Jin S, et al. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci USA. 2000;97:7301–6. https://doi.org/10.1073/pnas.97.13.7301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schumacher B, Hofmann K, Boulton S, Gartner A. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol. 2001;11:1722–7. https://doi.org/10.1016/s0960-9822(01)00534-6.
Article
CAS
PubMed
Google Scholar
Panchin AY, Aleoshin VV, Panchin YV. From tumors to species: a SCANDAL hypothesis. Biol Direct. 2019;14:3. https://doi.org/10.1186/s13062-019-0233-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gebel J, et al. p63 uses a switch-like mechanism to set the threshold for induction of apoptosis. Nat Chem Biol. 2020;16:1078–86. https://doi.org/10.1038/s41589-020-0600-3.
Article
CAS
PubMed
Google Scholar
Tuppi M, et al. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat Struct Mol Biol. 2018;25:261–9. https://doi.org/10.1038/s41594-018-0035-7.
Article
CAS
PubMed
Google Scholar
Bellomaria A, Barbato G, Melino G, Paci M, Melino S. Recognition mechanism of p63 by the E3 ligase Itch: novel strategy in the study and inhibition of this interaction. Cell Cycle. 2012;11:3638–48. https://doi.org/10.4161/cc.21918.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lena AM, et al. Skn-1a/Oct-11 and DeltaNp63alpha exert antagonizing effects on human keratin expression. Biochem Biophys Res Commun. 2010;401:568–73. https://doi.org/10.1016/j.bbrc.2010.09.102.
Article
CAS
PubMed
Google Scholar
Lena AM, et al. The p63 C-terminus is essential for murine oocyte integrity. Nat Commun. 2021;12:383. https://doi.org/10.1038/s41467-020-20669-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vikhreva P, Melino G, Amelio I. p73 Alternative Splicing: exploring a biological role for the C-terminal isoforms. J Mol Biol. 2018;430:1829–38. https://doi.org/10.1016/j.jmb.2018.04.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellomaria A, Barbato G, Melino G, Paci M, Melino S. Recognition of p63 by the E3 ligase ITCH: effect of an ectodermal dysplasia mutant. Cell Cycle. 2010;9:3730–9.
Article
CAS
PubMed
Google Scholar
Li T, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149:1269–83. https://doi.org/10.1016/j.cell.2012.04.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, et al. Olig2 SUMOylation protects against genotoxic damage response by antagonizing p53 gene targeting. Cell Death Differ. 2020;27:3146–61. https://doi.org/10.1038/s41418-020-0569-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radine C, et al. The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53–p21-axis. Cell Death Differ. 2020;27:1274–85. https://doi.org/10.1038/s41418-019-0414-6.
Article
CAS
PubMed
Google Scholar
Kim SY, et al. Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ. 2019;26:502–15. https://doi.org/10.1038/s41418-018-0151-2.
Article
CAS
PubMed
Google Scholar
Frank T, et al. Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ. 2019;26:2046–60. https://doi.org/10.1038/s41418-019-0298-5.
Article
PubMed
PubMed Central
Google Scholar
Valente LJ, et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 2013;3:1339–45. https://doi.org/10.1016/j.celrep.2013.04.012.
Article
CAS
PubMed
Google Scholar
Mello SS, Attardi LD. Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol. 2018;51:65–72. https://doi.org/10.1016/j.ceb.2017.11.005.
Article
CAS
PubMed
Google Scholar
Boutelle AM, Attardi LD. p53 and tumor suppression: it takes a network. Trends Cell Biol. 2021;31:298–310. https://doi.org/10.1016/j.tcb.2020.12.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valente LJ, et al. p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. J Cell Biol. 2020. https://doi.org/10.1083/jcb.201908212.
Article
PubMed
PubMed Central
Google Scholar
Pitolli C, et al. p53-mediated tumor suppression: DNA-damage response and alternative mechanisms. Cancers (Basel). 2019;11:198. https://doi.org/10.3390/cancers11121983.
