: Ultraviolet Radiation in the Solar System. 2006, Dordrecht: Springer
Google Scholar
Borowska ZK, Mauzerall DC: Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. Orig Life Evol Biosph. 1987, 17: 251-259. 10.1007/BF02386465.
PubMed
CAS
Google Scholar
Borowska Z, Mauzerall D: Photoreduction of carbon dioxide by aqueous ferrous ion: An alternative to the strongly reducing atmosphere for the chemical origin of life. Proc Natl Acad Sci USA. 1988, 85 (18): 6577-6580. 10.1073/pnas.85.18.6577.
PubMed
CAS
PubMed Central
Google Scholar
Halmann M, Ulman M, Aurian-Blajeni B, Zafrir M: Photoassisted carbon dioxide reduction on semiconductor materials. J Photochem. 1981, 17 (1–2): 156-10.1016/0047-2670(81)85299-9.
Google Scholar
Reiche H, Bard AJ: Heterogeneous photosynthetic production of amino-acids from methane-ammonia-water at Pt-TiO2. Implications in chemical evolution. J Am Chem Soc. 1979, 101 (11): 3127-3128. 10.1021/ja00505a054.
CAS
Google Scholar
Dunn WW, Aikawa Y, Bard AJ: Heterogeneous photosynthetic production of amino-acids at Pt-TiO2 suspensions by near ultraviolet-light. J Am Chem Soc. 1981, 103 (23): 6893-6897. 10.1021/ja00413a020.
CAS
Google Scholar
Senanayake SD, Idriss H: Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces. Proc Natl Acad Sci USA. 2006, 103 (5): 1194-1198. 10.1073/pnas.0505768103.
PubMed
CAS
PubMed Central
Google Scholar
Zhang XV, Martin ST, Friend CM, Schoonen MAA, Holland HD: Mineral-assisted pathways in prebiotic synthesis: Photoelectrochemical reduction of carbon(+IV) by manganese sulfide. J Am Chem Soc. 2004, 126 (36): 11247-11253. 10.1021/ja0476415.
PubMed
CAS
Google Scholar
Zhang XV, Ellery SP, Friend CM, Holland HD, Michel FM, Schoonen MAA, Martin ST: Photodriven reduction and oxidation reactions on colloidal semiconductor particles: Implications for prebiotic synthesis. J Photochem Photobiol A Chem. 2007, 185 (2–3): 301-311. 10.1016/j.jphotochem.2006.06.025.
CAS
Google Scholar
Mulkidjanian AY: Origin of life in the Zinc World: 1. Photosynthetic, porous edifices built of hydrothermally precipitated zinc sulfide (ZnS) as cradles of life on Earth. Biol Direct. 2009, 4: 26-10.1186/1745-6150-4-26.
PubMed
PubMed Central
Google Scholar
Henglein A, Gutierrez M, Fischer CH: Photochemistry of colloidal metal sulfides. 6. Kinetics of interfacial reactions at ZnS particles. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics. 1984, 88 (2): 170-175.
CAS
Google Scholar
Henglein A: Catalysis of photochemical reactions by colloidal semiconductors. Pure Appl Chem. 1984, 56 (9): 1215-1224. 10.1351/pac198456091215.
CAS
Google Scholar
Inoue H, Torimoto T, Sakata T, Mori H, Yoneyama H: Effects of size quantization of zinc-sulfide microcrystallites on photocatalytic reduction of carbon-dioxide. Chem Lett. 1990, 1483-1486. 10.1246/cl.1990.1483. 9
Kanemoto M, Shiragami T, Pac CJ, Yanagida S: Semiconductor photocatalysis – effective photoreduction of carbon-dioxide catalyzed by ZnS quantum crystallites with low-density of surface-defects. J Phys Chem. 1992, 96 (8): 3521-3526. 10.1021/j100187a062.
CAS
Google Scholar
Eggins BR, Robertson PKJ, Stewart JH, Woods E: Photoreduction of carbon dioxide on zinc sulfide to give four-carbon and two-carbon acids. J Chem Soc Chem Commun. 1993, 349-350. 10.1039/c39930000349. 4
Yoneyama H: Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catalysis Today. 1997, 39 (3): 169-175. 10.1016/S0920-5861(97)00098-9.
CAS
Google Scholar
Kelley DS, Baross JA, Delaney JR: Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci. 2002, 30: 385-491. 10.1146/annurev.earth.30.091201.141331.
CAS
Google Scholar
Tivey MK: Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography. 2007, 20 (1): 50-65.
Google Scholar
Rona PA: The changing vision of marine minerals. Ore Geology Reviews. 2008, 33 (3–4): 618-666. 10.1016/j.oregeorev.2007.03.006.
Google Scholar
Wächtershäuser G: The origin of life and its methodological challenge. J Theor Biol. 1997, 187 (4): 483-494. 10.1006/jtbi.1996.0383.
PubMed
Google Scholar
Popper KR: Logik der Forschung. 1935, Wien: Verlag Julius Springer
Google Scholar
Popper KR: The Logic of Scientific Discovery. 1959, London: Hutchinson
Google Scholar
Eggins BR, Robertson PKJ, Murphy EP, Woods E, Irvine JTS: Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids. J Photochem Photobiol A Chem. 1998, 118 (1): 31-40. 10.1016/S1010-6030(98)00356-6.
CAS
Google Scholar
Corliss JB: On the evolution of primitive cells in archean submarine hot-spring environments: The emergence of Archaebacteria, Eubacteria and Eukaryotes. Orig Life Evol Biosph. 1986, 16 (3–4): 256-257. 10.1007/BF02422012.
Google Scholar
Corliss JB, Baross JA, Hoffman SE: A hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. 26th International Geology Congress, Geology of Oceans Symposium, Proceedings, Oceanology Acta Special Issue. 1981, 59-69.
Google Scholar
Nisbet EG: RNA and hot-water springs. Nature. 1986, 322 (6076): 206-206. 10.1038/322206a0.
