Kauffman S: At Home in the Universe, the Search for the Laws of Complexity. 1996, Penguin, London
Google Scholar
Norris V, Nana GG, Audinot JN: New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci. 2014, 133 (1): 47-61. http://www.ncbi.nlm.nih.gov/pubmed/23794321
Google Scholar
Norris V, Blaauwen TD, Doi RH, Harshey RM, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M, Skarstad K, Thellier M: Toward a hyperstructure taxonomy. Annu Rev Microbiol. 2007, 61: 309-329.
CAS
Google Scholar
Root-Bernstein RS, Dillon PF: Molecular complementarity I: the complementarity theory of the origin and evolution of life. J Theor Biol. 1997, 188: 447-479.
CAS
Google Scholar
Shapiro R: Small molecule interactions were central to the origin of life. Q Rev Biol. 2006, 81: 105-125.
Google Scholar
Norris V, Amar P: Chromosome replication in Escherichia coli: life on the scales. Life. 2012, 2: 286-312.
PubMed Central
Google Scholar
Bowman GR, Perez AM, Ptacin JL, Ighodaro E, Folta-Stogniew E, Comolli LR, Shapiro L: Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Mol Microbiol. 2013, 90: 776-795.
CAS
Google Scholar
Hunding A, Kepes F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R: Compositional complementarity and prebiotic ecology in the origin of life. Bioessays. 2006, 28: 399-412.
CAS
Google Scholar
Segre D, Ben-Eli D, Lancet D: Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A. 2000, 97: 4112-4117.
CAS
PubMed Central
Google Scholar
Raine DJ, Norris V: Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J Theor Biol. 2007, 246: 176-185.
CAS
Google Scholar
Norris V, Raine DJ: A fission-fusion origin for life. Orig Life Evol Biosph. 1998, 28: 523-537.
CAS
Google Scholar
de Duve C: A research proposal on the origin of life. Orig Life Evol Biosph. 2003, 33: 559-574.
CAS
Google Scholar
Kornberg A: Abundant microbial inorganic polyphosphate, poly P kinase are underappreciated. Microbe. 2008, 3: 119-123.
Google Scholar
Rao NN, Gomez-Garcia MR, Kornberg A: Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem. 2009, 78: 605-647.
CAS
Google Scholar
Das S, Lengweiler UD, Seebach D, Reusch RN: Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic phosphate. Proc Natl Acad Sci U S A. 1997, 94: 9075-9079.
CAS
PubMed Central
Google Scholar
Reusch RN, Huang R, Kosk-Kosicka D: Novel components and enzymatic activities of the human erythrocyte plasma membrane calcium pump. FEBS Lett. 1997, 412: 592-596.
CAS
Google Scholar
Huang R, Reusch RN: Poly(3-hydroxybutyrate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli . J Biol Chem. 1996, 271: 22196-22202.
CAS
Google Scholar
Reusch R, Shabalin O, Crumbaugh A, Wagner R, Schroder O, Wurm R: Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB). FEBS Lett. 2002, 527: 319-322.
CAS
Google Scholar
Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D: PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol. 2012, 12: 262-
CAS
PubMed Central
Google Scholar
Igarashi K, Kashiwagi K: Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem (Tokyo). 2006, 139: 11-16.
CAS
Google Scholar
Groppa MD, Benavides MP: Polyamines and abiotic stress: recent advances. Amino Acids. 2008, 34: 35-45.
CAS
Google Scholar
Root-Bernstein R: A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res. 2012, 45: 2169-2177.
CAS
Google Scholar
Seufferheld M, Lea CR, Vieira M, Oldfield E, Docampo R: The H(+)-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J Biol Chem. 2004, 279: 51193-51202.
CAS
Google Scholar
Brock J, Rhiel E, Beutler M, Salman V, Schulz-Vogt HN: Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie Van Leeuwenhoek. 2012, 101: 347-357.
CAS
PubMed Central
Google Scholar
Docampo R, Moreno SN: Acidocalcisomes. Cell Calcium. 2011, 50: 113-119.
