Boyer PD: The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997, 66: 717-749. 10.1146/annurev.biochem.66.1.717.
PubMed
CAS
Google Scholar
Stock D, Leslie AG, Walker JE: Molecular architecture of the rotary motor in ATP synthase. Science. 1999, 286 (5445): 1700-1705. 10.1126/science.286.5445.1700.
PubMed
CAS
Google Scholar
Capaldi RA, Aggeler R: Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. Trends Biochem Sci. 2002, 27 (3): 154-160. 10.1016/S0968-0004(01)02051-5.
PubMed
CAS
Google Scholar
Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM: Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. Embo J. 2006, 25 (22): 5433-5442. 10.1038/sj.emboj.7601410.
PubMed
CAS
PubMed Central
Google Scholar
Muller V, Gruber G: ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci. 2003, 60 (3): 474-494. 10.1007/s000180300040.
PubMed
CAS
Google Scholar
Coskun U, Chaban YL, Lingl A, Muller V, Keegstra W, Boekema EJ, Gruber G: Structure and subunit arrangement of the A-type ATP synthase complex from the archaeon Methanococcus jannaschii visualized by electron microscopy. J Biol Chem. 2004, 279 (37): 38644-38648. 10.1074/jbc.M406196200.
PubMed
CAS
Google Scholar
Drory O, Nelson N: The emerging structure of vacuolar ATPases. Physiology (Bethesda). 2006, 21: 317-325.
CAS
Google Scholar
Lapierre P, Shial R, Gogarten JP: Distribution of F- and A/V-type ATPases in Thermus scotoductus and other closely related species. Syst Appl Microbiol. 2006, 29 (1): 15-23. 10.1016/j.syapm.2005.06.004.
PubMed
CAS
Google Scholar
Nakanishi-Matsui M, Futai M: Stochastic proton pumping ATPases: from single molecules to diverse physiological roles. IUBMB Life. 2006, 58 (5-6): 318-322. 10.1080/15216540600702255.
PubMed
CAS
Google Scholar
Perzov N, Padler-Karavani V, Nelson H, Nelson N: Features of V-ATPases that distinguish them from F-ATPases. FEBS Lett. 2001, 504 (3): 223-228. 10.1016/S0014-5793(01)02709-0.
PubMed
CAS
Google Scholar
Beyenbach KW, Wieczorek H: The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol. 2006, 209 (Pt 4): 577-589. 10.1242/jeb.02014.
PubMed
CAS
Google Scholar
Forgac M: Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007, 8 (11): 917-929. 10.1038/nrm2272.
PubMed
CAS
Google Scholar
Cherepanov DA, Mulkidjanian AY, Junge W: Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett. 1999, 449 (1): 1-6. 10.1016/S0014-5793(99)00386-5.
PubMed
CAS
Google Scholar
Saier MH: A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev. 2000, 64 (2): 354-411. 10.1128/MMBR.64.2.354-411.2000.
PubMed
CAS
PubMed Central
Google Scholar
Noji H, Yasuda R, Yoshida M, Kinosita K: Direct observation of the rotation of F1-ATPase. Nature. 1997, 386 (6622): 299-302. 10.1038/386299a0.
PubMed
CAS
Google Scholar
Panke O, Gumbiowski K, Junge W, Engelbrecht S: F-ATPase: specific observation of the rotating c subunit oligomer of EF(o)EF(1). FEBS Lett. 2000, 472 (1): 34-38. 10.1016/S0014-5793(00)01436-8.
PubMed
CAS
Google Scholar
Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K: Mechanically driven ATP synthesis by F1-ATPase. Nature. 2004, 427 (6973): 465-468. 10.1038/nature02212.
PubMed
CAS
Google Scholar
Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE: The rotary mechanism of ATP synthase. Curr Opin Struct Biol. 2000, 10 (6): 672-679. 10.1016/S0959-440X(00)00147-0.