Google Scholar
Shock EL: Hydrothermal systems as environments for the emergence of life. Evolution of Hydrothermal Ecosystems on Earth (and Mars?). 1996, 202: 40-60. full_text.
CAS
Google Scholar
Kormas KA, Tivey MK, Von Damm K, Teske A: Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ Microbiol. 2006, 8 (5): 909-920. 10.1111/j.1462-2920.2005.00978.x.
PubMed
CAS
Google Scholar
Petersen S, Herzig PM, Kuhn T, Franz L, Hannington MD, Monecke T, Gemmell JB: Shallow drilling of seafloor hydrothermal systems using the BGS rockdrill: Conical seamount (New Ireland fore-arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea. Marine Georesources & Geotechnology. 2005, 23 (3): 175-193.
CAS
Google Scholar
Takai K, Komatsu T, Inagaki F, Horikoshi K: Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol. 2001, 67 (8): 3618-3629.
PubMed
CAS
PubMed Central
Google Scholar
Cadet J, Vigny P: The photochemistry of nucleic acids. Bioorganic Photochemistry: Photochemistry and the Nucleic Acids. Edited by: Morrison H. 1990, New York: John Wiley & Sons, 1-273.
Google Scholar
Mulkidjanian AY, Cherepanov DA, Galperin MY: Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light. BMC Evol Biol. 2003, 3: 12-
PubMed
PubMed Central
Google Scholar
Sobolewski AL, Domcke W: The chemical physics of the photostability of life. Europhysics News. 2006, 37: 20-23.
CAS
Google Scholar
Serrano-Andres L, Merchan M: Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J Photochem Photobiol C Photochem Rev. 2009, 10 (1): 21-32.
CAS
Google Scholar
Kisch H, Künneth R: Photocatalysis by semiconductor powders: Preparative and mechanistic aspects. Photochemistry and Photophysics. Edited by: Rabek J. 1991, CRC Press Inc, 131-175.
Google Scholar
Gratzel M, ed: Energy Resources through Photochemistry and Catalysis. 1983, New York: Academic Press
Williams RJP, Frausto da Silva JJR: The Chemistry of Evolution: The Development of our Ecosystem. 2006, Amsterdam: Elsevier
Google Scholar
Zerkle AL, House CH, Brantley SL: Biogeochemical signatures through time as inferred from whole microbial genomes. American Journal of Science. 2005, 305 (6–8): 467-502.
CAS
Google Scholar
Dupont CL, Yang S, Palenik B, Bourne PE: Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci USA. 2006, 103 (47): 17822-17827.
PubMed
CAS
PubMed Central
Google Scholar
Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ: Dating the rise of atmospheric oxygen. Nature. 2004, 427 (6970): 117-120.
PubMed
CAS
Google Scholar
Williams RJP, Frausto da Silva JJR: The Biological Chemistry of the Elements. 1991, Oxford: Clarendon Press
Google Scholar
Kim HK, Liu J, Li J, Nagraj N, Li M, Pavot CM, Lu Y: Metal-dependent global folding and activity of the 8–17 DNAzyme studied by fluorescence resonance energy transfer. J Am Chem Soc. 2007, 129 (21): 6896-6902.
PubMed
CAS
Google Scholar
Thompson RB: Studying zinc biology with fluorescence: ain't we got fun?. Curr Opin Chem Biol. 2005, 9 (5): 526-532.
PubMed
CAS
Google Scholar
Vallee BL, Galdes A: The metallobiochemistry of zinc enzymes. Adv Enzymol Relat Areas Mol Biol. 1984, 56: 283-430.
PubMed
CAS
Google Scholar
Belozersky MA, Dunaevsky YE, Voskoboynikova NE: Isolation and properties of a metalloproteinase from buckwheat (Fagopyrum esculentum) seeds. Biochem J. 1990, 272 (3): 677-682.
PubMed
CAS
PubMed Central
Google Scholar
Falchuk KH, Hilt KL, Vallee BL: Determination of zinc in biological samples by atomic-absorption spectrometry. Meth Enzymol. 1988, 158: 422-434.
PubMed
CAS
Google Scholar
Wesenberg D, Bleuel C, Krauss G-J: A glossary of microanalytic tools to assess the metallome. Molecular Microbiology of Heavy Metals. Edited by: Nies DH, Silver S. 2007, Berlin: Springer-Verlag, 159-186.
Google Scholar
Bertini I, Rosato A: From genes to metalloproteins: A bioinformatic approach. European Journal of Inorganic Chemistry. 2007, 2007 (18): 2546-2555.
Google Scholar
De Duve C: Blueprint for a Cell: The Nature and Origin of Life. 1991, Burlington: Neil Patterson Publishers
Google Scholar
Hall DO, Cammack R, Rao KK: Role for ferredoxins in the origin of life and biological evolution. Nature. 1971, 233 (5315): 136-138.
PubMed
CAS
Google Scholar
Koonin EV, Martin W: On the origin of genomes and cells within inorganic compartments. Trends Genet. 2005, 21 (12): 647-654.
PubMed
CAS
Google Scholar
Henrick K, Feng Z, Bluhm WF, Dimitropoulos D, Doreleijers JF, Dutta S, Flippen-Anderson JL, Ionides J, Kamada C, Krissinel E, et al: Remediation of the Protein Data Bank archive. Nucleic Acids Res. 2008, 36 (Database): D426-D433.
PubMed
CAS
PubMed Central
Google Scholar
Protein Data Bank. [http://www.rcsb.org/pdb/]
Nucleic Acid Database. [http://ndbserver.rutgers.edu/]
Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B: The Nucleic Acid Database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992, 63 (3): 751-759.
PubMed
CAS
PubMed Central
Google Scholar
Stefan LR, Zhang R, Levitan AG, Hendrix DK, Brenner SE, Holbrook SR: MeRNA: a database of metal ion binding sites in RNA structures. Nucleic Acids Res. 2006, 34: D131-D134.
