Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H: The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?. Proc Natl Acad Sci USA. 2004, 101: 15386-15391. 10.1073/pnas.0403984101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D: A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004, 21: 809-818. 10.1093/molbev/msh075.
Article
CAS
PubMed
Google Scholar
Palmer JD: The symbiotic birth and spread of plastids: how many times and whodunit?. J Phycol. 2003, 39: 4-12.
Article
CAS
Google Scholar
Gould SB, Waller RF, McFadden GI: Plastid evolution. Annu Rev Plant Biol. 2008, 59: 491-517. 10.1146/annurev.arplant.59.032607.092915.
Article
CAS
PubMed
Google Scholar
Archibald JM: The puzzle of plastid evolution. Curr Biol. 2009, 19: R81-R88. 10.1016/j.cub.2008.11.067.
Article
CAS
PubMed
Google Scholar
Keeling PJ: The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci. 2010, 365: 729-748. 10.1098/rstb.2009.0103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavalier-Smith T, Lee JJ: Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool. 1985, 32: 376-379.
Article
Google Scholar
Cavalier-Smith T: Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Biol Sci. 2006, 273: 1943-1952. 10.1098/rspb.2006.3531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bodył A, Mackiewicz P, Stiller JW: Early steps in plastid evolution: current ideas and controversies. BioEssays. 2009, 31: 1219-1232. 10.1002/bies.200900073.
Article
PubMed
CAS
Google Scholar
Gross J, Bhattacharya D: Mitochondrial and plastid evolution in eukaryotes: an outsiders' perspective. Nat Rev Genet. 2009, 10: 495-505.
Article
CAS
PubMed
Google Scholar
Richly E, Leister D: An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene. 2004, 329: 11-16.
Article
CAS
PubMed
Google Scholar
van Wijk KJ: Plastid proteomics. Plant Physiol Biochem. 2004, 42: 963-977. 10.1016/j.plaphy.2004.10.015.
Article
CAS
PubMed
Google Scholar
Green BR: Chloroplast genomes of photosynthetic eukaryotes. Plant J. 2011, 66: 34-44. 10.1111/j.1365-313X.2011.04541.x.
Article
CAS
PubMed
Google Scholar
Martin W, Herrmann RG: Gene transfer from organelles to the nucleus: how much, what happens, and why?. Plant Physiol. 1998, 118: 9-17. 10.1104/pp.118.1.9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selosse M, Albert B, Godelle B: Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol. 2001, 16: 135-141. 10.1016/S0169-5347(00)02084-X.
Article
PubMed
Google Scholar
Timmis JN, Ayliffe MA, Huang CY, Martin W: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004, 5: 123-135.
Article
CAS
PubMed
Google Scholar
Kleine T, Maier UG, Leister D: DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol. 2009, 60: 115-138. 10.1146/annurev.arplant.043008.092119.
Article
CAS
PubMed
Google Scholar
Bruce BD: The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim Biophys Acta. 2001, 1541: 2-21. 10.1016/S0167-4889(01)00149-5.
Article
CAS
PubMed
Google Scholar
Patron NJ, Waller RF: Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays. 2007, 29: 1048-1058. 10.1002/bies.20638.
Article
CAS
PubMed
Google Scholar
Inaba T, Schnell DJ: Protein trafficking to plastids: one theme, many variations. Biochem J. 2008, 413: 15-28. 10.1042/BJ20080490.
Article
CAS
PubMed
Google Scholar
Li HM, Chiu CC: Protein transport into chloroplasts. Annu Rev Plant Biol. 2010, 61: 157-180. 10.1146/annurev-arplant-042809-112222.
Article
CAS
PubMed
Google Scholar
Shi LX, Theg SM: The chloroplast protein import system: from algae to trees. Biochim Biophys Acta. 1833, 2013: 314-331.
Google Scholar
Plöscher M, Granvogl B, Reisinger V, Eichacker LA: Identification of the N-termini of NADPH: protochlorophyllide oxidoreductase A and B from barley etioplasts (Hordeum vulgare L.). FEBS J. 2009, 276: 1074-1081. 10.1111/j.1742-4658.2008.06850.x.
Article
PubMed
CAS
Google Scholar
Samol I, Rossig C, Buhr F, Springer A, Pollmann S, Lahroussi A, von Wettstein D, Reinbothe C, Reinbothe S: The outer chloroplast envelope protein OEP16-1 for plastid import of NADPH:protochlorophyllide oxidoreductase A in Arabidopsis thaliana. Plant Cell Physiol. 2011, 52: 96-111. 10.1093/pcp/pcq177.
Article
CAS
PubMed
Google Scholar
Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, et al: Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol. 2005, 7: 1224-1231. 10.1038/ncb1330.
Article
PubMed
CAS
Google Scholar
Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitsui T, Munoz FJ, Rodriguez-Lopez M, Baroja-Fernandez E, Pozueta-Romero J: Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell. 2006, 18: 2582-2592. 10.1105/tpc.105.039891.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko K, Yamada C, Yanagida A, Koshu T, Umezawa Y, Itoh K, Hori H, Mitsui T: Differential localizations and functions of rice nucleotide pyrophosphatase/phosphodiesterase isozymes 1 and 3. Plant Biotechnol. 2011, 28: 69-76. 10.5511/plantbiotechnology.10.1228a.
