Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA: Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell. 2013, 51: 594-605. 10.1016/j.molcel.2013.08.014. doi:10.1016/j.molcel.2013.08.014
Article
PubMed
CAS
Google Scholar
Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJ, van der Oost J: DNA-guided DNA interference by a prokaryotic Argonaute. Nature. 2014, 507: 258-261. 10.1038/nature12971. doi:10.1038/nature12971
Article
PubMed
CAS
PubMed Central
Google Scholar
Makarova KS, Wolf YI, van der Oost J, Koonin EV: Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009, 4: 29-10.1186/1745-6150-4-29. doi:10.1186/1745-6150-4-29
Article
PubMed
PubMed Central
Google Scholar
Hur JK, Olovnikov I, Aravin AA: Prokaryotic Argonautes defend genomes against invasive DNA. Trends Biochem Sci. 2014, 39: 257-259. 10.1016/j.tibs.2014.04.006. doi:10.1016/j.tibs.2014.04.006
Article
PubMed
CAS
PubMed Central
Google Scholar
Vogel J: A bacterial seek-and-destroy system for foreign DNA. Science. 2014, 344: 972-973. 10.1126/science.1252962. doi:10.1126/science.1252962
Article
PubMed
CAS
Google Scholar
Chak LL, Okamura K: Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors. Front Genet. 2014, 5: 172-10.3389/fgene.2014.00172. doi:10.3389/fgene.2014.00172
Article
PubMed
PubMed Central
Google Scholar
Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR: RNAi factors are present and active in human cell nuclei. Cell Rep. 2014, 6: 211-221. 10.1016/j.celrep.2013.12.013. doi:10.1016/j.celrep.2013.12.013
Article
PubMed
CAS
PubMed Central
Google Scholar
Maniataki E, Mourelatos Z: Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA. 2005, 11: 849-852. 10.1261/rna.2210805.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tan GS, Garchow BG, Liu X, Yeung J, Morris JP, Cuellar TL, McManus MT, Kiriakidou M: Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res. 2009, 37: 7533-7545. 10.1093/nar/gkp812. doi:10.1093/nar/gkp812
Article
PubMed
CAS
PubMed Central
Google Scholar
Li J, Kim T, Nutiu R, Ray D, Hughes TR, Zhang Z: Identifying mRNA sequence elements for target recognition by human Argonaute proteins. Genome Res. 2014, 24: 775-785. 10.1101/gr.162230.113. doi:10.1101/gr.162230.113
Article
PubMed
CAS
PubMed Central
Google Scholar
Pillai RS, Artus CG, Filipowicz W: Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA. 2004, 10: 1518-1525. 10.1261/rna.7131604.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pinder BD: Smibert CA: microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep. 2013, 14: 80-86. 10.1038/embor.2012.192. doi:10.1038/embor.2012.192
Article
PubMed
CAS
PubMed Central
Google Scholar
Deleavey GF, Frank F, Hassler M, Wisnovsky S, Nagar B, Damha MJ: The 5′ binding MID domain of human Argonaute2 tolerates chemically modified nucleotide analogues. Nucleic Acid Ther. 2013, 23: 81-87. doi:10.1089/nat.2012.0393
Article
PubMed
CAS
Google Scholar
Schirle NT, MacRae IJ: The crystal structure of human Argonaute2. Science. 2012, 336: 1037-1040. 10.1126/science.1221551. doi:10.1126/science.1221551
Article
PubMed
CAS
PubMed Central
Google Scholar
Lingel A, Simon B, Izaurralde E, Sattler M: Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature. 2003, 426: 465-469. 10.1038/nature02123.
Article
PubMed
CAS
Google Scholar
Lingel A, Simon B, Izaurralde E, Sattler M: Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol. 2004, 11: 576-577. 10.1038/nsmb777.
Article
PubMed
CAS
Google Scholar
Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM: Structure and conserved RNA binding of the PAZ domain. Nature. 2003, 426: 468-474. 10.1038/nature02129.
Article
PubMed
Google Scholar
Chiu YL: Rana TM: siRNA function in RNAi: a chemical modification analysis. RNA. 2003, 9: 1034-1048. 10.1261/rna.5103703.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, Juni A, Saigo K: Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res. 2008, 36: 2136-21351. 10.1093/nar/gkn042. doi:10.1093/nar/gkn042
Article
PubMed
CAS
PubMed Central
Google Scholar
Lamberton JS, Christian AT: Varying the nucleic acid composition of siRNA molecules dramatically varies the duration and degree of gene silencing. Mol Biotechnol. 2003, 24: 111-120. 10.1385/MB:24:2:111.