CAS
PubMed Central
Google Scholar
Cabrera JE, Jin DJ: The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol. 2003, 50: 1493-1505.
CAS
Google Scholar
Fraley CD, Rashid MH, Lee SS, Gottschalk R, Harrison J, Wood PJ, Brown MR, Kornberg A: A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc Natl Acad Sci U S A. 2007, 104: 3526-3531.
CAS
PubMed Central
Google Scholar
Kowalczyk TH, Horn PJ, Pan WH, Phillips NF: Initial rate and equilibrium isotope exchange studies on the ATP-dependent activity of polyphosphate Glucokinase from Propionibacterium shermanii. Biochemistry. 1996, 35: 6777-6785.
CAS
Google Scholar
Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K: Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol. 2003, 69: 3849-3857.
CAS
PubMed Central
Google Scholar
Kawai S, Mukai T, Mori S, Mikami B, Murata K: Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. J Biosci Bioeng. 2005, 99: 320-330.
CAS
Google Scholar
Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A: Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science (New York, NY 2001). 2001, 293: 705-708.
CAS
Google Scholar
Yang ZX, Zhou YN, Yang Y, Jin DJ: Polyphosphate binds to the principal sigma factor of RNA polymerase during starvation response in Helicobacter pylori. Mol Microbiol. 2010, 77: 618-627.
CAS
PubMed Central
Google Scholar
Maier SK, Scherer S, Loessner MJ: Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl Environ Microbiol. 1999, 65: 3942-3949.
CAS
PubMed Central
Google Scholar
Boutte CC, Henry JT, Crosson S: ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol. 2012, 194: 28-35.
CAS
PubMed Central
Google Scholar
Buzoleva LS, Krivosheeva AM, Isachenko AS, Somova LM, Somov GP: Effect of temperature on synthesis of polyphosphates in Yersinia pseudotuberculosis and Listeria monocytogenes under starvation conditions. Biochemistry (Mosc). 2006, 71: 437-440.
CAS
Google Scholar
Sukenik A, Kaplan-Levy RN, Welch JM, Post AF: Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012, 6: 670-679.
CAS
PubMed Central
Google Scholar
Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM: Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2006, 72: 1099-1106.
CAS
Google Scholar
Theodorou EC, Theodorou MC, Kyriakidis DA: AtoSC two-component system is involved in cPHB biosynthesis through fatty acid metabolism in E. coli. Biochim Biophys Acta. 1810, 2011: 561-568.
Google Scholar
Reusch RN, Hiske TW, Sadoff HL: Poly-β-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli . J Bacteriol. 1986, 168: 553-562.
CAS
PubMed Central
Google Scholar
Reusch RN: Poly-beta-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes. Proc Soc Exp Biol Med. 1989, 191: 377-381.
CAS
Google Scholar
Pavlov E, Zakharian E, Bladen C, Diao CT, Grimbly C, Reusch RN, French RJ: A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J. 2005, 88: 2614-2625.
CAS
PubMed Central
Google Scholar
Reusch RN: Ion recognition and transport by poly-(R)-3-hydroxybutyrates and inorganic polyphosphates. Adv Supramol Chem. 2000, 7: 49-98.
CAS
Google Scholar
Zakharian E, Thyagarajan B, French RJ, Pavlov E, Rohacs T: Inorganic polyphosphate modulates TRPM8 channels. PLoS ONE. 2009, 4: e5404-
PubMed Central
Google Scholar
Negoda A, Negoda E, Reusch RN: Importance of oligo-R-3-hydroxybutyrates to S. lividans KcsA channel structure and function. Mol BioSyst. 2010, 6: 2249-2255.
CAS
Google Scholar
Cao C, Yudin Y, Bikard Y, Chen W, Liu T, Li H, Jendrossek D, Cohen A, Pavlov E, Rohacs T, Zakharian E: Polyester modification of the mammalian TRPM8 channel protein: implications for structure and function. Cell Rep. 2013, 4: 302-315.