Article
CAS
Google Scholar
Chen MH, Huang LF, Li HM, Chen YR, Yu SM: Signal peptide-dependent targeting of a rice alpha-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant Physiol. 2004, 135: 1367-1377. 10.1104/pp.104.042184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T: Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol. 2005, 46: 858-869. 10.1093/pcp/pci091.
Article
CAS
PubMed
Google Scholar
Kitajima A, Asatsuma S, Okada H, Hamada Y, Kaneko K, Nanjo Y, Kawagoe Y, Toyooka K, Matsuoka K, Takeuchi M, et al: The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell. 2009, 21: 2844-2858. 10.1105/tpc.109.068288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buren S, Ortega-Villasante C, Blanco-Rivero A, Martinez-Bernardini A, Shutova T, Shevela D, Messinger J, Bako L, Villarejo A, Samuelsson G: Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. PLoS One. 2011, 6: e21021-10.1371/journal.pone.0021021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danon A: Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci USA. 2005, 102: 6225-6230. 10.1073/pnas.0500676102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhattacharya D, Archibald JM, Weber AP, Reyes-Prieto A: How do endosymbionts become organelles? understanding early events in plastid evolution. BioEssays. 2007, 29: 1239-1246. 10.1002/bies.20671.
Article
CAS
PubMed
Google Scholar
John CR: Conserved amino acid sequence domains in alpha-amylases from plants, mammals, and bacteria. Biochem Biophys Res Commun. 1985, 128: 470-476. 10.1016/0006-291X(85)91702-4.
Article
Google Scholar
MacGregor EA, Janecek S, Svensson B: Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta. 2001, 1546: 1-20. 10.1016/S0167-4838(00)00302-2.
Article
CAS
PubMed
Google Scholar
Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B: Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003, 38: 1599-1616. 10.1016/S0032-9592(03)00053-0.
Article
CAS
Google Scholar
Terashima M, Hayashi N, Thomas BR, Rodriguez RL, Katoh S: Kinetic parameters of two rice [alpha]-amylase isozymes for oligosaccharide degradation. Plant Sci. 1996, 116: 9-14. 10.1016/0168-9452(96)04373-7.
Article
CAS
Google Scholar
Terashima M, Hosono M, Katoh S: Functional roles of protein domains on rice alpha-amylase activity. Appl Microbiol Biotechnol. 1997, 47: 364-367. 10.1007/s002530050941.
Article
CAS
PubMed
Google Scholar
Nanjo Y, Asatsuma S, Itoh K, Hori H, Mitsui T, Fujisawa Y: Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds. Plant Physiol Biochem. 2004, 42: 477-484. 10.1016/j.plaphy.2004.04.005.
Article
CAS
PubMed
Google Scholar
Ziegler P: Partial purification and characterization of the major endoamylase of mature pea leaves. Plant Physiol. 1988, 86: 659-666. 10.1104/pp.86.3.659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okita TW, Preiss J: Starch degradation in spinach leaves: isolation and characterization of the amylases and R-enzyme of spinach leaves. Plant Physiol. 1980, 66: 870-876. 10.1104/pp.66.5.870.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Servaites JC, Geiger DR: Characterization and subcellular localization of debranching enzyme and endoamylase from leaves of sugar beet. Plant Physiol. 1992, 98: 1277-1284. 10.1104/pp.98.4.1277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Echeverria E, Boyer CD: Localization of starch biosynthetic and degradative enzymes in maize leaves. Am J Bot. 1986, 73: 167-171. 10.2307/2444169.
Article
CAS
Google Scholar
Levi C, Preiss J: Amylopectin degradation in pea chloroplast extracts. Plant Physiol. 1978, 61: 218-220. 10.1104/pp.61.2.218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kakefuda G, Duke SH, Hostak MS: Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum L. Planta. 1986, 168: 175-182.
CAS
PubMed
Google Scholar
Lin TP, Spilatro SR, Preiss J: Subcellular localization and characterization of amylases in Arabidopsis leaf. Plant Physiol. 1988, 86: 251-259. 10.1104/pp.86.1.251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terashima M, Kubo A, Suzawa M, Itoh Y, Katoh S: The roles of the N-linked carbohydrate chain of rice alpha-amylase in thermostability and enzyme kinetics. Eur J Biochem. 1994, 226: 249-254. 10.1111/j.1432-1033.1994.tb20048.x.
Article
CAS
PubMed
Google Scholar
Hummel E, Osterrieder A, Robinson DG, Hawes C: Inhibition of Golgi function causes plastid starch accumulation. J Exp Bot. 2010, 61: 2603-2614. 10.1093/jxb/erq091.
Article
CAS
PubMed
PubMed Central
Google Scholar
The WallProtDB database. [http://www.polebio.scsv.ups-tlse.fr/WallProtDB/searchform.php]
Yu T-S, Zeeman SC, Thorneycroft D, Fulton DC, Dunstan H, Lue W-L, Hegemann B, Tung S-Y, Umemoto T, Chapple A, et al: α-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem. 2005, 280: 9773-9779. 10.1074/jbc.M413638200.
Article
CAS
PubMed
Google Scholar
Deschamps P, Haferkamp I, D'Hulst C, Neuhaus HE, Ball SG: The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci. 2008, 13: 574-582. 10.1016/j.tplants.2008.08.009.
