Schroedinger E. What Is Life? with “Mind and Matter” and “Autobiographical Sketches”. Cambridge: Cambridge University Press; 2012.
Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.
Article
CAS
PubMed
Google Scholar
Koonin EV. Why the Central Dogma: on the nature of the great biological exclusion principle. Biol Direct. 2015;10:52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971;58(10):465–523.
Article
CAS
PubMed
Google Scholar
Koonin EV. The Logic of Chance: The Nature and Origin of Biological Evolution. Upper Saddle River, NJ: FT press; 2011.
Google Scholar
Smith JM. Hypercycles and the origin of life. Nature. 1979;280(5722):445–6.
Article
CAS
PubMed
Google Scholar
Szathmary E, Maynard Smith J. From replicators to reproducers: the first major transitions leading to life. J Theor Biol. 1997;187(4):555–71.
Article
CAS
PubMed
Google Scholar
Iranzo J, Puigbo P, Lobkovsky AE, Wolf YI, Koonin EV. Inevitability of genetic parasites. Genome Biol Evol 2016, in press.
Forterre P, Prangishvili D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci. 2009;1178:65–77.
Article
CAS
PubMed
Google Scholar
Forterre P, Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol. 2013;3(5):558–65.
Article
CAS
PubMed
Google Scholar
Koonin EV, Dolja VV. A virocentric perspective on the evolution of life. Curr Opin Virol. 2013;3(5):546–57.
Article
PubMed
PubMed Central
Google Scholar
Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol. 2005;3(6):504–10.
Article
CAS
PubMed
Google Scholar
Suttle CA. Viruses in the sea. Nature. 2005;437(7057):356–61.
Article
CAS
PubMed
Google Scholar
Suttle CA. Marine viruses--major players in the global ecosystem. Nat Rev Microbiol. 2007;5(10):801–12.
Article
CAS
PubMed
Google Scholar
Rohwer F. Global phage diversity. Cell. 2003;113(2):141.
Article
CAS
PubMed
Google Scholar
Rohwer F, Thurber RV. Viruses manipulate the marine environment. Nature. 2009;459(7244):207–12.
Article
CAS
PubMed
Google Scholar
Kazazian Jr HH. Mobile elements: drivers of genome evolution. Science. 2004;303(5664):1626–32.
Article
CAS
PubMed
Google Scholar
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10(10):691–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabin LR, Delas MJ, Hannon GJ. Dogma derailed: the many influences of RNA on the genome. Mol Cell. 2013;49(5):783–94.
Article
CAS
PubMed
Google Scholar
Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. 2014;21(9):743–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54(2):234–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015;526(7571):55–61.
Article
CAS
PubMed
Google Scholar
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722–36.
Article
CAS
PubMed
Google Scholar
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016;353(6299):aad5147.
Article
PubMed
CAS
Google Scholar
Zhou R, Rana TM. RNA-based mechanisms regulating host-virus interactions. Immunol Rev. 2013;253(1):97–111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szittya G, Burgyan J. RNA interference-mediated intrinsic antiviral immunity in plants. Curr Top Microbiol Immunol. 2013;371:153–81.
CAS
PubMed
Google Scholar
Wutz A. RNA-mediated silencing mechanisms in mammalian cells. Prog Mol Biol Transl Sci. 2011;101:351–76.
Article
CAS
PubMed
Google Scholar
Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015;16(2):71–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gammon DB, Mello CC. RNA interference-mediated antiviral defense in insects. Curr Opin Insect Sci. 2015;8:111–20.
Article
PubMed
PubMed Central
Google Scholar
Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998;17(1):170–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature. 2004;428(6978):81–4.
Article
CAS
PubMed
Google Scholar
Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004;305(5689):1434–7.
Article
CAS
PubMed
Google Scholar
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41.
Article
CAS
PubMed
Google Scholar
Lingel A, Izaurralde E. RNAi: finding the elusive endonuclease. RNA. 2004;10(11):1675–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.