CAS
PubMed Central
Google Scholar
Reusch RN, Sadoff HL: Putative structure and functions of a poly-ß-hydroxybutyrate/calcium phosphate channel in bacterial plasma membranes. Proc Natl Acad Sci U S A. 1988, 85: 4176-4180.
CAS
PubMed Central
Google Scholar
Inouye S, Jain R, Ueki T, Nariya H, Xu CY, Hsu MY, Fernandez-Luque BA, Munoz-Dorado J, Farez-Vidal E, Inouye M: A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb Comp Genomics. 2000, 5: 103-120.
CAS
Google Scholar
Bechet E, Guiral S, Torres S, Mijakovic I, Cozzone AJ, Grangeasse C: Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids. 2009, 37: 499-507.
CAS
Google Scholar
Soares NC, Spat P, Krug K, Macek B: Global dynamics of the Escherichia coli Proteome and phosphoproteome during growth in minimal medium. J Proteome Res. 2013, 12 (6): 2611-2621. doi:10.1021/pr3011843
CAS
Google Scholar
Negoda A, Negoda E, Reusch RN: Oligo-(R)-3-hydroxybutyrate modification of sorting signal enables pore formation by Escherichia coli OmpA. Biochim Biophys Acta. 2010, 1798: 1480-1484.
CAS
PubMed Central
Google Scholar
Wu G, Morris SM: Arginine metabolism: nitric oxide and beyond. Biochem J. 1998, 336 (Pt 1): 1-17.
CAS
PubMed Central
Google Scholar
Joshi GS, Spontak JS, Klapper DG, Richardson AR: Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol. 2011, 82: 9-20.
CAS
PubMed Central
Google Scholar
Miyamoto S, Kashiwagi K, Ito K, Watanabe S, Igarashi K: Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch Biochem Biophys. 1993, 300: 63-68.
CAS
Google Scholar
Matthews HR: Polyamines, chromatin structure and transcription. Bioessays. 1993, 15: 561-566.
CAS
Google Scholar
Morgan JE, Blankenship JW, Matthews HR: Polyamines and acetylpolyamines increase the stability and alter the conformation of nucleosome core particles. Biochemistry. 1987, 26: 3643-3649.
CAS
Google Scholar
Terui Y, Akiyama M, Sakamoto A, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K: Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and omega protein of RNA polymerase in Escherichia coli. Int J Biochem Cell Biol. 2012, 44: 412-422.
CAS
Google Scholar
Jung IL, Oh TJ, Kim IG: Abnormal growth of polyamine-deficient Escherichia coli mutant is partially caused by oxidative stress-induced damage. Arch Biochem Biophys. 2003, 418: 125-132.
CAS
Google Scholar
Wortham BW, Patel CN, Oliveira MA: Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol. 2007, 603: 106-115.
Google Scholar
Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GV, Brady ST: Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron. 2013, 78: 109-123.
CAS
PubMed Central
Google Scholar
Filippou PS, Lioliou EE, Panagiotidis CA, Athanassopoulos CM, Garnelis T, Papaioannou D, Kyriakidis DA: Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes. BMC Biochem. 2007, 8: 1-
PubMed Central
Google Scholar
Di Paolo ML, Corazza A, Scarpa M, Stevanato R, Rigo A: Effect of polyphosphates on the activity of amine oxidases. Biochim Biophys Acta. 1995, 1247: 246-252.
CAS
Google Scholar
Motomura K, Takiguchi N, Ohtake H, Kuroda A: Polyamines affect polyphosphate accumulation in Escherichia coli . J Environ Biotechnol. 2006, 6: 41-46.
Google Scholar
Hargreaves WR, Mulvihill SJ, Deamer DW: Synthesis of phospholipids and membranes in prebiotic conditions. Nature. 1977, 266: 78-80.
CAS
Google Scholar
Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW: Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008, 454: 122-125.
CAS
PubMed Central
Google Scholar
Budin I, Prwyes N, Zhang N, Szostak JW: Chain-length heterogeneity allows for the assembly of Fatty Acid vesicles in dilute solutions. Biophys J. 2014, 107: 1582-1590.