PubMed
CAS
PubMed Central
Google Scholar
Stefan L, Zhang R, Levitan A, Dhar A, Holbrook SR: MERNA database. [http://merna.lbl.gov/]
Cowan JA: Metallobiochemistry of RNA. Co(NH3)6 3+ as a probe for Mg2+(aq) binding sites. J Inorg Biochem. 1993, 49 (3): 171-175.
PubMed
CAS
Google Scholar
Ennifar E, Walter P, Dumas P: A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 2003, 31 (10): 2671-2682.
PubMed
CAS
PubMed Central
Google Scholar
Ban N, Nissen P, Hansen J, Moore PB, Steitz TA: The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science. 2000, 289 (5481): 905-920.
PubMed
CAS
Google Scholar
Fedorov R, Meshcheryakov V, Gongadze G, Fomenkova N, Nevskaya N, Selmer M, Laurberg M, Kristensen O, Al-Karadaghi S, Liljas A, et al: Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins. Acta Crystallogr D Biol Crystallogr. 2001, 57: 968-976.
PubMed
CAS
Google Scholar
Murray JB, Szoke H, Szoke A, Scott WG: Capture and visualization of a catalytic RNA enzyme-product complex using crystal lattice trapping and X-ray holographic reconstruction. Mol Cell. 2000, 5 (2): 279-287.
PubMed
CAS
Google Scholar
Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V: Structure of the 70S ribosome complexed with mRNA and tRNA. Science. 2006, 313 (5795): 1935-1942.
PubMed
CAS
Google Scholar
Lilley DMJ: The origins of RNA catalysis in ribozymes. Trends Biochem Sci. 2003, 28 (9): 495-501.
PubMed
CAS
Google Scholar
Fedor MJ, Williamson JR: The catalytic diversity of RNAs. Nat Rev Mol Cell Biol. 2005, 6 (5): 399-412.
PubMed
CAS
Google Scholar
Doudna JA, Lorsch JR: Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol. 2005, 12 (5): 395-402.
PubMed
CAS
Google Scholar
Walter NG: Ribozyme catalysis revisited: Is water involved?. Mol Cell. 2007, 28 (6): 923-929.
PubMed
CAS
PubMed Central
Google Scholar
Sigel RKO, Pyle AM: Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem Rev. 2007, 107 (1): 97-113.
PubMed
CAS
Google Scholar
Ciesiolka J, Yarus M: Small RNA-divalent domains. RNA. 1996, 2 (8): 785-793.
PubMed
CAS
PubMed Central
Google Scholar
Borda EJ, Markley JC, Sigurdsson ST: Zinc-dependent cleavage in the catalytic core of the hammerhead ribozyme: evidence for a pH-dependent conformational change. Nucleic Acids Res. 2003, 31 (10): 2595-2600.
PubMed
CAS
PubMed Central
Google Scholar
Dange V, Van Atta RB, Hecht SM: A Mn2+-dependent ribozyme. Science. 1990, 248 (4955): 585-588.
PubMed
CAS
Google Scholar
Kolev NG, Hartland EI, Huber PW: A manganese-dependent ribozyme in the 3'-untranslated region of Xenopus Vg1 mRNA. Nucleic Acids Res. 2008, 36 (17): 5530-5539.
PubMed
CAS
PubMed Central
Google Scholar
Christian EL, Yarus M: Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry. 1993, 32 (17): 4475-4480.
PubMed
CAS
Google Scholar
Piccirilli JA, Vyle JS, Caruthers MH, Cech TR: Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993, 361 (6407): 85-88.
PubMed
CAS
Google Scholar
Basu S, Strobel SA: Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4–P6 domain. RNA. 1999, 5 (11): 1399-1407.
PubMed
CAS
PubMed Central
Google Scholar
Shan S, Kravchuk AV, Piccirilli JA, Herschlag D: Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry. 2001, 40 (17): 5161-5171.
PubMed
CAS
Google Scholar
Shan S, Yoshida A, Sun S, Piccirilli JA, Herschlag D: Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci USA. 1999, 96 (22): 12299-12304.
PubMed
CAS
PubMed Central
Google Scholar
Weinstein LB, Jones BC, Cosstick R, Cech TR: A second catalytic metal ion in group I ribozyme. Nature. 1997, 388 (6644): 805-808.
PubMed
CAS
Google Scholar
Yoshida A, Sun S, Piccirilli JA: A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nat Struct Biol. 1999, 6 (4): 318-321.
PubMed
CAS
Google Scholar
DeRose VJ: Metal ion binding to catalytic RNA molecules. Curr Opin Struct Biol. 2003, 13 (3): 317-324.
PubMed
CAS
Google Scholar
Meares CF, Datwyler SA, Schmidt BD, Owens J, Ishihama A: Principles and methods of affinity cleavage in studying transcription. Meth Enzymol. 2003, 371: 82-106.
PubMed
CAS
Google Scholar
Cohn CA, Borda MJ, Schoonen MA: RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth Planet Sci Lett. 2004, 225 (3–4): 271-278.
CAS
Google Scholar
Cohn CA, Mueller S, Wimmer E, Leifer N, Greenbaum S, Strongin DR, Schoonen MA: Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans. 2006, 7: 3-
PubMed
PubMed Central
Google Scholar
Lee MS, Palmer AG, Wright PE: Relationship between H1 and C13 NMR chemical shifts and the secondary and tertiary structure of a zinc finger peptide. J Biomolec NMR. 1992, 2 (4): 307-322.
CAS
Google Scholar
Bombarda E, Grell E, Roques BP, Mely Y: Molecular mechanism of the Zn2+-induced folding of the distal CCHC finger motif of the HIV-1 nucleocapsid protein. Biophys J. 2007, 93 (1): 208-217.
PubMed
CAS
PubMed Central
Google Scholar
Yang S, Doolittle RF, Bourne PE: Phylogeny determined by protein domain content. Proc Natl Acad Sci USA. 2005, 102 (2): 373-378.