Article
CAS
PubMed
Google Scholar
Deschamps P, Moreau H, Worden AZ, Dauvillee D, Ball SG: Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics. 2008, 178: 2373-2387. 10.1534/genetics.108.087205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL, Buleon A, Haebel S, Ritte G, Steup M, Falcon LI, et al: Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol. 2008, 25: 536-548. 10.1093/molbev/msm280.
Article
CAS
PubMed
Google Scholar
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C: The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot. 2011, 62: 1775-1801. 10.1093/jxb/erq411.
Article
CAS
PubMed
Google Scholar
Nagashima H, Nakamura S, Nisizawa K, Hori T: Enzymic synthesis of floridean starch in a red alga, Serraticardia maxima. Plant Cell Physiol. 1971, 12: 243-253.
CAS
Google Scholar
Borowitzka MA: Plastid development and floridean starch grain formation during carposporogenesis in the coralline red alga Lithothrix aspergillum gray. Protoplasma. 1978, 95: 217-228. 10.1007/BF01294452.
Article
Google Scholar
Preiss J: Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol. 1982, 33: 431-454. 10.1146/annurev.pp.33.060182.002243.
Article
CAS
Google Scholar
Kombrink E, Wöber G: Identification and subcellular localization of starch-metabolizing enzymes in the green alga Dunaliella marina. Planta. 1980, 149: 130-137. 10.1007/BF00380873.
Article
CAS
PubMed
Google Scholar
Levi C, Gibbs M: Starch degradation in synchronously grown Chlamydomonas reinhardtii and characterization of the amylase. Plant Physiol. 1984, 74: 459-463. 10.1104/pp.74.3.459.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB: Molecular evidence for the early colonization of land by fungi and plants. Science. 2001, 293: 1129-1133. 10.1126/science.1061457.
Article
CAS
PubMed
Google Scholar
Sanderson MJ: Molecular data from 27 proteins do not support a Precambrian origin of land plants. Am J Bot. 2003, 90: 954-956. 10.3732/ajb.90.6.954.
Article
CAS
PubMed
Google Scholar
Martin W: Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2010, 365: 847-855. 10.1098/rstb.2009.0252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrykovich G, Marx I: Isolation of a new polysaccharide digesting bacterium from a salt marsh. Appl Microbiol Biotechnol. 1988, 54: 1061-1062.
Google Scholar
Hopkinson BM, Roe KL, Barbeau KA: Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Appl Environ Microbiol. 2008, 74: 6263-6270. 10.1128/AEM.00964-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE: Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol. 2008, 190: 5455-5463. 10.1128/JB.01701-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichenbach H, Dworkin M: Studies on Stigmatella aurantiaca (Myxobacterales). J Gen Microbiol. 1969, 58: 3-14. 10.1099/00221287-58-1-3.
Article
Google Scholar
Olczak M, Morawiecka B, Wątorek W: Plant purple acid phosphatases – genes, structures and biological function. Acta Biochim Pol. 2003, 50: 1245-1256.
CAS
PubMed
Google Scholar
Liao H, Wong FL, Phang TH, Cheung MY, Li WY, Shao G, Yan X, Lam HM: GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene. 2003, 318: 103-111.
Article
CAS
PubMed
Google Scholar
Yeung SL, Cheng C, Lui TK, Tsang JS, Chan WT, Lim BL: Purple acid phosphatase-like sequences in prokaryotic genomes and the characterization of an atypical purple alkaline phosphatase from Burkholderia cenocepacia J2315. Gene. 2009, 440: 1-8. 10.1016/j.gene.2009.04.002.
Article
CAS
PubMed
Google Scholar
Vincent J, Averill B: An enzyme with a double identity: purple acid phosphatase and tartrate- resistant acid phosphatase. FASEB J. 1990, 4: 3009-3014.
CAS
PubMed
Google Scholar
Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J: Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. Arch Biochem Biophys. 1999, 370: 183-189. 10.1006/abbi.1999.1407.
Article
CAS
PubMed
Google Scholar
Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B: Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J Mol Biol. 1996, 259: 737-748. 10.1006/jmbi.1996.0354.
Article
CAS
PubMed
Google Scholar
Olczak M, Ciuraszkiewicz J, Wójtowicz H, Maszczak D, Olczak T: Diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) contains an iron-manganese center. FEBS Lett. 2009, 583: 3280-3284. 10.1016/j.febslet.2009.09.024.
Article
CAS
PubMed
Google Scholar
Olczak M, Olczak T: Diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus L.) belongs to a novel group of specific metallophosphatases. FEBS Lett. 2002, 519: 159-163. 10.1016/S0014-5793(02)02740-0.
Article
CAS
PubMed
Google Scholar
Olczak M, Olczak T: N-glycosylation sites of plant purple acid phosphatases important for protein expression and secretion in insect cells. Arch Biochem Biophys. 2007, 461: 247-254. 10.1016/j.abb.2007.02.005.
Article
CAS
PubMed
Google Scholar
Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA: Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone. 2000, 27: 575-584. 10.1016/S8756-3282(00)00368-9.
Article
CAS
PubMed
Google Scholar
Ullah AH, Cummins BJ: Aspergillus ficuum extracellular pH 6.0 optimum acid phosphatase: purification, N-terminal amino acid sequence, and biochemical characterization. Prep Biochem. 1988, 18: 37-65. 10.1080/00327488808062512.