CAS
PubMed Central
Google Scholar
de Souza TP, Stano P, Steiniger F, D’Aguanno E, Altamura E, Fahr A, Luisi PL: Encapsulation of ferritin, ribosomes, and ribo-peptidic complexes inside liposomes: insights into the origin of metabolism. Orig Life Evol Biosph. 2012, 42: 421-428.
Google Scholar
Fishov I, Norris V: Membrane heterogeneity created by transertion is a global regulator in bacteria. Curr Opin Microbiol. 2012, 15: 724-730.
CAS
Google Scholar
Yung MW, Green C: The binding of polyamines to phospholipid bilayers. Biochem Pharmacol. 1986, 35: 4037-4041.
CAS
Google Scholar
Schuber F: Influence of polyamines on membrane functions. Biochem J. 1989, 260: 1-10.
CAS
PubMed Central
Google Scholar
Mager J: The stabilizing effect of spermine and related polyamines and bacterial protoplasts. Biochim Biophys Acta. 1959, 36: 529-531.
CAS
Google Scholar
Tabor CW: Stabilization of protoplasts and spheroplasts by spermine and other polyamines. J Bacteriol. 1962, 83: 1101-1111.
CAS
PubMed Central
Google Scholar
Harold FM: Stabilization of streptococcus faecalis protoplasts by spermine. J Bacteriol. 1964, 88: 1416-1420.
CAS
PubMed Central
Google Scholar
Ballas SK, Mohandas N, Marton LJ, Shohet SB: Stabilization of erythrocyte membranes by polyamines. Proc Natl Acad Sci U S A. 1983, 80: 1942-1946.
CAS
PubMed Central
Google Scholar
Kitada M, Igarashi K, Hirose S, Kitagawa H: Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. Biochem Biophys Res Commun. 1979, 87: 388-394.
CAS
Google Scholar
Tadolini B, Cabrini L, Landi L, Varani E, Pasquali P: Polyamine binding to phospholipid vesicles and inhibition of lipid peroxidation. Biochem Biophys Res Commun. 1984, 122: 550-555.
CAS
Google Scholar
Zheliaskova A, Naydenova S, Petrov AG: Interaction of phospholipid bilayers with polyamines of different length. Eur Biophys J. 2000, 29: 153-157.
CAS
Google Scholar
Bratton DL, Fadok VA, Richter DA, Kailey JM, Frasch SC, Nakamura T, Henson PM: Polyamine regulation of plasma membrane phospholipid flip-flop during apoptosis. J Biol Chem. 1999, 274: 28113-28120.
CAS
Google Scholar
Michiels J, Xi C, Verhaert J, Vanderleyden J: The functions of Ca(2+) in bacteria: a role for EF-hand proteins?. Trends Microbiol. 2002, 10: 87-93.
CAS
Google Scholar
Dominguez DC: Calcium signalling in bacteria. Mol Microbiol. 2004, 54: 291-297.
CAS
Google Scholar
Corbridge DEC: Phosphorus. An outline of its chemistry, biochemistry and technology. Stud Inorg Chem. 1985, 6: 170-178.
Google Scholar
Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman RI: Calcium signalling in bacteria. J Bacteriol. 1996, 178: 3677-3682.
CAS
PubMed Central
Google Scholar
Hu Y, Zhang X, Shi Y, Zhou Y, Zhang W, Su XD, Xia B, Zhao J, Jin C: Structures of Anabaena calcium-binding protein CcbP: insights into Ca2+ signaling during heterocyst differentiation. J Biol Chem. 2011, 286: 12381-12388.
CAS
PubMed Central
Google Scholar
Wang SL, Fan KQ, Yang X, Lin ZX, Xu XP, Yang KQ: CabC, an EF-hand calcium-binding protein, is involved in Ca2+−mediated regulation of spore germination and aerial hypha formation in Streptomyces coelicolor. J Bacteriol. 2008, 190: 4061-4068.
CAS
PubMed Central
Google Scholar
Sarkisova S, Patrauchan MA, Berglund D, Nivens DE, Franklin MJ: Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol. 2005, 187: 4327-4337.