PubMed
CAS
PubMed Central
Google Scholar
Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin AG: Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 2008, 36 (Database): D419-D425.
PubMed
CAS
PubMed Central
Google Scholar
Concha NO, Rasmussen BA, Bush K, Herzberg O: Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis. Protein Sci. 1997, 6 (12): 2671-2676.
PubMed
CAS
PubMed Central
Google Scholar
Fusz S, Eisenfuhr A, Srivatsan SG, Heckel A, Famulok M: A ribozyme for the aldol reaction. Chem Biol. 2005, 12 (8): 941-950.
PubMed
CAS
Google Scholar
McDonald AG, Boyce S, Tipton KF: ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Res. 2009, 37 (Database): D593-D597.
PubMed
CAS
PubMed Central
Google Scholar
ExplorEnz database. [http://www.enzyme-database.org]
Holliday GL, Almonacid DE, Bartlett GJ, O'Boyle NM, Torrance JW, Murray-Rust P, Mitchell JB, Thornton JM: MACiE (Mechanism, Annotation and Classification in Enzymes): novel tools for searching catalytic mechanisms. Nucleic Acids Res. 2007, 35 (Database): D515-520.
PubMed
CAS
PubMed Central
Google Scholar
MACiE database. [http://www.ebi.ac.uk/thornton-srv/databases/MACiE/]
Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM: Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem. 2008, 13 (8): 1205-1218.
PubMed
CAS
Google Scholar
Metal-MACiE database. [http://www.ebi.ac.uk/thornton-srv/databases/Metal_MACiE/home.html]
Barthelmes J, Ebeling C, Chang A, Schomburg I, Schomburg D: BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res. 2007, 35 (Database): D511-D514.
PubMed
CAS
PubMed Central
Google Scholar
Chang A, Scheer M, Grote A, Schomburg I, Schomburg D: BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res. 2009, 37 (Database): D588-D592.
PubMed
CAS
PubMed Central
Google Scholar
BRENDA database. [http://www.brenda-enzymes.org/]
Lieder KW, Booker S, Ruzicka FJ, Beinert H, Reed GH, Frey PA: S-Adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron-sulfur centers by electron paramagnetic resonance. Biochemistry. 1998, 37 (8): 2578-2585.
PubMed
CAS
Google Scholar
Pereto J, Lopez-Garcia P, Moreira D: Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci. 2004, 29 (9): 469-477.
PubMed
CAS
Google Scholar
Rouf MA: Spectrochemical analysis of inorganic elements in Bacteria. J Bacteriol. 1964, 88 (6): 1545-
PubMed
CAS
PubMed Central
Google Scholar
Outten CE, O'Halloran TV: Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 2001, 292 (5526): 2488-2492.
PubMed
CAS
Google Scholar
Timm F: Zur Histochemie des Zinks. Deutsche Zeitschrift für gerichtliche Medizin. 1958, 47: 428-431.
CAS
Google Scholar
Yamamoto Y, Fukui K, Koujin N, Ohya H, Kimura K, Kamio Y: Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. J Bacteriol. 2004, 186 (18): 5997-6002.
PubMed
CAS
PubMed Central
Google Scholar
Kakhlon O, Cabantchik ZI: The labile iron pool: Characterization, measurement, and participation in cellular processes. Free Radical Biology and Medicine. 2002, 33 (8): 1037-1046.
PubMed
CAS
Google Scholar
Maret W: Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling. Proc Natl Acad Sci USA. 2001, 98 (22): 12325-12327.
PubMed
CAS
PubMed Central
Google Scholar
Woese CR, Kandler O, Wheelis ML: Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990, 87 (12): 4576-4579.
PubMed
CAS
PubMed Central
Google Scholar
Woese C: The universal ancestor. Proc Natl Acad Sci USA. 1998, 95 (12): 6854-6859.
PubMed
CAS
PubMed Central
Google Scholar
Koonin EV: Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol. 2003, 1 (2): 127-136.
PubMed
CAS
Google Scholar
Mushegian A: Gene content of LUCA, the last universal common ancestor. Front Biosci. 2008, 13: 4657-4666.
PubMed
CAS
Google Scholar
Cavalier-Smith T: Rooting the tree of life by transition analyses. Biol Direct. 2006, 1: 19-
PubMed
PubMed Central
Google Scholar
Glansdorff N, Xu Y, Labedan B: The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct. 2008, 3: 29-
PubMed
PubMed Central
Google Scholar
Rivera MC, Jain R, Moore JE, Lake JA: Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA. 1998, 95 (11): 6239-6244.
PubMed
CAS
PubMed Central
Google Scholar
Brochier C, Philippe H, Moreira D: The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet. 2000, 16 (12): 529-533.
PubMed
CAS
Google Scholar
Makarova KS, Ponomarev VA, Koonin EV: Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol. 2001, 2 (9): RESEARCH 0033-[http://genomebiology.com/2001/2/9/research/0033]
PubMed
CAS
Google Scholar
Kanhere A, Vingron M: Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol Biol. 2009, 9: 9-
PubMed
PubMed Central
Google Scholar
Cao TB, Saier MH: The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta. 2003, 1609 (1): 115-125.
PubMed
CAS
Google Scholar
Hilario E, Gogarten JP: The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J Mol Evol. 1998, 46 (6): 703-715.
PubMed
CAS
Google Scholar
Jekely G: Did the last common ancestor have a biological membrane?. Biol Direct. 2006, 1: 35-
PubMed
PubMed Central
Google Scholar
Könnyű B, Czárán T, Szathmáry E: Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution. BMC Evol Biol. 2008, 8:
Google Scholar
Koonin EV: On the origin of cells and viruses: A comparative-genomic perspective. Isr J Ecol Evol. 2006, 52 (3–4): 299-318.
Google Scholar
Zhang YS, Zhang ZY, Suzuki K, Maekawa T: Uptake and mass balance of trace metals for methane producing bacteria. Biomass and Bioenergy. 2003, 25 (4): 427-433.