CAS
PubMed
Google Scholar
Veljanovski V, Vanderbeld B, Knowles VL, Snedden WA, Plaxton WC: Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. Plant Physiol. 2006, 142: 1282-1293. 10.1104/pp.106.087171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morita N, Nakazato H, Okuyama H, Kim Y, Thompson GA: Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza. Biochim Biophys Acta. 1996, 1290: 53-62. 10.1016/0304-4165(95)00185-9.
Article
PubMed
Google Scholar
Flanagan JU, Cassady AI, Schenk G, Guddat LW, Hume DA: Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase. Gene. 2006, 377: 12-20.
Article
CAS
PubMed
Google Scholar
Attard A, Gourgues M, Galiana E, Panabières F, Ponchet M, Keller H: Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan). J Plant Physiol. 2008, 165: 83-94. 10.1016/j.jplph.2007.06.011.
Article
CAS
PubMed
Google Scholar
Sun G, Yang Z, Ishwar A, Huang J: Algal genes in the closest relatives of animals. Mol Biol Evol. 2010, 27: 2879-2889. 10.1093/molbev/msq175.
Article
CAS
PubMed
Google Scholar
Borderies G, Jamet E, Lafitte C, Rossignol M, Jauneau A, Boudart G, Monsarrat B, Esquerre-Tugaye MT, Boudet A, Pont-Lezica R: Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis. 2003, 24: 3421-3432. 10.1002/elps.200305608.
Article
CAS
PubMed
Google Scholar
Jamet E, Canut H, Boudart G, Pont-Lezica RF: Cell wall proteins: a new insight through proteomics. Trends Plant Sci. 2006, 11: 33-39. 10.1016/j.tplants.2005.11.006.
Article
CAS
PubMed
Google Scholar
Zhang Y, Giboulot A, Zivy M, Valot B, Jamet E, Albenne C: Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry. 2011, 72: 1109-1123. 10.1016/j.phytochem.2010.10.019.
Article
CAS
PubMed
Google Scholar
Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S: The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol. 2004, 14: 354-362. 10.1016/j.cub.2004.02.039.
Article
CAS
PubMed
Google Scholar
Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ: Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One. 2008, 3: e1994-10.1371/journal.pone.0001994.
Article
PubMed
PubMed Central
CAS
Google Scholar
Supuran CT: Carbonic anhydrases – an overview. Curr Pharm Des. 2008, 14: 603-614. 10.2174/138161208783877884.
Article
CAS
PubMed
Google Scholar
Smith KS, Jakubzick C, Whittam TS, Ferry JG: Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Natl Acad Sci USA. 1999, 96: 15184-15189. 10.1073/pnas.96.26.15184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith KS, Ferry JG: Prokaryotic carbonic anhydrases. FEMS Microbiol Rev. 2000, 24: 335-366. 10.1111/j.1574-6976.2000.tb00546.x.
Article
CAS
PubMed
Google Scholar
Hewett-Emmett D, Tashian RE: Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996, 5: 50-77. 10.1006/mpev.1996.0006.
Article
CAS
PubMed
Google Scholar
Elleuche S, Poggeler S: Evolution of carbonic anhydrases in fungi. Curr Genet. 2009, 55: 211-222. 10.1007/s00294-009-0238-x.
Article
CAS
PubMed
Google Scholar
Carter CJ, Thornburg RW: Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol. 2004, 54: 415-425.
Article
CAS
PubMed
Google Scholar
Hou WC, Liu JS, Chen HJ, Chen TE, Chang CF, Lin YH: Dioscorin, the major tuber storage protein of yam (Dioscore batatas Decne), with carbonic anhydrase and trypsin inhibitor activities. J Agric Food Chem. 1999, 47: 2168-2172. 10.1021/jf980738o.
Article
CAS
PubMed
Google Scholar
Hou WC, Liu JS, Chen HJ, Chen TE, Chang CF, Lin YH: Dioscorins from different Dioscorea species all exhibit both carbonic anhydrase and trypsin inhibitor activities. Bot Bull Acad Sinica. 2000, 41: 191-196.
CAS
Google Scholar
Shewry PR: Tuber storage proteins. Ann Bot. 2003, 91: 755-769. 10.1093/aob/mcg084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukuzawa H, Fujiwara S, Yamamoto Y, Dionisio-Sese ML, Miyachi S: cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci USA. 1990, 87: 4383-4387. 10.1073/pnas.87.11.4383.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S: Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 1990, 87: 9779-9783. 10.1073/pnas.87.24.9779.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rawat M, Moroney JV: Partial characterization of a new isoenzyme of carbonic anhydrase isolated from Chlamydomonas reinhardtii. J Biol Chem. 1991, 266: 9719-9723.
CAS
PubMed
Google Scholar
Tachiki A, Fukuzawa H, Miyachi S: Characterization of carbonic anhydrase isozyme CA2, which is the CAH2 gene product, in Chlamydomonas reinhardtii. Biosci Biotechnol Biochem. 1992, 56: 794-798. 10.1271/bbb.56.794.
Article
CAS
PubMed
Google Scholar
Ishida S, Muto S, Miyachi S: Structural analysis of periplasmic carbonic anhydrase 1 of Chlamydomonas reinhardtii. Eur J Biochem. 1993, 214: 9-16. 10.1111/j.1432-1033.1993.tb17890.x.
Article
CAS
PubMed
Google Scholar
Satoh A, Iwasaki T, Odani S, Shiraiwa Y: Purification, characterization and cDNA cloning of soluble carbonic anhydrase from Chlorella sorokiniana grown under ordinary air. Planta. 1998, 206: 657-665. 10.1007/s004250050444.