CAS
PubMed Central
Google Scholar
Bilecen K, Yildiz FH: Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ Microbiol. 2009, 11: 2015-2029.
CAS
PubMed Central
Google Scholar
Boyd CD, Chatterjee D, Sondermann H, O’Toole GA: LapG, required for modulating biofilm formation by Pseudomonas fluorescens p f0–1, is a calcium-dependent protease. J Bacteriol. 2012, 194: 4406-4414.
CAS
PubMed Central
Google Scholar
Tisa LS, Sekelsky JJ, Adler J: Effects of organic antagonists of Ca(2+), Na(+), and K(+) on chemotaxis and motility of escherichia coli. J Bacteriol. 2000, 182: 4856-4861.
CAS
PubMed Central
Google Scholar
Gode-Potratz CJ, Chodur DM, McCarter LL: Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol. 2010, 192: 6025-6038.
CAS
PubMed Central
Google Scholar
Ligtenberg KG, Miller NC, Mitchell A, Plano GV, Schneewind O: LcrV mutants that abolish Yersinia type III injectisome function. J Bacteriol. 2013, 195: 777-787.
CAS
PubMed Central
Google Scholar
Leganes F, Forchhammer K, Fernandez-Pinas F: Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation. Microbiology (Reading, England). 2009, 155: 25-34.
CAS
Google Scholar
Barran-Berdon AL, Rodea-Palomares I, Leganes F, Fernandez-Pinas F: Free Ca2+ as an early intracellular biomarker of exposure of cyanobacteria to environmental pollution. Anal Bioanal Chem. 2011, 400: 1015-1029.
CAS
Google Scholar
Manning GS: Counterion condensation on charged spheres, cylinders, and planes. J Phys Chem B. 2007, 111: 8554-8559.
CAS
Google Scholar
Todd BA, Rau DC: Interplay of ion binding and attraction in DNA condensed by multivalent cations. Nucleic Acids Res. 2008, 36: 501-510.
CAS
PubMed Central
Google Scholar
Popp D, Iwasa M, Erickson HP, Narita A, Maeda Y, Robinson RC: Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J Biol Chem. 2010, 285: 11281-11289.
CAS
PubMed Central
Google Scholar
Ripoll C, Norris V, Thellier M: Ion condensation and signal transduction. BioEssays. 2004, 26: 549-557.
CAS
Google Scholar
von Hippel PH: From “simple” DNA-protein interactions to the macromolecular machines of gene expression. Annu Rev Biophys Biomol Struct. 2007, 36: 79-105.
CAS
PubMed Central
Google Scholar
Theodorou MC, Tiligada E, Kyriakidis DA: Extracellular Ca2+ transients affect poly-(R)-3-hydroxybutyrate regulation by the AtoS-AtoC system in Escherichia coli. Biochem J. 2009, 417: 667-672.
CAS
Google Scholar
Theodorou MC, Kyriakidis DA: Calcium channels blockers inhibit the signal transduction through the AtoSC system in Escherichia coli. Eur J Pharm Sci. 2012, 47: 84-96.
CAS
Google Scholar
Abramov AY, Fraley C, Diao CT, Winkfein R, Colicos MA, Duchen MR, French RJ, Pavlov E: Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A. 2007, 104: 18091-18096.
CAS
PubMed Central
Google Scholar
Haverstick DM, Glaser M: Visualization of Ca2+-induced phospholipid domains. Proc Natl Acad Sci U S A. 1987, 84: 4475-4479.
CAS
PubMed Central
Google Scholar
Ravoo BJ, Stuart MC, Brisson AD, Weringa WD, Engberts JB: Electron microscopic investigation of the morphology and calcium-induced fusion of lipid vesicles with an oligomerised inner leaflet. Chem Phys Lipids. 2001, 109: 63-74.