CAS
Google Scholar
Iuchi S, Kudell N, eds: Zinc Finger Proteins: From Atomic Contact to Cellular Function. 2007, New York: Kluwer Academic/Plenum Publishers
Lachenmann MJ, Ladbury JE, Dong J, Huang K, Carey P, Weiss MA: Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity. Biochemistry. 2004, 43 (44): 13910-13925.
PubMed
CAS
Google Scholar
Hanas JS, Larabee JL, Hocker JR: Zinc finger interactions with metals and other small molecules. Zinc Finger Proteins: From Atomic Contact to Cellular Function. Edited by: Iuchi S, Kudell N. 2007, New York: Kluwer Academic/Plenum Publishers, 39-46.
Google Scholar
Mushegian AR, Koonin EV: A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA. 1996, 93 (19): 10268-10273.
PubMed
CAS
PubMed Central
Google Scholar
Koonin EV: How many genes can make a cell: the minimal-gene-set concept. Annu Rev Genomics Hum Genet. 2000, 1: 99-116.
PubMed
CAS
Google Scholar
Charlebois RL, Doolittle WF: Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res. 2004, 14 (12): 2469-2477.
PubMed
CAS
PubMed Central
Google Scholar
Danchin A, Fang G, Noria S: The extant core bacterial proteorne is an archive of the origin of life. Proteomics. 2007, 7 (6): 875-889.
PubMed
CAS
Google Scholar
Arluison V, Hountondji C, Robert B, Grosjean H: Transfer RNA-pseudouridine synthetase Pus1 of Saccharomyces cerevisiae contains one atom of zinc essential for its native conformation and tRNA recognition. Biochemistry. 1998, 37 (20): 7268-7276.
PubMed
CAS
Google Scholar
Belrhali H, Yaremchuk A, Tukalo M, Berthet-Colominas C, Rasmussen B, Bosecke P, Diat O, Cusack S: The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase. Structure. 1995, 3 (4): 341-352.
PubMed
CAS
Google Scholar
Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Soll D, Weygand-Durasevic I, Ban N: Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. EMBO J. 2006, 25 (11): 2498-2509.
PubMed
CAS
PubMed Central
Google Scholar
Crepin T, Schmitt E, Blanquet S, Mechulam Y: Three-dimensional structure of methionyl-tRNA synthetase from Pyrococcus abyssi. Biochemistry. 2004, 43 (9): 2635-2644.
PubMed
CAS
Google Scholar
Schmitt E, Moulinier L, Fujiwara S, Imanaka T, Thierry JC, Moras D: Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 1998, 17 (17): 5227-5237.
PubMed
CAS
PubMed Central
Google Scholar
Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S: Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNAVal and valyl-tRNA synthetase. Cell. 2000, 103 (5): 793-803.
PubMed
CAS
Google Scholar
Landro JA, Schmidt E, Schimmel P, Tierney DL, Penner-Hahn JE: Thiol ligation of two zinc atoms to a class I tRNA synthetase: evidence for unshared thiols and role in amino acid binding and utilization. Biochemistry. 1994, 33 (47): 14213-14220.
PubMed
CAS
Google Scholar
Nakama T, Nureki O, Yokoyama S: Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem. 2001, 276 (50): 47387-47393.
PubMed
CAS
Google Scholar
Cusack S, Yaremchuk A, Tukalo M: The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 2000, 19 (10): 2351-2361.
PubMed
CAS
PubMed Central
Google Scholar
Sankaranarayanan R, Dock-Bregeon AC, Rees B, Bovee M, Caillet J, Romby P, Francklyn CS, Moras D: Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat Struct Biol. 2000, 7 (6): 461-465.
PubMed
CAS
Google Scholar
Kamtekar S, Kennedy WD, Wang J, Stathopoulos C, Soll D, Steitz TA: The structural basis of cysteine aminoacylation of tRNAPro by prolyl-tRNA synthetases. Proc Natl Acad Sci USA. 2003, 100 (4): 1673-1678.
PubMed
CAS
PubMed Central
Google Scholar
Crepin T, Yaremchuk A, Tukalo M, Cusack S: Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain. Structure. 2006, 14 (10): 1511-1525.
PubMed
CAS
Google Scholar
Ishijima J, Uchida Y, Kuroishi C, Tuzuki C, Takahashi N, Okazaki N, Yutani K, Miyano M: Crystal structure of alanyl-tRNA synthetase editing-domain homolog (PH0574) from a hyperthermophile, Pyrococcus horikoshii OT3 at 1.45 Å resolution. Proteins. 2006, 62 (4): 1133-1137.
PubMed
CAS
Google Scholar
Cho S, Hoffman DW: Structure of the beta subunit of translation initiation factor 2 from the archaeon Methanococcus jannaschii : a representative of the eIF2beta/eIF5 family of proteins. Biochemistry. 2002, 41 (18): 5730-5742.
PubMed
CAS
Google Scholar
Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K: Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci USA. 2001, 98 (3): 892-897.
PubMed
CAS
PubMed Central
Google Scholar
Batra VK, Beard WA, Shock DD, Pedersen LC, Wilson SH: Structures of DNA polymerase beta with active-site mismatches suggest a transient abasic site intermediate during misincorporation. Mol Cell. 2008, 30 (3): 315-324.
PubMed
CAS
PubMed Central
Google Scholar
Podobnik M, Weitze TF, O'Donnell M, Kuriyan J: Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Structure. 2003, 11 (3): 253-263.
PubMed
CAS
Google Scholar
Hecker A, Leulliot N, Gadelle D, Graille M, Justome A, Dorlet P, Brochier C, Quevillon-Cheruel S, Le Cam E, van Tilbeurgh H, et al: An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro. Nucleic Acids Res. 2007, 35 (18): 6042-6051.