Article
CAS
PubMed
Google Scholar
Fisher M, Gokhman I, Pick U, Zamir A: A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem. 1996, 271: 17718-17723. 10.1074/jbc.271.30.17718.
Article
CAS
PubMed
Google Scholar
Moroney JV, Bartlett SG, Samuelsson G: Carbonic anhydrases in plants and algae. Plant Cell Environ. 2001, 24: 141-153. 10.1111/j.1365-3040.2001.00669.x.
Article
CAS
Google Scholar
Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G: A novel alpha-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 1998, 17: 1208-1216. 10.1093/emboj/17.5.1208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabre N, Reiter IM, Becuwe-Linka N, Genty B, Rumeau D: Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ. 2007, 30: 617-629. 10.1111/j.1365-3040.2007.01651.x.
Article
CAS
PubMed
Google Scholar
Rowlett RS: Structure and catalytic mechanism of the beta-carbonic anhydrases. Biochim Biophys Acta. 1804, 2009: 362-373.
Google Scholar
Wilkinson B, Gilbert HF: Protein disulfide isomerase. Biochim Biophys Acta. 2004, 1699: 35-44.
Article
CAS
PubMed
Google Scholar
Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ: Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci. 2006, 31: 455-464. 10.1016/j.tibs.2006.06.001.
Article
CAS
PubMed
Google Scholar
Kozlov G, Määttänen P, Thomas DY, Gehring K: A structural overview of the PDI family of proteins. FEBS J. 2010, 277: 3924-3936. 10.1111/j.1742-4658.2010.07793.x.
Article
CAS
PubMed
Google Scholar
Gleiter S, Bardwell JC: Disulfide bond isomerization in prokaryotes. Biochim Biophys Acta. 2008, 1783: 530-534. 10.1016/j.bbamcr.2008.02.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelham HR: The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci. 1990, 15: 483-486. 10.1016/0968-0004(90)90303-S.
Article
PubMed
Google Scholar
Turano C, Coppari S, Altieri F, Ferraro A: Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol. 2002, 193: 154-163. 10.1002/jcp.10172.
Article
CAS
PubMed
Google Scholar
Lu DP, Christopher DA: Immunolocalization of a protein disulfide isomerase to Arabidopsis thaliana chloroplasts and its association with starch biogenesis. Int J Plant Sci. 2006, 167: 1-9. 10.1086/498071.
Article
CAS
Google Scholar
Lu DP, Christopher D: The effect of irradiance and redox-modifying reagents on the 52 kDa protein disulfide isomerase of Arabidopsis chloroplasts. Biol Plant. 2008, 52: 42-48. 10.1007/s10535-008-0006-7.
Article
CAS
Google Scholar
Armbruster U, Hertle A, Makarenko E, Zuhlke J, Pribil M, Dietzmann A, Schliebner I, Aseeva E, Fenino E, Scharfenberg M, et al: Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome?. Mol Plant. 2009, 2: 1325-1335. 10.1093/mp/ssp082.
Article
CAS
PubMed
Google Scholar
Ni T, Yue J, Sun G, Zou Y, Wen J, Huang J: Ancient gene transfer from algae to animals: mechanisms and evolutionary significance. BMC Evol Biol. 2012, 12: 83-10.1186/1471-2148-12-83.
Article
PubMed
PubMed Central
Google Scholar
Yue J, Huang J: Algal genes in aplastidic eukaryotes are not necessarily derived from historical plastids. Mob Genet Elements. 2012, 2: 193-196. 10.4161/mge.21745.
Article
PubMed
PubMed Central
Google Scholar
Gross J, Bhattacharya D: Endosymbiont or host: who drove mitochondrial and plastid evolution?. Biol Direct. 2011, 6: 12-10.1186/1745-6150-6-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ertel F, Mirus O, Bredemeier R, Moslavac S, Becker T, Schleiff E: The evolutionarily related beta-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J Biol Chem. 2005, 280: 28281-28289. 10.1074/jbc.M503035200.
Article
CAS
PubMed
Google Scholar
Tu SL, Chen LJ, Smith MD, Su YS, Schnell DJ, Li HM: Import pathways of chloroplast interior proteins and the outer-membrane protein OEP14 converge at Toc75. Plant Cell. 2004, 16: 2078-2088. 10.1105/tpc.104.023952.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu SC, Patel R, Bedard J, Jarvis P, Inoue K: Two distinct Omp85 paralogs in the chloroplast outer envelope membrane are essential for embryogenesis in Arabidopsis thaliana. Plant Signal Behav. 2008, 3: 1134-1135. 10.4161/psb.3.12.7095.
Article
PubMed
PubMed Central
Google Scholar
Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG: Protein targeting into secondary plastids. J Eukaryot Microbiol. 2009, 56: 9-15. 10.1111/j.1550-7408.2008.00370.x.
Article
CAS
PubMed
Google Scholar
Agrawal S, Striepen B: More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist. 2010, 161: 672-687. 10.1016/j.protis.2010.09.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patron NJ, Waller RF, Archibald JM, Keeling PJ: Complex protein targeting to dinoflagellate plastids. J Mol Biol. 2005, 348: 1015-1024. 10.1016/j.jmb.2005.03.030.