CAS
Google Scholar
Spinler K, Tian A, Christian DA, Pantano DA, Baumgart T, Discher DE: Dynamic domains in polymersomes: mixtures of polyanionic and neutral diblocks respond more rapidly to changes in calcium than to pH. Langmuir. 2013, 29 (24): 7499-7508. doi: 10.1021/la304602e
CAS
PubMed Central
Google Scholar
Norris V: Phospholipid domains determine the spatial organization of the Escherichia coli cell cycle : the membrane tectonics model. J Theor Biol. 1992, 154: 91-107.
CAS
Google Scholar
Fishov I, Woldringh C: Visualization of membrane domains in Escherichia coli . Mol Microbiol. 1999, 32: 1166-1172.
CAS
Google Scholar
Yu X-C, Margolin W: Ca2+-mediated GTP-dependent assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro . EMBO J. 1997, 16: 5455-5463.
CAS
PubMed Central
Google Scholar
Freestone P, Grant S, Trinei M, Onoda T, Norris V: Protein phosphorylation in Escherichia coli L-form NC-7. Microbiology (Reading, England). 1998, 144: 3289-3295.
CAS
Google Scholar
Briers Y, Staubli T, Schmid MC, Wagner M, Schuppler M, Loessner MJ: Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS ONE. 2012, 7: e38514-
CAS
PubMed Central
Google Scholar
Onoda T, Enokizono J, Kaya H, Oshima A, Freestone P, Norris V: Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J Bacteriol. 2000, 182: 1419-1422.
CAS
PubMed Central
Google Scholar
Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J: Life without a wall or division machine in Bacillus subtilis. Nature. 2009, 457: 849-853.
CAS
Google Scholar
Naseem R, Wann KT, Holland IB, Campbell AK: ATP regulates calcium efflux and growth in E. coli. J Mol Biol. 2009, 391: 42-56.
CAS
Google Scholar
Karkare S, Yousafzai F, Mitchenall LA, Maxwell A: The role of Ca(2)(+) in the activity of Mycobacterium tuberculosis DNA gyrase. Nucleic Acids Res. 2012, 40: 9774-9787.
CAS
PubMed Central
Google Scholar
Zakharov SD, Li X, Red’ko TP, Dilley RA: Calcium binding to the subunit c of E. coli ATP-synthase and possible functional implications in energy coupling. J Bioenerg Biomembr. 1996, 28: 483-494.
CAS
Google Scholar
Netz RR, Andelman D, Orland H: Protein adsorption on lipid monolayers at their coexistence region. J Phys II France. 1996, 6: 1023-1047.
CAS
Google Scholar
Deschrevel B, Dugast J-Y, Vincent J-C: Gram-scale enzymatic synthesis of a peptide bond. C R Acad Sci. 1992, 314: 519-525.
CAS
Google Scholar
Hitz T, Luisi PL: Liposome-assisted selective polycondensation of alpha-amino acids and peptides. Biopolymers. 2000, 55: 381-390.
CAS
Google Scholar
Milstien S, Cohen LA: Rate acceleration by stereopopulation control: models for enzyme action. Proc Natl Acad Sci U S A. 1970, 67: 1143-1147.
CAS
PubMed Central
Google Scholar
Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN: Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol. 2005, 3: 251-261.
CAS
Google Scholar
Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anolles G: Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct. 2011, 6: 50-
CAS
PubMed Central
Google Scholar
Woldringh CL, Nanninga N: Structure of the Nucleoid and Cytoplasm in the Intact Cell. Molecular Cytology of Escherichia Coli. Edited by: Nanninga N. 1985, Academic Press, London, 161-197.
Google Scholar
Cabrera JE, Cagliero C, Quan S, Squires CL, Jin DJ: Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J Bacteriol. 2009, 191: 4180-4185.
CAS
PubMed Central
Google Scholar
Mayer F: Cytoskeletons in prokaryotes. Cell Biol Int. 2003, 27: 429-438.
CAS
Google Scholar
Defeu Soufo HJ, Reimold C, Linne U, Knust T, Gescher J, Graumann PL: Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc Natl Acad Sci U S A. 2010, 107: 3163-3168.
PubMed Central
Google Scholar
Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M, Skarstad K: Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev. 2007, 71: 230-253.