Article
PubMed
CAS
Google Scholar
Nowak M, Wyszko E, Fedoruk-Wyszomirska A, Pospieszny H, Barciszewska MZ, Barciszewski J: A new and efficient method for inhibition of RNA viruses by DNA interference. FEBS J. 2009, 276: 4372-4380. 10.1111/j.1742-4658.2009.07145.x. doi:10.1111/j.1742-4658.2009.07145.x
Article
PubMed
CAS
Google Scholar
Moelling K, Matskevich A, Jung JS: Relationship between retroviral replication and RNA interference machineries. Cold Spring Harb Symp Quant Biol. 2006, 71: 365-368. 10.1101/sqb.2006.71.010.
Article
PubMed
CAS
Google Scholar
Huang V, Li LC: Demystifying the nuclear function of Argonaute proteins. RNA Biol. 2014, 11: 18-24. 10.4161/rna.27604. doi:10.4161/rna.27604
Article
PubMed
CAS
PubMed Central
Google Scholar
Toscano-Garibay JD, Aquino-Jarquin G: Transcriptional regulation mechanism mediated by miRNA-DNA•DNA triplex structure stabilized by Argonaute. Biochim Biophys Acta. 1839, 2014: 1079-1083.
Google Scholar
Koch J, Pfeil HV: Transport of nuclear DNA into the cytoplasm in cultured animal cells. A survey. FEBS Lett. 1972, 24: 53-56. 10.1016/0014-5793(72)80824-X.
Article
PubMed
CAS
Google Scholar
Solage A, Laskov R: Characterization of cytoplasmic DNA of mouse-myeloma cells. Eur J Biochem. 1975, 60: 23-33. 10.1111/j.1432-1033.1975.tb20971.x.
Article
PubMed
CAS
Google Scholar
Abken H, Hegger R, Bützler C, Willecke K: Short DNA sequences from the cytoplasm of mouse tumor cells induce immortalization of human lymphocytes in vitro. Proc Natl Acad Sci U S A. 1993, 90: 6518-6522. 10.1073/pnas.90.14.6518.
Article
PubMed
CAS
PubMed Central
Google Scholar
Challen C, Adams DH: The search for the DNA of the chick embryo fibroblast cytosolic complex. Int J Biochem. 1988, 20: 265-277. 10.1016/0020-711X(88)90350-3.
Article
PubMed
CAS
Google Scholar
Lerner RA, Meinke W, Goldstein DA: Membrane-associated DNA in the cytoplasm of diploid human lymphocytes. Proc Natl Acad Sci U S A. 1971, 68: 1212-1216. 10.1073/pnas.68.6.1212.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cheng J, Torkamani A, Peng Y, Jones TM, Lerner RA: Plasma membrane associated transcription of cytoplasmic DNA. Proc Natl Acad Sci USA. 2012, 109: 10827-10831. 10.1073/pnas.1208716109. doi:10.1073/pnas.1208716109
Article
PubMed
CAS
PubMed Central
Google Scholar
Schneider WC: Cytoplasmic DNA: Differentiation by reassociation kinetics. Biochem Biophys Res Commun. 1977, 74: 1607-1612. 10.1016/0006-291X(77)90626-X.
Article
PubMed
CAS
Google Scholar
Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES: AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009, 458: 509-513. 10.1038/nature07710. doi:10.1038/nature07710
Article
PubMed
CAS
PubMed Central
Google Scholar
Stetson DB, Ko JS, Heidmann T, Medzhitov R: Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008, 134: 587-598. 10.1016/j.cell.2008.06.032. doi:10.1016/j.cell.2008.06.032
Article
PubMed
CAS
PubMed Central
Google Scholar
Barber GN: Cytoplasmic DNA innate immune pathways. Immunol Rev. 2011, 243: 99-108. 10.1111/j.1600-065X.2011.01051.x. doi:10.1111/j.1600-065X.2011.01051.x
Article
PubMed
CAS
Google Scholar
Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ: Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol. 1999, 154: 1423-1429. 10.1016/S0002-9440(10)65396-5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dombrowski Y, Peric M, Koglin S, Kammerbauer C, Göss C, Anz D, Simanski M, Gläser R, Harder J, Hornung V, Gallo RL, Ruzicka T, Besch R, Schauber J: Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011, 3: 82ra38-10.1126/scitranslmed.3002001. doi:10.1126/scitranslmed.3002001
Article
PubMed
PubMed Central
Google Scholar
Shimizu A, Nakatani Y, Nakamura T, Jinno-Oue A, Ishikawa O, Boeke JD, Takeuchi Y, Hoshino H: Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells. Sci Rep. 2014, 4: 5074-doi:10.1038/srep05074
PubMed
CAS
PubMed Central
Google Scholar
Smalheiser NR: The search for endogenous siRNAs in the mammalian brain. Exp Neurol. 2012, 235: 455-463. 10.1016/j.expneurol.2011.10.015. doi:10.1016/j.expneurol.2011.10.015
Article
PubMed
CAS
PubMed Central
Google Scholar
Svoboda P: Renaissance of mammalian endogenous RNAi. FEBS Lett. 2014, S0014-5793 (14): 00417-7-doi:10.1016/j.febslet.2014.05.030
Google Scholar
Adams DH, McIntosh AAG: Studies on the cytosolic DNA of chick embryo fibroblasts and its uptake by recipient cultured cells. Int J Biochem. 1984, 17: 1041-1051. 10.1016/0020-711X(85)90035-7.