Article
CAS
PubMed
Google Scholar
Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z. The microRNA world: small is mighty. Trends Biochem Sci. 2003;28(10):534–40.
Article
CAS
PubMed
Google Scholar
Majorek KA, Dunin-Horkawicz S, Steczkiewicz K, Muszewska A, Nowotny M, Ginalski K, Bujnicki JM. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucleic Acids Res. 2014;42(7):4160–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci. 2000;25(10):481–2.
Article
CAS
PubMed
Google Scholar
Parker JS, Roe SM, Barford D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature. 2005;434(7033):663–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker JS, Barford D. Argonaute: A scaffold for the function of short regulatory RNAs. Trends Biochem Sci. 2006;31(11):622–30.
Article
CAS
PubMed
Google Scholar
Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999;99(2):123–32.
Article
CAS
PubMed
Google Scholar
Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell. 2005;19(3):405–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature. 2008;456(7224):921–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009;4:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A. 2014;111(2):652–7.
Article
CAS
PubMed
Google Scholar
Willkomm S, Zander A, Grohmann D, Restle T. Mechanistic Insights into Archaeal and Human Argonaute Substrate Binding and Cleavage Properties. PLoS ONE. 2016;11(10):e0164695.
Article
PubMed
PubMed Central
CAS
Google Scholar
Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. 2015;43(10):5120–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell. 2013;51(5):594–605.
Article
CAS
PubMed
Google Scholar
Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJ, et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature. 2014;507(7491):258–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008;9(1):22–32.
Article
CAS
PubMed
Google Scholar
Hock J, Meister G. The Argonaute protein family. Genome Biol. 2008;9(2):210.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59.
Article
CAS
PubMed
Google Scholar
Azlan A, Dzaki N, Azzam G. Argonaute: The executor of small RNA function. J Genet Genomics. 2016;43(8):481–94.
Article
PubMed
Google Scholar
Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol. 2015;25(11):651–65.
Article
CAS
PubMed
Google Scholar
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–33.
Article
CAS
PubMed
Google Scholar
Roberts TC. The microRNA Machinery. Adv Exp Med Biol. 2015;887:15–30.
Article
PubMed
Google Scholar
Reis RS. The entangled history of animal and plant microRNAs. Funct Integr Genomics 2016. doi:10.1007/s10142-016-0513-0.
Cao M, Du P, Wang X, Yu YQ, Qiu YH, Li W, Gal-On A, Zhou C, Li Y, Ding SW. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci U S A. 2014;111(40):14613–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding SW. RNA-based antiviral immunity. Nat Rev Immunol. 2010;10(9):632–44.
Article
CAS
PubMed
Google Scholar
Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39.
Article
CAS
PubMed
Google Scholar
Li ML, Weng KF, Shih SR, Brewer G. The evolving world of small RNAs from RNA viruses. Wiley Interdiscip Rev RNA. 2016;7(5):575–88.
Article
CAS
PubMed
Google Scholar
Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57–68.
Article
CAS
PubMed
Google Scholar
Ji X. The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol. 2008;320:99–116.
CAS
PubMed
Google Scholar
Kidwell MA, Chan JM, Doudna JA. Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing. J Biol Chem. 2014;289(41):28352–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svobodova E, Kubikova J, Svoboda P. Production of small RNAs by mammalian Dicer. Pflugers Arch. 2016;468(6):1089–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee K, Campos H, Kolaczkowski B. Evolution of animal and plant dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol Biol Evol. 2013;30(3):627–41.
Article
CAS
PubMed
Google Scholar
de Jong D, Eitel M, Jakob W, Osigus HJ, Hadrys H, Desalle R, Schierwater B. Multiple dicer genes in the early-diverging metazoa. Mol Biol Evol. 2009;26(6):1333–40.
Article
PubMed
CAS
Google Scholar
Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 2008;23(10):578–87.