PubMed
CAS
Google Scholar
Deckers-Hebestreit G, Greie J, Stalz W, Altendorf K: The ATP synthase of Escherichia coli: structure and function of F(0) subunits. Biochim Biophys Acta. 2000, 1458 (2-3): 364-373. 10.1016/S0005-2728(00)00087-6.
PubMed
CAS
Google Scholar
Angevine CM, Herold KA, Fillingame RH: Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane. Proc Natl Acad Sci U S A. 2003, 100 (23): 13179-13183. 10.1073/pnas.2234364100.
PubMed
CAS
PubMed Central
Google Scholar
Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ: The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep. 2005, 6 (11): 1040-1044. 10.1038/sj.embor.7400517.
PubMed
CAS
PubMed Central
Google Scholar
Gibbons C, Montgomery MG, Leslie AG, Walker JE: The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution. Nat Struct Biol. 2000, 7 (11): 1055-1061. 10.1038/80981.
PubMed
CAS
Google Scholar
Weber J: ATP synthase--the structure of the stator stalk. Trends Biochem Sci. 2007, 32 (2): 53-56. 10.1016/j.tibs.2006.12.006.
PubMed
CAS
PubMed Central
Google Scholar
Junge W, Lill H, Engelbrecht S: ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997, 22 (11): 420-423. 10.1016/S0968-0004(97)01129-8.
PubMed
CAS
Google Scholar
Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, Makyio H, Hankamer B, Barber J, Yoshida M, Yokoyama K, Iwata S: Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc Natl Acad Sci U S A. 2004, 101 (1): 59-64. 10.1073/pnas.0305165101.
PubMed
CAS
PubMed Central
Google Scholar
Thaker YR, Roessle M, Gruber G: The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. J Bioenerg Biomembr. 2007, 39 (4): 275-289. 10.1007/s10863-007-9089-7.
PubMed
CAS
Google Scholar
Cramer WA, Knaff DB: Energy Transduction in Biological Membranes: A Textbook of Bioenergetics. 1990, Springer-Verlag
Google Scholar
Skulachev VP: Membrane Bioenergetics. 1988, Berlin, Springer-Verlag
Google Scholar
Dimroth P: Primary sodium ion translocating enzymes. Biochim Biophys Acta. 1997, 1318 (1-2): 11-51. 10.1016/S0005-2728(96)00127-2.
PubMed
CAS
Google Scholar
Hase CC, Fedorova ND, Galperin MY, Dibrov PA: Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev. 2001, 65 (3): 353-70, table of contents. 10.1128/MMBR.65.3.353-370.2001.
PubMed
CAS
PubMed Central
Google Scholar
Deamer DW: The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev. 1997, 61 (2): 239-261.
PubMed
CAS
PubMed Central
Google Scholar
Konings WN: Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek. 2006, 90 (4): 325-342. 10.1007/s10482-006-9089-3.
PubMed
CAS
Google Scholar
Konings WN, Albers SV, Koning S, Driessen AJ: The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek. 2002, 81 (1-4): 61-72. 10.1023/A:1020573408652.
PubMed
CAS
Google Scholar
von Ballmoos C, Dimroth P: Two distinct proton binding sites in the ATP synthase family. Biochemistry. 2007, 46 (42): 11800-11809. 10.1021/bi701083v.
PubMed
CAS
Google Scholar
Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, et al: Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989, 86 (17): 6661-6665. 10.1073/pnas.86.17.6661.
PubMed
CAS
PubMed Central
Google Scholar
Pallen MJ, Bailey CM, Beatson SA: Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Sci. 2006, 15 (4): 935-941. 10.1110/ps.051958806.
PubMed
CAS
PubMed Central
Google Scholar
Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV: Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol. 2007, 5 (11): 892-899. 10.1038/nrmicro1767.
PubMed
CAS
Google Scholar
Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE: Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science. 2005, 308 (5722): 654-659. 10.1126/science.1110064.