Article
Google Scholar
Boon RA, Vickers KC: Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol. 2013, 33: 186-192. 10.1161/ATVBAHA.112.300139. doi:10.1161/ATVBAHA.112.300139
Article
PubMed
CAS
PubMed Central
Google Scholar
Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O: Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009, 11: 1143-1149. 10.1038/ncb1929. doi:10.1038/ncb1929
Article
PubMed
CAS
Google Scholar
Li L, Zhu D, Huang L, Zhang J, Bian Z, Chen X, Liu Y, Zhang CY, Zen K: Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One. 2012, 7: e46957-10.1371/journal.pone.0046957. doi:10.1371/journal.pone.0046957
Article
PubMed
CAS
PubMed Central
Google Scholar
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006, 20: 847-856. 10.1038/sj.leu.2404132.
Article
PubMed
CAS
Google Scholar
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007, 9: 654-659. 10.1038/ncb1596.
Article
PubMed
CAS
Google Scholar
Chen X, Liang H, Zhang J, Zen K, Zhang CY: Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 2012, 3: 28-37. 10.1007/s13238-012-2003-z. doi:10.1007/s13238-012-2003-z
Article
PubMed
CAS
Google Scholar
Ronquist KG, Ronquist G, Carlsson L, Larsson A: Human prostasomes contain chromosomal DNA. Prostate. 2009, 69: 737-743. 10.1002/pros.20921. doi:10.1002/pros.20921
Article
PubMed
CAS
Google Scholar
Ronquist GK, Larsson A, Ronquist G, Isaksson A, Hreinsson J, Carlsson L, Stavreus-Evers A: Prostasomal DNA characterization and transfer into human sperm. Mol Reprod Dev. 2011, 78: 467-476. 10.1002/mrd.21327. doi:10.1002/mrd.21327
Article
PubMed
CAS
Google Scholar
Ronquist GK, Larsson A, Stavreus-Evers A, Ronquist G: Prostasomes are heterogeneous regarding size and appearance but affiliated to one DNA-containing exosome family. Prostate. 2012, 72: 1736-1745. 10.1002/pros.22526. doi:10.1002/pros.22526
Article
PubMed
CAS
Google Scholar
Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A: Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009, 100: 1603-1607. 10.1038/sj.bjc.6605058. doi:10.1038/sj.bjc.6605058
Article
PubMed
CAS
PubMed Central
Google Scholar
Cai J, Han Y, Ren H, Chen C, He D, Zhou L, Eisner GM, Asico LD, Jose PA, Zeng C: Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol. 2013, 5: 227-238. 10.1093/jmcb/mjt011. doi:10.1093/jmcb/mjt011
Article
PubMed
CAS
PubMed Central
Google Scholar
Waldenström A, Gennebäck N, Hellman U, Ronquist G: Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One. 2012, 7: e34653-10.1371/journal.pone.0034653. doi:10.1371/journal.pone.0034653
Article
PubMed
PubMed Central
Google Scholar
Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D: Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014, 24: 766-769. 10.1038/cr.2014.44. doi:10.1038/cr.2014.44
Article
PubMed
CAS
PubMed Central
Google Scholar
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011, 2: 180-10.1038/ncomms1180. doi:10.1038/ncomms1180
Article
PubMed
PubMed Central
Google Scholar
Krude T: Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp Cell Res. 1999, 247: 148-159. 10.1006/excr.1998.4342.
Article
PubMed
CAS
Google Scholar
Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R: Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014, 289: 3869-3875. 10.1074/jbc.C113.532267. doi:10.1074/jbc.C113.532267
Article
PubMed
CAS
PubMed Central
Google Scholar
Guescini M, Genedani S, Stocchi V, Agnati LF: Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010, 117: 1-4. 10.1007/s00702-009-0288-8. doi:10.1007/s00702-009-0288-8
Article
PubMed
CAS
Google Scholar
Swanson DR, Smalheiser NR: An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif Intell. 1997, 91: 183-203. 10.1016/S0004-3702(97)00008-8.
Article
Google Scholar
Torvik VI, Smalheiser NR: A quantitative model for linking two disparate sets of articles in Medline. Bioinformatics. 2007, 23: 1658-1665. 10.1093/bioinformatics/btm161.