Article
CAS
PubMed
Google Scholar
Durnford DG, Gray MW: Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell. 2006, 5: 2079-2091. 10.1128/EC.00222-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weeden NF: Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol. 1981, 17: 133-139. 10.1007/BF01733906.
Article
CAS
PubMed
Google Scholar
Martin W, Schnarrenberger C: The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet. 1997, 32: 1-18. 10.1007/s002940050241.
Article
CAS
PubMed
Google Scholar
Martin W: Endosymbiosis and the origins of chloroplast-cytosol isoenzymes: revising the product-specificity corollary. Horizontal Gene Transfer. Edited by: Syvanen M, Kado C. 1998, London: Chapman Hall, 363-379.
Google Scholar
Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW: Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot Cell. 2006, 5: 1517-1531. 10.1128/EC.00106-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinkmann H, Martin W: Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. Plant Mol Biol. 1996, 30: 65-75. 10.1007/BF00017803.
Article
CAS
PubMed
Google Scholar
Martin W, Mustafa AZ, Henze K, Schnarrenberger C: Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol. 1996, 32: 485-491. 10.1007/BF00019100.
Article
CAS
PubMed
Google Scholar
Nowitzki U, Gelius-Dietrich G, Schwieger M, Henze K, Martin W: Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide. Eur J Biochem. 2004, 271: 4123-4131. 10.1111/j.1432-1033.2004.04350.x.
Article
CAS
PubMed
Google Scholar
Tyra HM, Linka M, Weber AP, Bhattacharya D: Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol. 2007, 8: R212-10.1186/gb-2007-8-10-r212.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Glynn JM, Olson BJ, Schmitz AJ, Osteryoung KW: Plastid division: across time and space. Curr Opin Plant Biol. 2008, 11: 577-584. 10.1016/j.pbi.2008.10.001.
Article
CAS
PubMed
Google Scholar
Jarvis P: Organellar proteomics: chloroplasts in the spotlight. Curr Biol. 2004, 14: R317-R319. 10.1016/j.cub.2004.03.054.
Article
CAS
PubMed
Google Scholar
Cavalier-Smith T: Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000, 5: 174-182. 10.1016/S1360-1385(00)01598-3.
Article
CAS
PubMed
Google Scholar
Clemens DL, Horwitz MA: Uptake and intracellular fate of Francisella tularensis in human macrophages. Ann N Y Acad Sci. 2007, 1105: 160-186. 10.1196/annals.1409.001.
Article
CAS
PubMed
Google Scholar
Welin A, Lerm M: Inside or outside the phagosome? The controversy of the intracellular localization of Mycobacterium tuberculosis. Tuberculosis. 2012, 92: 113-120. 10.1016/j.tube.2011.09.009.
Article
PubMed
Google Scholar
Mashburn-Warren LM, Whiteley M: Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006, 61: 839-846. 10.1111/j.1365-2958.2006.05272.x.
Article
CAS
PubMed
Google Scholar
Kulp A, Kuehn MJ: Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010, 64: 163-184. 10.1146/annurev.micro.091208.073413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Xu C, Benning C: TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J. 2012, 70: 614-623. 10.1111/j.1365-313X.2012.04900.x.
Article
CAS
PubMed
Google Scholar
Andersson MX, Goksor M, Sandelius AS: Membrane contact sites: physical attachment between chloroplasts and endoplasmic reticulum revealed by optical manipulation. Plant Signal Behav. 2007, 2: 185-187. 10.4161/psb.2.3.3973.
Article
PubMed
PubMed Central
Google Scholar
Andersson MX, Goksör M, Sandelius AS: Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem. 2007, 282: 1170-1174.
Article
CAS
PubMed
Google Scholar
Shimojima M, Ohta H, Nakamura Y: Biosynthesis and Function of Chloroplast Lipids. Photosynthesis, Essential and Regulatory Functions. Edited by: Wada H, Murata N. 2009, Dordrecht, The Netherlands: Springer, 35-55.
Google Scholar
Brown AP, Slabas AR, Rafferty JB: Fatty acid biosynthesis in plants – metabolic pathways, structure and organization. Photosynthesis, Essential and Regulatory Functions. Edited by: Wada H, Murata N. 2009, Dordrecht, The Netherlands: Springer, 11-34.
Google Scholar
Benning C: Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol. 2009, 25: 71-91. 10.1146/annurev.cellbio.042308.113414.
Article
CAS
PubMed
Google Scholar
Jouhet J, Dubots E, Maréchal E, Maryse A, Block MA: Lipid trafficking in plant photosynthetic cells. Photosynthesis, Essential and Regulatory Functions. Edited by: Wada H, Murata N. 2009, Dordrecht, The Netherlands: Springer, 349-372.
Google Scholar
Goss R, Wilhelm C: Lipids in algae, lichens and mosses. Photosynthesis, Essential and Regulatory Functions. Edited by: Wada H, Murata N. 2009, Dordrecht, The Netherlands: Springer, 117-135.
Google Scholar
Heinz E, Roughan PG: Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol. 1983, 72: 273-279. 10.1104/pp.72.2.273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giroud C, Gerber A, Eichenberger W: Lipids of Chlamydomonas reinhardtii - analysis of molecular-species and intracellular site(s) of biosynthesis. Plant Cell Physiol. 1988, 29: 587-595.
CAS
Google Scholar
Archibald JM: Endosymbiosis: double-take on plastid origins. Curr Biol. 2006, 16: R690-R692. 10.1016/j.cub.2006.08.006.