PubMed
CAS
PubMed Central
Google Scholar
Bartolucci S, De Simone G, Galdiero S, Improta R, Menchise V, Pedone C, Pedone E, Saviano M: An integrated structural and computational study of the thermostability of two thioredoxin mutants from Alicyclobacillus acidocaldarius. J Bacteriol. 2003, 185 (14): 4285-4289.
PubMed
CAS
PubMed Central
Google Scholar
Regni C, Naught L, Tipton PA, Beamer LJ: Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa. Structure. 2004, 12 (1): 55-63.
PubMed
CAS
Google Scholar
Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, et al: Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature. 2008, 455 (7215): 988-991.
PubMed
CAS
PubMed Central
Google Scholar
Corn JE, Pease PJ, Hura GL, Berger JM: Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol Cell. 2005, 20 (3): 391-401.
PubMed
CAS
Google Scholar
Abdullah KM, Lo RY, Mellors A: Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene. J Bacteriol. 1991, 173 (18): 5597-5603.
PubMed
CAS
PubMed Central
Google Scholar
Hecker A, Graille M, Madec E, Gadelle D, Le Cam E, van Tilbergh H, Forterre P: The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. Biochem Soc Trans. 2009, 37 (1): 29-35.
PubMed
CAS
Google Scholar
Irving H, Williams RJP: Order of stability of metal complexes. Nature. 1948, 162 (4123): 746-747.
CAS
Google Scholar
Griffin PJ, Fogarty WM: Physicochemical properties of native, zinc-prepared and manganese-prepared metalloprotease of Bacillus polymyxa. Appl Microbiol. 1973, 26 (2): 191-195.
PubMed
CAS
PubMed Central
Google Scholar
Vallee BL, Coleman JE, Auld DS: Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci USA. 1991, 88 (3): 999-1003.
PubMed
CAS
PubMed Central
Google Scholar
Cody GD: Transition metal sulfides and the origins of metabolism. Annual Review of Earth and Planetary Sciences. 2004, 32: 569-599.
CAS
Google Scholar
Maret W: Zinc and sulfur: A critical biological partnership. Biochemistry. 2004, 43 (12): 3301-3309.
PubMed
CAS
Google Scholar
Maret W: Exploring the zinc proteome. J Analyt Atom Spectrom. 2004, 19 (1): 15-19.
CAS
Google Scholar
Vallee BL, Falchuk KH: The biochemical basis of zinc physiology. Physiol Rev. 1993, 73 (1): 79-118.
PubMed
CAS
Google Scholar
Vallee BL, Auld DS: Zinc: biological functions and coordination motifs. Acc Chem Res. 1993, 26 (10): 543-551.
CAS
Google Scholar
Blindauer CA, Sadler PJ: How to hide zinc in a small protein. Acc Chem Res. 2005, 38 (1): 62-69.
PubMed
CAS
Google Scholar
Andreini C, Banci L, Bertini I, Rosato A: Zinc through the three domains of life. J Proteome Res. 2006, 5 (11): 3173-3178.
PubMed
CAS
Google Scholar
Andreini C, Banci L, Bertini I, Elmi S, Rosato A: Non-heme iron through the three domains of life. Proteins. 2007, 67 (2): 317-324.
PubMed
CAS
Google Scholar
Margoshes M, Vallee BL: A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957, 79 (17): 4813-4814.
CAS
Google Scholar
San Pietro A, Lang HM: Photosynthetic pyridine nucleotide reductase. 1. Partial purification and properties of the enzyme from spinach. J Biol Chem. 1958, 231 (1): 211-229.
PubMed
CAS
Google Scholar
Iwasaki T, Kounosu A, Tao Y, Li Z, Shokes JE, Cosper NJ, Imai T, Urushiyama A, Scott RA: Rational design of a mononuclear metal site into the archaeal Rieske-type protein scaffold. J Biol Chem. 2005, 280 (10): 9129-9134.
PubMed
CAS
Google Scholar
Meyer J: Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem. 2008, 13 (2): 157-170.
PubMed
CAS
Google Scholar
Ramelot TA, Cort JR, Goldsmith-Fischman S, Kornhaber GJ, Xiao R, Shastry R, Acton TB, Honig B, Montelione GT, Kennedy MA: Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J Mol Biol. 2004, 344 (2): 567-583.
PubMed
CAS
Google Scholar
Shimomura Y, Wada K, Fukuyama K, Takahashi Y: The asymmetric trimeric architecture of [2Fe-2S] IscU: Implications for its scaffolding during iron-sulfur cluster biosynthesis. J Mol Biol. 2008, 383 (1): 133-143.
PubMed
CAS
Google Scholar
Luther GW, Rickard DT: Metal sulfide cluster complexes and their biogeochemical importance in the environment. Journal of Nanoparticle Research. 2005, 7 (4–5): 389-407.
CAS
Google Scholar
Seewald JS, Seyfried WE: The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments. Earth and Planetary Science Letters. 1990, 101 (2–4): 388-403.
CAS
Google Scholar
Tivey MK: How to build a black smoker chimney. Oceanus. 1998, 41 (2): 22-26.
Google Scholar
Galley AG, Hannington MD, Jonasson IR: Volcanogenic massive sulphide deposits. Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No 5. Edited by: Goodfellow WD. 2007, 141-161.
Google Scholar
Xu Y, Schoonen MAA: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral. 2000, 85 (3–4): 543-556.
CAS
Google Scholar
Furdyna JK: Diluted magnetic semiconductors. J Appl Phys. 1988, 64 (4): R29-R64.
CAS
Google Scholar
Schoonen M, Smirnov A, Cohn C: A perspective on the role of minerals in prebiotic synthesis. Ambio. 2004, 33 (8): 539-551.
PubMed
Google Scholar
Franklin JM, Lydon JW, Sangster DF: Volcanic-associated massive sulfide deposits. Economic Geology, 75th Anniversary Volume. 1981, 485-627.
Google Scholar
Kobayashi M, Shimizu S: Cobalt proteins. Eur J Biochem. 1999, 261 (1): 1-9.
