Deamer D, Weber AL. Bioenergetics and life’s origins. Cold Spring Harb Perspect Biol. 2010;2(2):a004929.
Article
PubMed
PubMed Central
CAS
Google Scholar
Runnels CM, Lanier KA, Williams JK, Bowman JC, Petrov AS, Hud NV, et al. Folding, assembly, and persistence: the essential nature and origins of biopolymers. J Mol Evol. 2018;86(9):598–610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cairns-Smith AG. Takeover mechanisms and early biochemical evolution. Biosystems. 1977;9(2–3):105–9.
Article
CAS
PubMed
Google Scholar
Cairns-Smith AG. Chemistry and the missing era of evolution. Chemistry. 2008;14(13):3830–9.
Article
CAS
PubMed
Google Scholar
Ferris JP, Hill AR Jr, Liu R, Orgel LE. Synthesis of long prebiotic oligomers on mineral surfaces. Nature. 1996;381(6577):59–61.
Article
CAS
PubMed
Google Scholar
Horowitz ED, Engelhart AE, Chen MC, Quarles KA, Smith MW, Lynn DG, et al. Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world. Proc Natl Acad Sci USA. 2010;107(12):5288–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SC, O’Flaherty DK, Zhou L, Lelyveld VS, Szostak JW. Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. Proc Natl Acad Sci USA. 2018;115(52):13318–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf YI, Koonin EV. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct. 2007;2:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hartman H. Speculations on the evolution of the genetic code. Orig Life. 1975;6(3):423–7.
Article
CAS
PubMed
Google Scholar
Jukes TH. On the possible origin and evolution of the genetic code. Orig Life. 1974;5(3):331–50.
Article
CAS
PubMed
Google Scholar
Kocherlakota RR, Acland ND. Ambiguity and the evolution of the genetic code. Orig Life. 1982;12(1):71–80.
Article
CAS
PubMed
Google Scholar
Crick FH. The origin of the genetic code. J Mol Biol. 1968;38(3):367–79.
Article
CAS
PubMed
Google Scholar
Di Giulio M. An extension of the coevolution theory of the origin of the genetic code. Biol Direct. 2008;3:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wong JT. A co-evolution theory of the genetic code. Proc Natl Acad Sci USA. 1975;72(5):1909–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong JT. Coevolution theory of the genetic code at age thirty. BioEssays. 2005;27(4):416–25.
Article
CAS
PubMed
Google Scholar
Rodin AS, Szathmary E, Rodin SN. On origin of genetic code and tRNA before translation. Biol Direct. 2011;6:14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kankia B. Quadruplex world. Orig Life Evol Biosph. 2021;51(3):273–86.
Article
CAS
PubMed
Google Scholar
Orgel LE. Some consequences of the RNA world hypothesis. Orig Life Evol Biosph. 2003;33(2):211–8.
Article
CAS
PubMed
Google Scholar
Mergny JL, Sen D. DNA quadruple helices in nanotechnology. Chem Rev. 2019;119(10):6290–325.
Article
CAS
PubMed
Google Scholar
Bowman JC, Hud NV, Williams LD. The ribosome challenge to the RNA world. J Mol Evol. 2015;80(3–4):143–61.
Article
CAS
PubMed
Google Scholar
Koonin EV. The logic of chance: the nature and origin of biological evolution. Upper Saddle River, N.J.: Pearson Education; 2012. xii, 516 pages p.
Jing N, Hogan ME. Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J Biol Chem. 1998;273(52):34992–9.
Article
CAS
PubMed
Google Scholar
Kankia B. Tetrahelical monomolecular architecture of DNA: a new building block for nanotechnology. J Phys Chem B. 2014;118(23):6134–40.
Article
CAS
PubMed
Google Scholar
Salditt A, Keil LMR, Horning DP, Mast CB, Joyce GF, Braun D. Thermal habitat for RNA amplification and accumulation. Phys Rev Lett. 2020;125(4): 048104.
Article
CAS
PubMed
Google Scholar
Marsh TC, Henderson E. G-wires: self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures. Biochemistry. 1994;33(35):10718–24.
Article
CAS
PubMed
Google Scholar
Marsh TC, Vesenka J, Henderson E. A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res. 1995;23(4):696–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Protozanova E, Macgregor RB Jr. Frayed wires: a thermally stable form of DNA with two distinct structural domains. Biochemistry. 1996;35(51):16638–45.
Article
CAS
PubMed
Google Scholar
Kankia B. Monomolecular tetrahelix of polyguanine with a strictly defined folding pattern. Sci Rep. 2018;8(1):10115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Patel DJ. Solution structure of the Tetrahymena telomeric repeat d(T2G4)4 G-tetraplex. Structure. 1994;2(12):1141–56.