Article
PubMed
CAS
Google Scholar
Smalheiser NR, Torvik VI, Zhou W: Arrowsmith two-node search interface: A tutorial on finding meaningful links between two disparate sets of articles in MEDLINE. Comput Meth Program Biomed. 2009, 94: 190-197. 10.1016/j.cmpb.2008.12.006.
Article
Google Scholar
Smalheiser NR: Literature-based discovery: beyond the ABCs. J Am Information Sci Technol. 2011, 63: 218-224. 10.1002/asi.21599.
Article
Google Scholar
Agarwal S, Yu H, Kohane I: BioNØT: a searchable database of biomedical negated sentences. BMC Bioinformatics. 2011, 12: 420-10.1186/1471-2105-12-420.
Article
PubMed
PubMed Central
Google Scholar
Bandiera S, Rüberg S, Girard M, Cagnard N, Hanein S, Chrétien D, Munnich A, Lyonnet S, Henrion-Caude A: Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One. 2011, 6: e20746-10.1371/journal.pone.0020746. doi:10.1371/journal.pone.0020746
Article
PubMed
CAS
PubMed Central
Google Scholar
Mashburn-Warren LM, Whiteley M: Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006, 61: 839-486. 10.1111/j.1365-2958.2006.05272.x.
Article
PubMed
CAS
Google Scholar
Mashburn-Warren L, McLean RJ, Whiteley M: Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology. 2008, 6: 214-219. 10.1111/j.1472-4669.2008.00157.x. doi:10.1111/j.1472-4669.2008.00157.x
Article
PubMed
CAS
PubMed Central
Google Scholar
Yaron S, Kolling GL, Simon L, Matthews KR: Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol. 2000, 66: 4414-4420. 10.1128/AEM.66.10.4414-4420.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pérez-Cruz C, Carrión O, Delgado L, Martinez G, López-Iglesias C, Mercade E: New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl Environ Microbiol. 2013, 79: 1874-1881. 10.1128/AEM.03657-12. doi:10.1128/AEM. 03657-12
Article
PubMed
PubMed Central
Google Scholar
Kadurugamuwa JL, Beveridge TJ: Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology. 1999, 145: 2051-2060. 10.1099/13500872-145-8-2051.
Article
PubMed
CAS
Google Scholar
Dorward DW, Garon CF, Judd RC: Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol. 1989, 171: 2499-2505. Erratum in: J Bacteriol 1989 Jul;171(7):4104
PubMed
CAS
PubMed Central
Google Scholar
Nieuwland R, Sturk A: Why do cells release vesicles?. Thromb Res. 2010, 125 (Suppl 1): S49-S51. 10.1016/j.thromres.2010.01.037. doi:10.1016/j.thromres.2010.01.037. PubMed PMID: 20149923. Epub 2010 Feb 11. Review
Article
PubMed
CAS
Google Scholar
Deatherage BL, Cookson BT: Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012, 80: 1948-1957. 10.1128/IAI.06014-11. doi:10.1128/IAI. 06014-11
Article
PubMed
CAS
PubMed Central
Google Scholar
Aravind L, Watanabe H, Lipman DJ, Koonin EV: Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci U S A. 2000, 97: 11319-11324. 10.1073/pnas.200346997.
Article
PubMed
CAS
PubMed Central
Google Scholar
Patel DJ MJBYYRMGPYTT: Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 2005, 434: 666-670. 10.1038/nature03514.
Article
PubMed
PubMed Central
Google Scholar
Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ: Crystal structure of A. aeolicus argonaute a site-specific DNA-guided endoribonuclease provides insights into RISC-mediated mRNA cleavage. Mol Cell. 2005, 19: 405-419. 10.1016/j.molcel.2005.07.011.
Article
PubMed
CAS
PubMed Central
Google Scholar
Burroughs AM, Iyer LM, Aravind L: Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol Direct. 2013, 8: 13-10.1186/1745-6150-8-13.
Article
PubMed
PubMed Central
Google Scholar
Burroughs AM, Ando Y, Aravind L: New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. Wiley Interdiscip Rev RNA. 2014, 5: 141-181. 10.1002/wrna.1210.
Article
PubMed
CAS
PubMed Central
Google Scholar
Weinberg R: Point: Hypotheses first. Nature. 2010, 464: 678-10.1038/464678a.
Article
PubMed
CAS
Google Scholar
Golub T: Counterpoint: Data first. Nature. 2010, 464: 679-10.1038/464679a.
Article
PubMed
CAS
Google Scholar
Piriyapongsa J, Jordan IK, Conley AB, Ronan T, Smalheiser NR: Transcription factor binding sites are highly enriched within microRNA precursor sequences. Biol Direct. 2011, 6: 61-10.1186/1745-6150-6-61.
Article
PubMed
CAS
PubMed Central
Google Scholar
Comments
View archived comments (1)