PubMed
CAS
Google Scholar
Gogarten JP, Starke T, Kibak H, Fishman J, Taiz L: Evolution and isoforms of V-ATPase subunits. J Exp Biol. 1992, 172: 137-147.
PubMed
CAS
Google Scholar
Muller V, Lemker T, Lingl A, Weidner C, Coskun U, Gruber G: Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol. 2005, 10 (2-4): 167-180. 10.1159/000091563.
PubMed
CAS
Google Scholar
Muller V, Lingl A, Lewalter K, Fritz M: ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. J Bioenerg Biomembr. 2005, 37 (6): 455-460. 10.1007/s10863-005-9491-y.
PubMed
Google Scholar
Hilario E, Gogarten JP: Horizontal transfer of ATPase genes--the tree of life becomes a net of life. Biosystems. 1993, 31 (2-3): 111-119. 10.1016/0303-2647(93)90038-E.
PubMed
CAS
Google Scholar
Sumi M, Yohda M, Koga Y, Yoshida M: F0F1-ATPase genes from an archaebacterium, Methanosarcina barkeri. Biochem Biophys Res Commun. 1997, 241 (2): 427-433. 10.1006/bbrc.1997.7809.
PubMed
CAS
Google Scholar
Walker JE, Dickson VK: The peripheral stalk of the mitochondrial ATP synthase. Biochim Biophys Acta. 2006, 1757 (5-6): 286-296. 10.1016/j.bbabio.2006.01.001.
PubMed
CAS
Google Scholar
Hilario E, Gogarten JP: The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J Mol Evol. 1998, 46 (6): 703-715. 10.1007/PL00006351.
PubMed
CAS
Google Scholar
Zhang Y, Fillingame RH: Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c. J Biol Chem. 1995, 270 (1): 87-93. 10.1074/jbc.270.1.87.
PubMed
CAS
Google Scholar
Meier T, Polzer P, Diederichs K, Welte W, Dimroth P: Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science. 2005, 308 (5722): 659-662. 10.1126/science.1111199.
PubMed
CAS
Google Scholar
Dzioba J, Hase CC, Gosink K, Galperin MY, Dibrov P: Experimental verification of a sequence-based prediction: F(1)F(0)-type ATPase of Vibrio cholerae transports protons, not Na(+) ions. J Bacteriol. 2003, 185 (2): 674-678. 10.1128/JB.185.2.674-678.2003.
PubMed
CAS
PubMed Central
Google Scholar
Stewart CB, Schilling JW, Wilson AC: Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature. 1987, 330 (6146): 401-404. 10.1038/330401a0.
PubMed
CAS
Google Scholar
Lolkema JS, Boekema EJ: The A-type ATP synthase subunit K of Methanopyrus kandleri is deduced from its sequence to form a monomeric rotor comprising 13 hairpin domains. FEBS Lett. 2003, 543 (1-3): 47-50. 10.1016/S0014-5793(03)00398-3.
PubMed
CAS
Google Scholar
Dibrov PA: The role of sodium ion transport in Escherichia coli energetics. Biochim Biophys Acta. 1991, 1056 (3): 209-224. 10.1016/S0005-2728(05)80052-0.
PubMed
CAS
Google Scholar
Berry S: The chemical basis of membrane bioenergetics. J Mol Evol. 2002, 54 (5): 595-613. 10.1007/s00239-001-0056-3.
PubMed
CAS
Google Scholar
Junge W, Haumann M, Ahlbrink R, Mulkidjanian A, Clausen J: Electrostatics and proton transfer in photosynthetic water oxidation. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 2002, 357 (1426): 1407-1417. 10.1098/rstb.2002.1137.
CAS
Google Scholar
Brzezinski P: Redox-driven membrane-bound proton pumps. Trends Biochem Sci. 2004, 29 (7): 380-387. 10.1016/j.tibs.2004.05.008.