Article
CAS
Google Scholar
Amelio I, et al. p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression. Proc Natl Acad Sci USA. 2018;115:E10869–78. https://doi.org/10.1073/pnas.1808314115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amelio I, Melino G. The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends Biochem Sci. 2015;40:425–34. https://doi.org/10.1016/j.tibs.2015.04.007.
Article
CAS
PubMed
Google Scholar
Shao J, et al. Derepression of LOXL4 inhibits liver cancer growth by reactivating compromised p53. Cell Death Differ. 2019;26:2237–52. https://doi.org/10.1038/s41418-019-0293-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang GA, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861–72. https://doi.org/10.1016/j.cell.2004.11.006.
Article
CAS
PubMed
Google Scholar
Zhang C, et al. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 2020. https://doi.org/10.1093/jmcb/mjaa040.
Article
PubMed
PubMed Central
Google Scholar
Pitolli C, et al. Do Mutations Turn p53 into an Oncogene? Int J Mol Sci. 2019;20:6241. https://doi.org/10.3390/ijms20246241.
Article
CAS
PubMed Central
Google Scholar
Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212. https://doi.org/10.1038/s41418-018-0246-9.
Article
PubMed
Google Scholar
Ham SW, et al. TP53 gain-of-function mutation promotes inflammation in glioblastoma. Cell Death Differ. 2019;26:409–25. https://doi.org/10.1038/s41418-018-0126-3.
Article
CAS
PubMed
Google Scholar
Amelio I, Melino G. Context is everything: extrinsic signalling and gain-of-function p53 mutants. Cell Death Discov. 2020;6:16. https://doi.org/10.1038/s41420-020-0251-x.
Article
PubMed
PubMed Central
Google Scholar
Celardo I, Melino G, Amelio I. Commensal microbes and p53 in cancer progression. Biol Direct. 2020;15:25. https://doi.org/10.1186/s13062-020-00281-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadosh E, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature. 2020;586:133–8. https://doi.org/10.1038/s41586-020-2541-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lennon JT, Locey KJ. More support for Earth’s massive microbiome. Biol Direct. 2020;15:5. https://doi.org/10.1186/s13062-020-00261-8.
Article
PubMed
PubMed Central
Google Scholar
Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang WS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31. https://doi.org/10.1016/j.cell.2013.12.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(.). Cell Death Differ. 2020;27:662–75. https://doi.org/10.1038/s41418-019-0380-z.
Article
CAS
PubMed
Google Scholar
Wang M, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019;26:2329–43. https://doi.org/10.1038/s41418-019-0304-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Li S, Li F, Lv C, Yang QK. High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma. Biol Direct. 2021;16:10. https://doi.org/10.1186/s13062-021-00294-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. https://doi.org/10.1038/nature14344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angelucci S, et al. Purification and characterization of glutathione transferases from the sea bass (Dicentrarchus labrax) liver. Arch Biochem Biophys. 2000;373:435–41. https://doi.org/10.1006/abbi.1999.1569.
Article
CAS
PubMed
Google Scholar
Mauretti A, et al. Design of a novel composite H2 S-releasing hydrogel for cardiac tissue repair. Macromol Biosci. 2016;16:847–58. https://doi.org/10.1002/mabi.201500430.
Article
CAS
PubMed
Google Scholar
Pallucca R, et al. Specificity of epsilon and non-epsilon isoforms of arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. PLOS ONE. 2014;9: e90764. https://doi.org/10.1371/journal.pone.0090764.
Article
PubMed
PubMed Central
Google Scholar
Chen D, et al. iPLA2beta-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun. 2021;12:3644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA. 2016;113:E6806–12. https://doi.org/10.1073/pnas.1607152113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu B, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 2019;21:579–91. https://doi.org/10.1038/s41556-019-0305-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velletri T, et al. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle. 2013;12:3564–73. https://doi.org/10.4161/cc.26771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amelio I, et al. p73 regulates serine biosynthesis in cancer. Oncogene. 2014;33:5039–46. https://doi.org/10.1038/onc.2013.456.