Article
CAS
PubMed
Google Scholar
Nowack EC, Melkonian M, Glockner G: Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008, 18: 410-418. 10.1016/j.cub.2008.02.051.
Article
CAS
PubMed
Google Scholar
Marin B, Nowack EC, Melkonian M: A plastid in the making: evidence for a second primary endosymbiosis. Protist. 2005, 156: 425-432. 10.1016/j.protis.2005.09.001.
Article
CAS
PubMed
Google Scholar
Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G: Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol. 2011, 28: 407-422. 10.1093/molbev/msq209.
Article
CAS
PubMed
Google Scholar
Mackiewicz P, Bodył A: A hypothesis for import of the nuclear-encoded PsaE protein of Paulinella chromatophora (Cercozoa, Rhizaria) into its cyanobacterial endosymbionts/plastids via the endomembrane system. J Phycol. 2010, 46: 847-859. 10.1111/j.1529-8817.2010.00876.x.
Article
CAS
Google Scholar
Mackiewicz P, Bodył A, Gagat P: Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora. Theory Biosci. 2012, 131: 1-18. 10.1007/s12064-011-0147-7.
Article
CAS
PubMed
Google Scholar
Mackiewicz P, Bodył A, Gagat P: Protein import into the photosynthetic organelles of Paulinella chromatophora and its implications for primary plastid endosymbiosis. Symbiosis. 2012, 58: 99-107. 10.1007/s13199-012-0202-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nowack EC, Grossman AR: Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci USA. 2012, 109: 5340-5345. 10.1073/pnas.1118800109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin B, Nowack EC, Glockner G, Melkonian M: The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol. 2007, 7: 85-10.1186/1471-2148-7-85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM, Ishida K, Bhattacharya D: A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol Biol. 2009, 9: 98-10.1186/1471-2148-9-98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bodył A, Mackiewicz P, Gagat P: Organelle evolution: Paulinella breaks a paradigm. Curr Biol. 2012, 22: R304-R306. 10.1016/j.cub.2012.03.020.
Article
PubMed
CAS
Google Scholar
Schleiff E, Eichacker LA, Eckart K, Becker T, Mirus O, Stahl T, Soll J: Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope. Protein Sci. 2003, 12: 748-759. 10.1110/ps.0237503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schleiff E, Soll J: Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep. 2005, 6: 1023-1027. 10.1038/sj.embor.7400563.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu SC, Inoue K: Two evolutionarily conserved essential beta-barrel proteins in the chloroplast outer envelope membrane. Biosci Trends. 2009, 3: 168-178.
CAS
PubMed
Google Scholar
Inoue K: The chloroplast outer envelope membrane: the edge of light and excitement. J Integr Plant Biol. 2007, 49: 1100-1111. 10.1111/j.1672-9072.2007.00543.x.
Article
Google Scholar
Bodył A, Mackiewicz P, Stiller JW: Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. Plant Biol. 2010, 12: 639-649.
PubMed
Google Scholar
GenBank database. [http://www.ncbi.nlm.nih.gov/]
TbestDB database. [http://tbestdb.bcm.umontreal.ca/searches/login.php]
Dragonblast database. [http://dbdata.rutgers.edu/dragon/]
DOE Joint Genome Institute database. [http://www.jgi.doe.gov]
Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, et al: CDD: a conserved domain database for protein classification. Nucleic Acids Res. 2005, 33: D192-D196. 10.1093/nar/gni191.
Article
CAS
PubMed
Google Scholar
Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008, 9: 286-298. 10.1093/bib/bbn013.
Article
CAS
PubMed
Google Scholar
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009, 25: 1189-1191. 10.1093/bioinformatics/btp033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007, 56: 564-577. 10.1080/10635150701472164.
Article
CAS
PubMed
Google Scholar
Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004, 21: 1095-1109. 10.1093/molbev/msh112.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Jobb G, von Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol. 2004, 4: 18-10.1186/1471-2148-4-18.
Article
PubMed
PubMed Central
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21: 2104-2105. 10.1093/bioinformatics/bti263.
Article
CAS
PubMed
Google Scholar
Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S: Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002, 18: 298-305. 10.1093/bioinformatics/18.2.298.
Article
CAS
PubMed
Google Scholar
Small I, Peeters N, Legeai F, Lurin C: Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics. 2004, 4: 1581-1590. 10.1002/pmic.200300776.
Article
CAS
PubMed
Google Scholar
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ: PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics. 2006, 4: 48-55. 10.1016/S1672-0229(06)60016-8.
Article
CAS
PubMed
Google Scholar
Boden M, Hawkins J: Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics. 2005, 21: 2279-2286. 10.1093/bioinformatics/bti372.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000, 300: 1005-1016. 10.1006/jmbi.2000.3903.
Article
CAS
PubMed
Google Scholar
Lao DM, Shimizu T: A method for discriminating a signal peptide and a putative 1st transmembrane segment. Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS’01); 25–28 June 2001. Edited by: Valafar H. 2001, Las Vegas, Nevada: CSREA Press, 119-125.
Google Scholar
Gschloessl B, Guermeur Y, Cock JM: HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinforma. 2008, 9: 393-10.1186/1471-2105-9-393.
Article
CAS
Google Scholar
Kall L, Krogh A, Sonnhammer EL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004, 338: 1027-1036. 10.1016/j.jmb.2004.03.016.