PubMed
CAS
Google Scholar
Mulkidjanian AY: Proton translocation by the cytochrome bc(1) complexes of phototrophic bacteria: introducing the activated Q-cycle. Photochemical & Photobiological Sciences. 2007, 6 (1): 19-34. 10.1039/b517522d.
CAS
Google Scholar
Meier T, Dimroth P: Intersubunit bridging by Na+ ions as a rationale for the unusual stability of the c-rings of Na+-translocating F1F0 ATP synthases. EMBO Rep. 2002, 3 (11): 1094-1098. 10.1093/embo-reports/kvf216.
PubMed
CAS
PubMed Central
Google Scholar
Pinti DL: The origin and the evolution of the oceans. Lectures in Astrobiology. Edited by: Gargaud M, Barbier B, Martin H, Reisse J. 2005, Berlin , Springer-Verlag
Google Scholar
Martin H, Claeys P, Gargaud M, Pinti DL, Selsis F: Environmental context. Earth Moon and Planets. 2006, 98 (1-4): 205-245. 10.1007/s11038-006-9090-x.
CAS
Google Scholar
DeRonde CEJ, Channer DMD, Faure K, Bray CJ, Spooner ETC: Fluid chemistry of Archaean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater. Geochimica Cosmochimica Acta. 1997, 61 (19): 4025-4041. 10.1016/S0016-7037(97)00205-6.
CAS
Google Scholar
Foriel J, Philipott P, Rey P, Somogyi A, Banks D, Menez B: Biological control fo Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia. Earth and Planetary Science Letters. 2004, 228: 451-463. 10.1016/j.epsl.2004.09.034.
CAS
Google Scholar
Gutzmer J, Banks DA, Luders V, Hoefs J, Beukes NJ, Von Bezing KL: Ancietn sub-seafloor alteration of basalitic andesites of the Ongeluk Formation, South Africa: implications for the chemistry of the Paleoproterozoic seawater. Chemical Geology. 2004, 201 (1-2): 37-53. 10.1016/S0009-2541(03)00225-0.
Google Scholar
Malinen AM, Belogurov GA, Baykov AA, Lahti R: Na(+)-pyrophosphatase: a novel primary sodium pump. Biochemistry. 2007, 46 (30): 8872-8878. 10.1021/bi700564b.
PubMed
CAS
Google Scholar
Dimroth P, von Ballmoos C: ATP Synthesis by Decarboxylation Phosphorylation. Results Probl Cell Differ. 2007
Google Scholar
Nagle JF: Theory of passive proton conductance in lipid bilayers. J Bioenerg Biomembr. 1987, 19 (5): 413-426.
PubMed
CAS
Google Scholar
Deamer DW: Proton permeation of lipid bilayers. J Bioenerg Biomembr. 1987, 19 (5): 457-479.
PubMed
CAS
Google Scholar
Haines TH: Do sterols reduce proton and sodium leaks through lipid bilayers?. Prog Lipid Res. 2001, 40 (4): 299-324. 10.1016/S0163-7827(01)00009-1.
PubMed
CAS
Google Scholar
Tepper HL, Voth GA: Mechanisms of passive ion permeation through lipid bilayers: Insights from simulations. Journal of Physical Chemistry B. 2006, 110 (42): 21327-21337. 10.1021/jp064192h.
CAS
Google Scholar
Mulkidjanian AY: Proton in the well and through the desolvation barrier. Biochim Biophys Acta. 2006, 1757 (5-6): 415-427. 10.1016/j.bbabio.2006.04.023.
PubMed
CAS
Google Scholar
Blume A, Dreher R, Poralla K: The influence of branched-chain and omega-alicyclic fatty acids on the transition temperature of bacillus subtilis lipids. Biochim Biophys Acta. 1978, 512 (3): 489-494. 10.1016/0005-2736(78)90159-1.
PubMed
CAS
Google Scholar
De Rosa M, Gambacorta A: The lipids of archaebacteria. Prog Lipid Res. 1988, 27 (3): 153-175. 10.1016/0163-7827(88)90011-2.