Article
CAS
PubMed
Google Scholar
Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014;507(7491):195–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Do NQ, Phan AT. Monomer-dimer equilibrium for the 5’-5’ stacking of propeller-type parallel-stranded G-quadruplexes: NMR structural study. Chemistry. 2012;18(46):14752–9.
Article
CAS
PubMed
Google Scholar
Kankia B. Quadruplex-and-Mg(2+) connection (QMC) of DNA. Sci Rep. 2015;5:12996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Giulio M. On the origin of the transfer RNA molecule. J Theor Biol. 1992;159(2):199–214.
Article
PubMed
Google Scholar
Di Giulio M. A comparison among the models proposed to explain the origin of the tRNA molecule: a synthesis. J Mol Evol. 2009;69(1):1–9.
Article
CAS
PubMed
Google Scholar
Kankia B. Stability factors of the parallel quadruplexes: DNA versus RNA. J Phys Chem B. 2019;123(5):1060–7.
Article
CAS
PubMed
Google Scholar
Rachwal PA, Brown T, Fox KR. Sequence effects of single base loops in intramolecular quadruplex DNA. FEBS Lett. 2007;581(8):1657–60.
Article
CAS
PubMed
Google Scholar
Johnson J, Okyere R, Joseph A, Musier-Forsyth K, Kankia B. Quadruplex formation as a molecular switch to turn on intrinsically fluorescent nucleotide analogs. Nucleic Acids Res. 2013;41(1):220–8.
Article
CAS
PubMed
Google Scholar
Hazel P, Huppert J, Balasubramanian S, Neidle S. Loop-length-dependent folding of G-quadruplexes. J Am Chem Soc. 2004;126(50):16405–15.
Article
CAS
PubMed
Google Scholar
Kumar N, Sahoo B, Varun KA, Maiti S, Maiti S. Effect of loop length variation on quadruplex-Watson Crick duplex competition. Nucleic Acids Res. 2008;36(13):4433–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rachwal PA, Brown T, Fox KR. Effect of G-tract length on the topology and stability of intramolecular DNA quadruplexes. Biochemistry. 2007;46(11):3036–44.
Article
CAS
PubMed
Google Scholar
Yu H, Gu X, Nakano S, Miyoshi D, Sugimoto N. Beads-on-a-string structure of long telomeric DNAs under molecular crowding conditions. J Am Chem Soc. 2012;134(49):20060–9.
Article
CAS
PubMed
Google Scholar
Kankia B. Quadruplex-templated and catalyzed ligation of nucleic acids. ChemBioChem. 2021;22(7):1261–7.
Article
CAS
PubMed
Google Scholar
Chen J, Liu X, Suo Z, Gao C, Xing F, Feng L, et al. Right-/left-handed helical G-quartet nanostructures with full-color and energy transfer circularly polarized luminescence. Chem Commun (Camb). 2020;56(56):7706–9.
Article
CAS
Google Scholar
Wu G, Kwan IC. Helical structure of disodium 5’-guanosine monophosphate self-assembly in neutral solution. J Am Chem Soc. 2009;131(9):3180–2.
Article
CAS
PubMed
Google Scholar
Zimmerman SB. X-ray study by fiber diffraction methods of a self-aggregate of guanosine-5’-phosphate with the same helical parameters as poly(rG). J Mol Biol. 1976;106(3):663–72.
Article
CAS
PubMed
Google Scholar
Costanzo G, Pino S, Ciciriello F, Di Mauro E. Generation of long RNA chains in water. J Biol Chem. 2009;284(48):33206–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morasch M, Mast CB, Langer JK, Schilcher P, Braun D. Dry polymerization of 3’,5’-cyclic GMP to long strands of RNA. ChemBioChem. 2014;15(6):879–83.
Article
CAS
PubMed
Google Scholar
Pino S, Ciciriello F, Costanzo G, Di Mauro E. Nonenzymatic RNA ligation in water. J Biol Chem. 2008;283(52):36494–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kankia BI. Self-dissociative primers for nucleic acid amplification and detection based on DNA quadruplexes with intrinsic fluorescence. Anal Biochem. 2011;409(1):59–65.
Article
CAS
PubMed
Google Scholar
de Duve C. Transfer RNAs: the second genetic code. Nature. 1988;333(6169):117–8.
Article
PubMed
Google Scholar
Rodin S, Rodin A, Ohno S. The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA. 1996;93(10):4537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schimmel P, Giege R, Moras D, Yokoyama S. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA. 1993;90(19):8763–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sengar A, Heddi B, Phan AT. Formation of G-quadruplexes in poly-G sequences: structure of a propeller-type parallel-stranded G-quadruplex formed by a G(1)(5) stretch. Biochemistry. 2014;53(49):7718–23.
Article
CAS
PubMed
Google Scholar
Carter CW, What RNA. World? Why a Peptide/RNA partnership merits renewed experimental attention. Life (Basel). 2015;5(1):294–320.
CAS
Google Scholar