Article
CAS
PubMed
Google Scholar
Hiller K, Grote A, Scheer M, Munch R, Jahn D: PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004, 32: W375-W379. 10.1093/nar/gkh378.
Article
CAS
PubMed
PubMed Central
Google Scholar
ProtCompB - Prediction sub-cellular protein localization. [http://linux1.softberry.com/berry.phtml?topic=protcompan&group=programs&subgroup=proloc]
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010, 26: 1608-1615. 10.1093/bioinformatics/btq249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plewczynski D, Slabinski L, Tkacz A, Kajan L, Holm L, Ginalski K, Rychlewski L: The RPSP: web server for prediction of signal peptides. Polymer. 2007, 48: 5493-5496. 10.1016/j.polymer.2007.07.039.
Article
CAS
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: the European molecular biology open software suite. Trends Genet. 2000, 16: 276-277. 10.1016/S0168-9525(00)02024-2.
Article
CAS
PubMed
Google Scholar
Reczko M, Fiziev P, Staub E, Hatzigeorgiou A: Finding signal peptides in human protein sequences using recurrent neural networks. Algorithms in Bioinformatics. Edited by: Guigó R, Gusfield D. 2002, Berlin/Heidelberg: Springer, 60-67.
Chapter
Google Scholar
Shen HB, Chou KC: Signal-3L: a 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun. 2007, 363: 297-303. 10.1016/j.bbrc.2007.08.140.
Article
CAS
PubMed
Google Scholar
Chou KC, Shen HB: Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun. 2007, 357: 633-640. 10.1016/j.bbrc.2007.03.162.
Article
CAS
PubMed
Google Scholar
Nielsen H, Krogh A: Prediction of signal peptides and signal anchors by a hidden markov model. Proc Int Conf Intell Syst Mol Biol. 1998, 6: 122-130.
CAS
PubMed
Google Scholar
Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: signalP 3.0. J Mol Biol. 2004, 340: 783-795. 10.1016/j.jmb.2004.05.028.
Article
PubMed
CAS
Google Scholar
SIG-Pred: Signal Peptide Prediction. [http://bioinformatics.leeds.ac.uk/prot_analysis/Signal.html]
Gomi M, Sonoyama M, Mitaku S: High performance system for signal peptide prediction: SOSUIsignal. CBIJ. 2004, 4: 142-147. 10.1273/cbij.4.142.
Article
CAS
Google Scholar
The Arabidopsis Information Resource. (TAIR) [http://www.arabidopsis.org/]
Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH: SUBA: the Arabidopsis subcellular database. Nucleic Acids Res. 2007, 35: D213-D218. 10.1093/nar/gkl863.
Article
CAS
PubMed
Google Scholar
Nakabachi A, Shigenobu S, Sakazume N, Shiraki T, Hayashizaki Y, Carninci P, Ishikawa H, Kudo T, Fukatsu T: Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc Natl Acad Sci USA. 2005, 102: 5477-5482. 10.1073/pnas.0409034102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000, 407: 81-86. 10.1038/35024074.
Article
CAS
PubMed
Google Scholar
Charles H, Balmand S, Lamelas A, Cottret L, Perez-Brocal V, Burdin B, Latorre A, Febvay G, Colella S, Calevro F, Rahbe Y: A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organisations. PLoS One. 2011, 6: e29096-10.1371/journal.pone.0029096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones JD, Thompson TE: Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid concentration. Biochemistry. 1989, 28: 129-134. 10.1021/bi00427a019.
Article
CAS
PubMed
Google Scholar
Lev S: Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol. 2010, 11: 739-750. 10.1038/nrm2971.
Article
CAS
PubMed
Google Scholar
Tokuda H: Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem. 2009, 73: 465-473. 10.1271/bbb.80778.
Article
CAS
PubMed
Google Scholar
Tefsen B, Geurtsen J, Beckers F, Tommassen J, de Cock H: Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J Biol Chem. 2005, 280: 4504-4509.
Article
CAS
PubMed
Google Scholar
Chang G, Roth CB: Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science. 2001, 293: 1793-1800. 10.1126/science.293.5536.1793.
Article
CAS
PubMed
Google Scholar
Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR: Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem. 1998, 273: 12466-12475. 10.1074/jbc.273.20.12466.
Article
CAS
PubMed
Google Scholar
Doerrler WT, Gibbons HS, Raetz CR: MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem. 2004, 279: 45102-45109. 10.1074/jbc.M408106200.
Article
CAS
PubMed
Google Scholar
Eckford PD, Sharom FJ: The reconstituted Escherichia coli MsbA protein displays lipid flippase activity. Biochem J. 2010, 429: 195-203. 10.1042/BJ20100144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kol MA, van Dalen A, de Kroon AI, de Kruijff B: Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J Biol Chem. 2003, 278: 24586-24593. 10.1074/jbc.M301875200.
Article
CAS
PubMed
Google Scholar
Kol MA, van Laak AN, Rijkers DT, Killian JA, de Kroon AI, de Kruijff B: Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Biochemistry. 2003, 42: 231-237. 10.1021/bi0268403.
Article
CAS
PubMed
Google Scholar
Malinverni JC, Silhavy TJ: An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proc Natl Acad Sci USA. 2009, 106: 8009-8014. 10.1073/pnas.0903229106.
Article
CAS
PubMed
PubMed Central
Google Scholar