PubMed
CAS
Google Scholar
Hauss T, Dante S, Dencher NA, Haines TH: Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta. 2002, 1556 (2-3): 149-154. 10.1016/S0005-2728(02)00346-8.
PubMed
CAS
Google Scholar
Hauss T, Dante S, Haines TH, Dencher NA: Localization of coenzyme Q10 in the center of a deuterated lipid membrane by neutron diffraction. Biochim Biophys Acta. 2005, 1710 (1): 57-62. 10.1016/j.bbabio.2005.08.007.
PubMed
CAS
Google Scholar
Woese CR: Bacterial evolution. Microbiol Rev. 1987, 51 (2): 221-271.
PubMed
CAS
PubMed Central
Google Scholar
Gottschalk G, Thauer RK: The Na(+)-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta. 2001, 1505 (1): 28-36. 10.1016/S0005-2728(00)00274-7.
PubMed
CAS
Google Scholar
Kibak H, Taiz L, Starke T, Bernasconi P, Gogarten JP: Evolution of structure and function of V-ATPases. J Bioenerg Biomembr. 1992, 24 (4): 415-424. 10.1007/BF00762534.
PubMed
CAS
Google Scholar
Pereto J, Lopez-Garcia P, Moreira D: Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci. 2004, 29 (9): 469-477. 10.1016/j.tibs.2004.07.002.
PubMed
CAS
Google Scholar
Rutherford AW, Faller P: Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci. 2003, 358 (1429): 245-253. 10.1098/rstb.2002.1186.
PubMed
CAS
PubMed Central
Google Scholar
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S: Architecture of the photosynthetic oxygen-evolving center. Science. 2004, 303 (5665): 1831-1838. 10.1126/science.1093087.
PubMed
CAS
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5): 1792-1797. 10.1093/nar/gkh340.
PubMed
CAS
PubMed Central
Google Scholar
Humphrey W, Dalke A, Schulten K: VMD: Visual molecular dynamics. Journal of Molecular Graphics. 1996, 14 (1): 33-38. 10.1016/0263-7855(96)00018-5.
PubMed
CAS
Google Scholar
Adachi J, Hasegawa M: MOLPHY: Programs for Molecular Phylogenetics. 1992, Tokyo, Institute of Statistical Mathematics
Google Scholar
Hasegawa M, Kishino H, Saitou N: On the maximum likelihood method in molecular phylogenetics. J Mol Evol. 1991, 32 (5): 443-445. 10.1007/BF02101285.
PubMed
CAS
Google Scholar
Jobb G, von Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol. 2004, 4: 18-10.1186/1471-2148-4-18.
PubMed
PubMed Central
Google Scholar
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001, 18 (5): 691-699.
PubMed
CAS
Google Scholar
Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002, 51 (3): 492-508. 10.1080/10635150290069913.
PubMed
Google Scholar
Gogarten JP, Taiz L: Evolution of proton pumping ATPases: Rooting the tree of life. Photosynthesis Research. 1992, 33: 137-146. 10.1007/BF00039176.
PubMed
CAS
Google Scholar
Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV: Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct. 2007, 2: 33-10.1186/1745-6150-2-33.
PubMed
PubMed Central
Google Scholar
Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P: Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales?. Genome Biol. 2005, 6 (5): R42-10.1186/gb-2005-6-5-r42.
PubMed
PubMed Central
Google Scholar
Lapierre P: The impact of horizontal gene transfers on prokaryotic genome evolution. PhD Thesis. 2007, Storrs, CN, University of Connecticut
Google Scholar
Kuan G, Dassa E, Saurin W, Hofnung M, Saier MH: Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol. 1995, 146 (4): 271-278. 10.1016/0923-2508(96)81050-3.
PubMed
CAS
Google Scholar
Zhaxybayeva O, Gogarten JP: Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet. 2004, 20 (4): 182-187. 10.1016/j.tig.2004.02.004.