CAS
PubMed Central
Google Scholar
Chai Q, Singh B, Peisker K, Metzendorf N, Ge X, Dasgupta S, Sanyal S: Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. J Biol Chem. 2014, 289: 11342-11352.
CAS
PubMed Central
Google Scholar
Norris V, Manners B: Deformations in the cytoplasmic membrane of Escherichia coli direct the synthesis of peptidoglycan. The hernia model. Biophys J. 1993, 64: 1691-1700.
CAS
PubMed Central
Google Scholar
Mayer F: Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J Mol Microbiol Biotechnol. 2006, 11: 228-243.
CAS
Google Scholar
Naranda T, Kucan Z: Effect of spermine on the efficiency and fidelity of the codon-specific binding of tRNA to the ribosomes. Eur J Biochem. 1989, 182: 291-297.
CAS
Google Scholar
Rabinowitz J, Hampai A: Quantitative polyphosphate-induced “prebiotic” peptide formation in H2O by addition of certain azoles and ions. J Mol Evol 1984–1985, 21:199–201.,
Yamanaka J, Inomata K, Yamagata Y: Condensation of oligoglycines with trimeta- and tetrametaphosphate in aqueous solutions. Orig Life Evol Biosph. 1988, 18: 165-178.
CAS
Google Scholar
Yamagata Y, Inomata K: Condensation of glycylglycine to oligoglycines with trimetaphosphate in aqueous solution. II: catalytic effect of magnesium ion. Orig Life Evol Biosph. 1997, 27: 339-344.
CAS
Google Scholar
Yamagata Y, Inoue H, Inomata K: Specific effect of magnesium ion on 2′,3′-cyclic AMP synthesis from adenosine and trimeta phosphate in aqueous solution. Orig Life Evol Biosph. 1995, 25: 47-52.
CAS
Google Scholar
Milner-White EJ, Russell MJ: Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig Life Evol Biosph. 2005, 35: 19-27.
CAS
Google Scholar
Bianchi A, Giorgi C, Ruzza P, Toniolo C, Milner-White EJ: A synthetic hexapeptide designed to resemble a proteinaceous P-loop nest is shown to bind inorganic phosphate. Proteins. 2012, 80: 1418-1424.
CAS
Google Scholar
Milner-White EJ, Russell MJ: Polyphosphate-peptide synergy and the organic takeover at the emergence of life. J Cosmol. 2010, 10: 3217-3229.
Google Scholar
Nakayama S, Kretsinger RH: Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct. 1994, 23: 473-507.
CAS
Google Scholar
Miller SL, Urey HC: Origin of life. Science. 1959, 130: 1622-1624.
CAS
Google Scholar
Stano P, Luisi PL: Semi-synthetic minimal cells: origin and recent developments. Curr Opin Biotechnol. 2013, 24 (4): 633-638. doi:10.1016/j.copbio.2013.01.002
CAS
Google Scholar
Zimnitskii AN, Bashkatov SA, Chemeris AV, Yamidanov RS, Urazbaev VN: Polysaccharides as initiators of nucleic acid polymerization. Am J Mol Biol. 2014, 4: 20-25.
CAS
Google Scholar
Zimnitskii AN, Bashkatov SA, Urazbaev VN, Chemeris AV, Yamidanov RS: The role of polysaccharides in the molecular evolution of biopolymers. Nat Sci. 2014, 6: 59-70.
CAS
Google Scholar
Garcia-Faroldi G, Rodriguez CE, Urdiales JL, Perez-Pomares JM, Davila JC, Pejler G, Sanchez-Jimenez F, Fajardo I: Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS ONE. 2010, 5: e15071-
CAS
PubMed Central
Google Scholar
Sobetzko P, Travers A, Muskhelishvili G: Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A. 2012, 109: E42-50.
CAS
PubMed Central
Google Scholar
Onoda T, Oshima A, Fukunaga N, Nakatani A: Effect of Ca2+ and K+ on the intracellular pH of an Escherichia coli L-form. J Gen Microbiol. 1992, 138: 1265-1270.
CAS
Google Scholar