Article
CAS
PubMed
Google Scholar
Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39:191–8. https://doi.org/10.1016/j.tibs.2014.02.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aceto A, et al. Identification of an N-capping box that affects the alpha 6-helix propensity in glutathione S-transferase superfamily proteins: a role for an invariant aspartic residue. Biochem J. 1997;322(Pt 1):229–34. https://doi.org/10.1042/bj3220229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59:298–308. https://doi.org/10.1016/j.molcel.2015.06.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017;20:1692–704. https://doi.org/10.1016/j.celrep.2017.07.055.
Article
CAS
PubMed
Google Scholar
Li X, et al. Competitive ubiquitination activates the tumor suppressor p53. Cell Death Differ. 2020;27:1807–18. https://doi.org/10.1038/s41418-019-0463-x.
Article
CAS
PubMed
Google Scholar
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64:2627–33. https://doi.org/10.1158/0008-5472.can-03-0846.
Article
CAS
PubMed
Google Scholar
Lonetto G, et al. Mutant p53-dependent mitochondrial metabolic alterations in a mesenchymal stem cell-based model of progressive malignancy. Cell Death Differ. 2019;26:1566–81. https://doi.org/10.1038/s41418-018-0227-z.
Article
CAS
PubMed
Google Scholar
Amelio I, et al. TAp73 promotes anabolism. Oncotarget. 2014;5:12820–934. https://doi.org/10.18632/oncotarget.2667.
Article
PubMed
PubMed Central
Google Scholar
Bensaad K, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20. https://doi.org/10.1016/j.cell.2006.05.036.
Article
CAS
PubMed
Google Scholar
Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012;72:560–7. https://doi.org/10.1158/0008-5472.CAN-11-1215.
Article
CAS
PubMed
Google Scholar
Assaily W, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell. 2011;44:491–501. https://doi.org/10.1016/j.molcel.2011.08.038.
Article
CAS
PubMed
Google Scholar
Moon SH, et al. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell. 2019;176:564-580e.519. https://doi.org/10.1016/j.cell.2018.11.011.
Article
CAS
PubMed
Google Scholar
Janic A, et al. DNA repair processes are critical mediators of p53-dependent tumor suppression. Nat Med. 2018;24:947–53. https://doi.org/10.1038/s41591-018-0043-5.
Article
CAS
PubMed
Google Scholar
Bieging-Rolett KT, et al. Zmat3 Is a Key Splicing Regulator in the p53 Tumor Suppression Program. Mol Cell. 2020;80:452-469.e459. https://doi.org/10.1016/j.molcel.2020.10.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenzelmann Broz D, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 2013;27:1016–31. https://doi.org/10.1101/gad.212282.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Younger ST, Kenzelmann-Broz D, Jung H, Attardi LD, Rinn JL. Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage. Nucleic Acids Res. 2015;43:4447–62. https://doi.org/10.1093/nar/gkv284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Israeli D, et al. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 1997;16:4384–92. https://doi.org/10.1093/emboj/16.14.4384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hellborg F, Wiman KG. The p53-induced Wig-1 zinc finger protein is highly conserved from fish to man. Int J Oncol. 2004;24:1559–64.
CAS
PubMed
Google Scholar
Gallo M, et al. Identification of a conserved N-capping box important for the structural autonomy of the prion alpha 3-helix: the disease associated D202N mutation destabilizes the helical conformation. Int J Immunopathol Pharmacol. 2005;18:95–112. https://doi.org/10.1177/039463200501800111.
Article
CAS
PubMed
Google Scholar
Vilborg A, et al. The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element. Proc Natl Acad Sci USA. 2009;106:15756–61. https://doi.org/10.1073/pnas.0900862106.
Article
PubMed
PubMed Central
Google Scholar
Bersani C, Xu LD, Vilborg A, Lui WO, Wiman KG. Wig-1 regulates cell cycle arrest and cell death through the p53 targets FAS and 14–3-3sigma. Oncogene. 2014;33:4407–17. https://doi.org/10.1038/onc.2013.594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254–67. https://doi.org/10.1038/nrc3023.
Article
CAS
PubMed
Google Scholar
Salehi S, et al. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature. 2021. https://doi.org/10.1038/s41586-021-03648-3.