PubMed
CAS
Google Scholar
Lunel T, Rudnicki M, Elderfield H, Hydes D: Aluminum as a depth-sensitive tracer of entrainment in submarine hydrothermal plumes. Nature. 1990, 344 (6262): 137-139.
CAS
Google Scholar
Cairns-Smith AG: Chemistry and the missing era of evolution. Chemistry. 2008, 14 (13): 3830-3839.
PubMed
CAS
Google Scholar
Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, Lammer H: Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1474): 1857-1875.
PubMed
CAS
PubMed Central
Google Scholar
Mulkidjanian AY, Junge W: On the origin of photosynthesis as inferred from sequence analysis. A primordial UV-protector as common ancestor of reaction centers and antenna proteins. Photosynthesis Research. 1997, 51 (1): 27-42.
CAS
Google Scholar
Vermaas WF: Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res. 1994, 41: 285-294.
CAS
Google Scholar
Meyer TE: Evolution of photosynthetic reaction centers and light-harvesting chlorophyll proteins. Biosystems. 1994, 33 (3): 167-175.
PubMed
CAS
Google Scholar
Olson JM: 'Evolution of Photosynthesis' (1970), re-examined thirty years later. Photosynth Res. 2001, 68 (2): 95-112.
PubMed
CAS
Google Scholar
Olson JM, Blankenship RE: Thinking about the evolution of photosynthesis. Photosynth Res. 2004, 80 (1–3): 373-386.
PubMed
CAS
Google Scholar
Mix LJ, Haig D, Cavanaugh CM: Phylogenetic analyses of the core antenna domain: Investigating the origin of photosystem I. J Mol Evol. 2005, 60 (2): 153-163.
PubMed
CAS
Google Scholar
Frigaard NU, Bryant D: Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol. 2004, 182 (4): 265-276.
PubMed
CAS
Google Scholar
Jagannathan B, Golbeck JH: Unifying principles in homodimeric type I photosynthetic reaction centers: Properties of PscB and the F-A, F-B and F-X iron-sulfur clusters in green sulfur bacteria. Biochim Biophys Acta. 2008, 1777 (12): 1535-1544.
PubMed
CAS
Google Scholar
Gánti T: The Principles of Life. 2003, Oxford: Oxford University Press
Google Scholar
Butlerov AM: Formation synthétique d'une substance sucreé. CR Acad Sci. 1861, 53: 145-147.
Google Scholar
Müller D, Pitsch S, Kittaka A, Wagner E, Wintner CE, Eschenmoser A: Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte. Helvetica Chimica Acta. 1990, 73 (5): 1410-1468.
Google Scholar
Pestunova O, Simonov A, Snytnikov V, Stoyanovsky V, Parmon V: Putative mechanism of the sugar formation on prebiotic Earth initiated by UV-radiation. Advances in Space Research. 2005, 36 (2): 214-219.
CAS
Google Scholar
Nies DH, Silver S, eds: Molecular Microbiology of Heavy Metals. 2007, Berlin: Springer-Verlag
Koch AL: What size should a bacterium be? A question of scale. Annu Rev Microbiol. 1996, 50: 317-348.
PubMed
CAS
Google Scholar
Dominski Z: Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol. 2007, 42 (2): 67-93.
PubMed
CAS
Google Scholar
Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM, van Hoof A: The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol. 2009, 16 (1): 56-62.
PubMed
CAS
PubMed Central
Google Scholar
Darwin C: The life and letters of Charles Darwin, including an autobiographical chapter. 1887, London: John Murray, 3:
Google Scholar
Poole AM, Penny D: Evaluating hypotheses for the origin of eukaryotes. BioEssays. 2007, 29 (1): 74-84.
PubMed
Google Scholar
Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV: The deep archaeal roots of eukaryotes. Mol Biol Evol. 2008, 25 (8): 1619-1630.
PubMed
CAS
PubMed Central
Google Scholar
Zillig W, Palm P, Klenk H-P: A model of the early evolution of organisms: the arisal of the three domains of life from the common ancestor. The Origin and Evolution of the Cell. Edited by: Hartman H, Matsuno K. 1992, Singapore: World Scientific Publishing, 163-182.
Google Scholar
Gogarten-Boekels M, Hilario E, Gogarten JP: The effects of heavy meteorite bombardment on the early evolution – the emergence of the three domains of life. Orig Life Evol Biosph. 1995, 25 (1–3): 251-264.
PubMed
CAS
Google Scholar
Nisbet EG, Fowler CMR: Archaean metabolic evolution of microbial mate. Proc R Soc Lond B Biol Sci. 1999, 266 (1436): 2375-2382.
Google Scholar
Doolittle WF: You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998, 14 (8): 307-311.
PubMed
CAS
Google Scholar
Margulis L: Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth. 1981, San Francisco: W.H.Freeman
Google Scholar
Skulachev VP: Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys. 1996, 29 (2): 169-202.
PubMed
CAS
Google Scholar
Vellai T, Takacs K, Vida G: A new aspect to the origin and evolution of eukaryotes. J Mol Evol. 1998, 46 (5): 499-507.
PubMed
CAS
Google Scholar
Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature. 2006, 440 (7084): 623-630.
PubMed
CAS
Google Scholar
Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, et al: The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA. 2006, 103 (35): 13126-13131.
PubMed
CAS
PubMed Central
Google Scholar
Tice MM, Lowe DR: Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature. 2004, 431 (7008): 549-552.
PubMed
CAS
Google Scholar
Tice MM, Lowe DR: Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology. 2006, 34 (1): 37-40.
CAS
Google Scholar
Schäfer G, Engelhard M, Müller V: Bioenergetics of the archaea. Microbiol Mol Biol Rev. 1999, 63 (3): 570-620.
PubMed
PubMed Central
Google Scholar
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R: Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008, 6 (8): 579-591.
PubMed
CAS
Google Scholar
Koga Y, Morii H: Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev. 2007, 71 (1): 97-120.