Article
PubMed
PubMed Central
Google Scholar
Lau PW, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ. The molecular architecture of human Dicer. Nat Struct Mol Biol. 2012;19(4):436–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machitani M, Sakurai F, Wakabayashi K, Tomita K, Tachibana M, Mizuguchi H. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA. Sci Rep. 2016;6:27598.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birchler JA. Ubiquitous RNA-dependent RNA polymerase and gene silencing. Genome Biol. 2009;10(11):243.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maida Y, Masutomi K. RNA-dependent RNA polymerases in RNA silencing. Biol Chem. 2011;392(4):299–304.
Article
CAS
PubMed
Google Scholar
Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521(7551):173–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koonin EV. Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol. 2015;13:84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koonin EV, Yutin N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb Perspect Biol. 2014;6(4):a016188.
Article
PubMed
PubMed Central
CAS
Google Scholar
MacRae IJ, Doudna JA. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. 2007;17(1):138–45.
Article
CAS
PubMed
Google Scholar
Iyer LM, Koonin EV, Aravind L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol. 2003;3:1.
Article
PubMed
PubMed Central
Google Scholar
Salgado PS, Koivunen MR, Makeyev EV, Bamford DH, Stuart DI, Grimes JM. The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol. 2006;4(12):e434.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qian X, Hamid FM, El Sahili A, Darwis DA, Wong YH, Bhushan S, Makeyev EV, Lescar J. Functional Evolution in Orthologous Cell-encoded RNA-dependent RNA Polymerases. J Biol Chem. 2016;291(17):9295–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H, Kimble J, Fire A, Kennedy S. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature. 2012;489(7416):447–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houri-Ze'evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O. A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C. elegans. Cell. 2016;165(1):88–99.
Article
PubMed
CAS
Google Scholar
Houri-Ze'evi L, Rechavi O. Plastic germline reprogramming of heritable small RNAs enables maintenance or erasure of epigenetic memories. RNA Biol. 2016;13(12):1212–17.
Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem. 2015;84:405–33.
Article
CAS
PubMed
Google Scholar
Czech B, Hannon GJ. One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends Biochem Sci. 2016;41(4):324–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16(5):299–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933–41.
Article
CAS
PubMed
Google Scholar
Koonin EV, Wolf YI. Just how Lamarckian is CRISPR-Cas immunity: the continuum of evolvability mechanisms. Biol Direct. 2016;11(1):9.
Article
PubMed
PubMed Central
Google Scholar
Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, Barrangou R, Beisel CL. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems. Mol Cell. 2016;62(1):137–47.
Article
CAS
PubMed
Google Scholar
Hayes RP, Xiao Y, Ding F, van Erp PB, Rajashankar K, Bailey S, Wiedenheft B, Ke A. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature. 2016;530(7591):499–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amitai G, Sorek R. CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol. 2016;14(2):67–76.
Article
CAS
PubMed
Google Scholar
Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature. 2015;520(7548):505–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Y, Terns RM, Terns MP. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev. 2015;29(4):356–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makarova KS, Wolf YI, Koonin EV. The basic building blocks and evolution of CRISPR-cas systems. Biochem Soc Trans. 2013;41(6):1392–400.
Article
CAS
PubMed
Google Scholar
Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol. 2014;21(6):528–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunez JK, Lee AS, Engelman A, Doudna JA. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature. 2015;519(7542):193–8.
Krupovic M, Koonin EV. Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr Opin Microbiol. 2016;31:25–33.
Article
CAS
PubMed
Google Scholar
Krupovic M, Makarova KS, Forterre P, Prangishvili D, Koonin EV. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 2014;12:36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hickman AB, Dyda F. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications. Nucleic Acids Res. 2015;43(22):10576–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beguin P, Charpin N, Koonin EV, Forterre P, Krupovic M. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Nucleic Acids Res. 2016;44(21):10367–76.
PubMed
PubMed Central
Google Scholar
Koonin EV, Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet. 2015;16(3):184–92.