Article
PubMed
PubMed Central
Google Scholar
Consortium, I. T. P.-C. A. o. W. G. Pan-cancer analysis of whole genomes. Nature 2020; 578, 82–93, doi:https://doi.org/10.1038/s41586-020-1969-6
Khairi S, et al. Outcome of clinical genetic testing in patients with features suggestive for hereditary predisposition to PTH-mediated hypercalcemia. Horm Cancer. 2020;11:250–5. https://doi.org/10.1007/s12672-020-00394-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, et al. Computational identification and characterization of glioma candidate biomarkers through multi-omics integrative profiling. Biol Direct. 2020;15:10. https://doi.org/10.1186/s13062-020-00264-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, et al. Integration of molecular features with clinical information for predicting outcomes for neuroblastoma patients. Biol Direct. 2019;14:16. https://doi.org/10.1186/s13062-019-0244-y.
Article
PubMed
PubMed Central
Google Scholar
Han Y, et al. Integrative analysis based on survival associated co-expression gene modules for predicting Neuroblastoma patients’ survival time. Biol Direct. 2019;14:4. https://doi.org/10.1186/s13062-018-0229-2.
Article
PubMed
PubMed Central
Google Scholar
Lee PMY, et al. Heterogeneous associations between obesity and reproductive-related factors and specific breast cancer subtypes among Hong Kong Chinese women. Horm Cancer. 2020;11:191–9. https://doi.org/10.1007/s12672-020-00386-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ. 2021;28:95–107. https://doi.org/10.1038/s41418-020-00665-z.
Article
PubMed
Google Scholar
Funata M, Nio Y, Erion DM, Thompson WL, Takebe T. The promise of human organoids in the digestive system. Cell Death Differ. 2021;28:84–94. https://doi.org/10.1038/s41418-020-00661-3.
Article
PubMed
Google Scholar
Lamastra FR, et al. Polymer composite random lasers based on diatom frustules as scatterers. Rsc Adv. 2014;4:61809–16. https://doi.org/10.1039/c4ra12519c.
Article
CAS
Google Scholar
Sidhaye J, Knoblich JA. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ. 2021;28:52–67. https://doi.org/10.1038/s41418-020-0566-4.
Article
PubMed
Google Scholar
Amelio I, et al. Cancer predictive studies. Biol Direct. 2020;15:18. https://doi.org/10.1186/s13062-020-00274-3.
Article
PubMed
PubMed Central
Google Scholar
Oktay K, et al. A computational statistics approach to evaluate blood biomarkers for breast cancer risk stratification. Horm Cancer. 2020;11:17–33. https://doi.org/10.1007/s12672-019-00372-3.
Article
PubMed
Google Scholar
Mihaylov I, Kandula M, Krachunov M, Vassilev D. A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models. Biol Direct. 2019;14:22. https://doi.org/10.1186/s13062-019-0249-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Insabato L, et al. Elevated expression of the tyrosine phosphatase SHP-1 defines a subset of high-grade breast tumors. Oncology. 2009;77:378–84. https://doi.org/10.1159/000276765.
Article
CAS
PubMed
Google Scholar
Pinto MP, et al. Chilean registry for neuroendocrine tumors: a Latin American perspective. Horm Cancer. 2019;10:3–10. https://doi.org/10.1007/s12672-018-0354-5.
Article
CAS
PubMed
Google Scholar
Amelio I, et al. Liquid biopsies and cancer omics. Cell Death Discov. 2020;6:131. https://doi.org/10.1038/s41420-020-00373-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pekic S, et al. Familial cancer clustering in patients with prolactinoma. Horm Cancer. 2019;10:45–50. https://doi.org/10.1007/s12672-018-0348-3.
Article
CAS
PubMed
Google Scholar
Seidlitz T, Koo BK, Stange DE. Gastric organoids-an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death Differ. 2021;28:68–83. https://doi.org/10.1038/s41418-020-00662-2.
Article
PubMed
Google Scholar
Bova L, Billi F, Cimetta E. Mini-review: advances in 3D bioprinting of vascularized constructs. Biol Direct. 2020;15:22. https://doi.org/10.1186/s13062-020-00273-4.
Article
PubMed
PubMed Central
Google Scholar