PubMed
CAS
Google Scholar
Darwin C: Charles Darwin's notebooks, 1836-1844. 1987, Ithaca, NY , Cornell University Press
Google Scholar
Maderspacher F: The captivating coral--the origins of early evolutionary imagery. Curr Biol. 2006, 16 (13): R476-8. 10.1016/j.cub.2006.06.019.
PubMed
CAS
Google Scholar
Gogarten JP, Fournier G, Zhaxybayeva O: Gene Transfer and the Reconstruction of Life’s Early History from Genomic Data. Space Science Reviews. 2008
Google Scholar
Toei M, Gerle C, Nakano M, Tani K, Gyobu N, Tamakoshi M, Sone N, Yoshida M, Fujiyoshi Y, Mitsuoka K, Yokoyama K: Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proc Natl Acad Sci U S A. 2007, 104 (51): 20256-20261. 10.1073/pnas.0706914105.
PubMed
CAS
PubMed Central
Google Scholar
Yokoyama K, Muneyuki E, Amano T, Mizutani S, Yoshida M, Ishida M, Ohkuma S: V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J Biol Chem. 1998, 273 (32): 20504-20510. 10.1074/jbc.273.32.20504.
PubMed
CAS
Google Scholar
Tsunoda SP, Rodgers AJ, Aggeler R, Wilce MC, Yoshida M, Capaldi RA: Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Proc Natl Acad Sci U S A. 2001, 98 (12): 6560-6564. 10.1073/pnas.111128098.
PubMed
CAS
PubMed Central
Google Scholar
Bulygin VV, Duncan TM, Cross RL: Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation. J Biol Chem. 2004, 279 (34): 35616-35621. 10.1074/jbc.M405012200.
PubMed
CAS
Google Scholar
Yokoyama K, Oshima T, Yoshida M: Thermus thermophilus membrane-associated ATPase. Indication of a eubacterial V-type ATPase. J Biol Chem. 1990, 265 (35): 21946-21950.
PubMed
CAS
Google Scholar
Takase K, Yamato I, Kakinuma Y: Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell. J Biol Chem. 1993, 268 (16): 11610-11616.
PubMed
CAS
Google Scholar
Cross RL, Taiz L: Gene duplication as a means for altering H+/ATP ratios during the evolution of FoF1 ATPases and synthases. FEBS Lett. 1990, 259 (2): 227-229. 10.1016/0014-5793(90)80014-A.
PubMed
CAS
Google Scholar
Hirata T, Nakamura N, Omote H, Wada Y, Futai M: Regulation and reversibility of vacuolar H(+)-ATPase. J Biol Chem. 2000, 275 (1): 386-389. 10.1074/jbc.275.1.386.
PubMed
CAS
Google Scholar
Gogarten JP, Rausch T, Bernasconi P, Kibak H, Taiz L: Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria. Z Naturforsch [C]. 1989, 44 (7-8): 641-650.
CAS
Google Scholar
Vinogradov AD: Steady-state and pre-steady-state kinetics of the mitochondrial F(1)F(o) ATPase: is ATP synthase a reversible molecular machine?. J Exp Biol. 2000, 203 (Pt 1): 41-49.
PubMed
CAS
Google Scholar
WebLogo. [http://weblogo.berkeley.edu/]
Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res. 2004, 14 (6): 1188-1190. 10.1101/gr.849004.
PubMed
CAS
PubMed Central
Google Scholar
Boyer PD: Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation?. Trends Biochem Sci. 1988, 13 (1): 5-7. 10.1016/0968-0004(88)90005-9.
PubMed
CAS
Google Scholar
Buhl M, Ludwig R, Schurhammer R, Wipff G: Hydronium ion complex of 18-crown-6: Theory confirms three "normal" linear hydrogen bonds. Journal of Physical Chemistry A. 2004, 108 (51): 11463-11468. 10.1021/jp045879+.
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
PubMed
CAS
PubMed Central
Google Scholar