PubMed
CAS
PubMed Central
Google Scholar
Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV: Evolutionary primacy of sodium bioenergetics. Biol Direct. 2008, 3: 13-
PubMed
PubMed Central
Google Scholar
Jarrell KF, McBride MJ: The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol. 2008, 6 (6): 466-476.
PubMed
CAS
Google Scholar
Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV: Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res. 1999, 9 (7): 608-628.
PubMed
CAS
Google Scholar
Koonin EV, Wolf YI: Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 2008, 36 (21): 6688-6719.
PubMed
CAS
PubMed Central
Google Scholar
Urakawa H, Dubilier N, Fujiwara Y, Cunningham DE, Kojima S, Stahl DA: Hydrothermal vent gastropods from the same family (Provannidae) harbour epsilon- and gamma-proteobacterial endosymbionts. Environ Microbiol. 2005, 7 (5): 750-754.
PubMed
CAS
Google Scholar
Kouris A, Juniper SK, Frebourg G, Gaill F: Protozoan-bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge. Marine Ecology. 2007, 28 (1): 63-71.
Google Scholar
MacPherson S, Larochelle M, Turcotte B: A fungal family of transcriptional regulators: The zinc cluster proteins. Microbiol Mol Biol Rev. 2006, 70 (3): 583-604.
PubMed
CAS
PubMed Central
Google Scholar
Panina EM, Mironov AA, Gelfand MS: Comparative genomics of bacterial zinc regulons: Enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci USA. 2003, 100 (17): 9912-9917.
PubMed
CAS
PubMed Central
Google Scholar
Andreini C, Banci L, Bertini I, Rosato A: Occurrence of copper proteins through the three domains of life: A bioinformatic approach. J Proteome Res. 2008, 7 (1): 209-216.
PubMed
CAS
Google Scholar
Lill R, Mühlenhoff U: Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem. 2008, 77: 669-700.
PubMed
CAS
Google Scholar
Panek H, O'Brian MR: A whole genome view of prokaryotic haem biosynthesis. Microbiology. 2002, 148: 2273-2282.
PubMed
CAS
Google Scholar
Battistuzzi FU, Feijao A, Hedges SB: A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol. 2004, 4: 44-
PubMed
PubMed Central
Google Scholar
Niemeyer CM: Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Ed Engl. 2001, 40 (22): 4128-4158.
CAS
Google Scholar
Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP: Biological applications of colloidal nanocrystals. Nanotechnology. 2003, 14 (7): R15-R27.
CAS
Google Scholar
Katz E, Willner I: Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed Engl. 2004, 43 (45): 6042-6108.
PubMed
CAS
Google Scholar
Alivisatos AP, Gu WW, Larabell C: Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005, 7: 55-76.
PubMed
CAS
Google Scholar
Hoffmann N: Photochemical reactions as key steps in organic synthesis. Chem Rev. 2008, 108 (3): 1052-1103.
PubMed
CAS
Google Scholar
Marinkovic S, Hoffmann N: Efficient radical addition of tertiary amines to electron-deficient alkenes using semiconductors as photochemical sensitisers. Chem Commun (Camb). 2001, 1576-1577. 17
Marinkovic S, Hoffmann N: Semiconductors as sensitisers for the radical addition of tertiary amines to electron deficient alkenes. Int J Photoenergy. 2003, 5 (3): 175-182.
CAS
Google Scholar
Marinkovic S, Hoffmann N: Diastereoselective radical tandem addition-cyclization reactions of aromatic tertiary amines by semiconductor-sensitized photochemical electron transfer. Eur J Org Chem. 2004, 3102-3107. 14
Pratt AC: Photoreactions of compounds containing heteroatoms other than oxygen. Photochemistry. 2002, London: Royal Society of Chemistry, 33: 242-306.
Google Scholar
Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau MER, Nesbo CL, Case RJ, Doolittle WF: Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet. 2003, 37: 283-328.
PubMed
CAS
Google Scholar
Schwartz AW: Phosphorus in prebiotic chemistry. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1474): 1743-1749.
PubMed
CAS
PubMed Central
Google Scholar
Skulachev VP: Biochemical mechanisms of evolution and the role of oxygen. Biochemistry (Moscow). 1998, 63 (11): 1335-1343.
CAS
Google Scholar
Raymond J, Segre D: The effect of oxygen on biochemical networks and the evolution of complex life. Science. 2006, 311 (5768): 1764-1767.
PubMed
CAS
Google Scholar
Vallee BL, Gibson JG: The zinc content of whole blood, plasma, leukocytes and erythrocytes in the anemias. Blood. 1949, 4 (5): 455-466.
PubMed
CAS
Google Scholar
Fosmire GJ: Zinc toxicity. Am J Clin Nutr. 1990, 51 (2): 225-227.
PubMed
CAS
Google Scholar
Glasner ME, Bergman NH, Bartel DP: Metal ion requirements for structure and catalysis of an RNA ligase ribozyme. Biochemistry. 2002, 41 (25): 8103-8112.
PubMed
CAS
Google Scholar
Lawrence MS, Bartel DP: New ligase-derived RNA polymerase ribozymes. RNA. 2005, 11 (8): 1173-1180.
PubMed
CAS
PubMed Central
Google Scholar
Zivarts M, Liu Y, Breaker RR: Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res. 2005, 33 (2): 622-631.
PubMed
CAS
PubMed Central
Google Scholar
Forterre P, Philippe H: Where is the root of the universal tree of life?. Bioessays. 1999, 21 (10): 871-879.
PubMed
CAS
Google Scholar
Marguet E, Forterre P: Stability and manipulation of DNA at extreme temperatures. Meth Enzymol. 2001, 334: 205-215.
PubMed
CAS
Google Scholar
Butzow JJ, Eichhorn GL: Different susceptibility of DNA and RNA to cleavage by metal ions. Nature. 1975, 254 (5498): 358-359.
PubMed
CAS
Google Scholar