Article
CAS
PubMed
Google Scholar
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell. 2015;60(3):385–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI et al. Diversity and evolution of Class 2 CRISPR-Cas systems. Nature Rev Microbiol 2016, in press.
Pasternak C, Dulermo R, Ton-Hoang B, Debuchy R, Siguier P, Coste G, Chandler M, Sommer S. ISDra2 transposition in Deinococcus radiodurans is downregulated by TnpB. Mol Microbiol. 2013;88(2):443–55.
Article
CAS
PubMed
Google Scholar
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature. 2016;532(7600):522–6.
Article
CAS
PubMed
Google Scholar
Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, et al. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell. 2016;165(4):949–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapitonov VV, Makarova KS, Koonin EV. ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs. J Bacteriol. 2015;198(5):797–807.
Article
PubMed
CAS
Google Scholar
Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct. 2013;8:15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kapitonov VV, Koonin EV. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct. 2015;10:20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci U S A. 2016;113(15):4057–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swarts DC, Koehorst JJ, Westra ER, Schaap PJ, van der Oost J. Effects of Argonaute on Gene Expression in Thermus thermophilus. PLoS ONE. 2015;10(4):e0124880.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martin W, Hoffmeister M, Rotte C, Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2001;382(11):1521–39.
Article
CAS
PubMed
Google Scholar
Martin W, Koonin EV. Introns and the origin of nucleus-cytosol compartmentation. Nature. 2006;440:41–5.
Article
CAS
PubMed
Google Scholar
Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440(7084):623–30.
Article
CAS
PubMed
Google Scholar
Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct. 2006;1:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology. 2015;479–480:2–25.
Article
PubMed
CAS
Google Scholar
Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 2013;41(8):4360–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 2001;29(18):3742–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Melderen L, Saavedra De Bast M. Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet. 2009;5(3):e1000437.
Article
PubMed
PubMed Central
CAS
Google Scholar
He F, Chen L, Peng X. First experimental evidence for the presence of a CRISPR toxin in sulfolobus. J Mol Biol. 2014;426(22):3683–8.
Article
CAS
PubMed
Google Scholar
Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol. 2013;10(5):679–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makarova KS, Anantharaman V, Aravind L, Koonin EV. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol Direct. 2012;7:40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koonin EV, Zhang F. Coupling immunity and programmed cell suicide in prokaryotes: Life-or-death choices. Bioessays. 2017;39:1–9.
Article
CAS
PubMed
Google Scholar
Koonin EV. The double-edged sword of Lamarck: comment on “Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems” by Edwin L. Cooper and Nicola Overstreet. Phys Life Rev. 2014;11(1):141–3. discussion 149-151.
Article
PubMed
Google Scholar
Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for cellular quiescence. Science. 2016;354(6313).
Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol. 2014;12(5):317–26.
Article
CAS
PubMed
Google Scholar
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet. 2011;12:367–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swart EC, Nowacki M. The eukaryotic way to defend and edit genomes by sRNA-targeted DNA deletion. Ann N Y Acad Sci. 2015;1341:106–14.
Article
CAS
PubMed
Google Scholar
Wang J, Davis RE. Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev. 2014;27:26–34.
Article
CAS
PubMed
Google Scholar
Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell. 2011;43(6):880–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Updegrove TB, Zhang A, Storz G. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol. 2016;30:133–8.
Article
CAS
PubMed
Google Scholar
Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep. 2006;7(12):1216–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan C, Wang J, Harrison AP, Meng X, Chen D, Chen M. Genome-wide view of natural antisense transcripts in Arabidopsis thaliana. DNA Res. 2015;22(3):233–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem. 2015;7(4):301–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hlevnjak M, Polyansky AA, Zagrovic B. Sequence signatures of direct complementarity between mRNAs and cognate proteins on multiple levels. Nucleic Acids Res. 2012;40(18):8874–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf YI, Koonin EV. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct. 2007;2:14.
Article
PubMed
PubMed Central
CAS
Google Scholar