Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87. doi:10.1146/annurev.neuro.28.061604.135718.
Article
CAS
PubMed
Google Scholar
Gasser T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med. 2009;11:e22.
Article
PubMed
Google Scholar
Thomas B, Beal MF. Parkinson’s disease. Human molecular genetics. 2007;16 Spec No. 2:R183-94. doi:10.1093/hmg/ddm159.
Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888. doi:10.1101/cshperspect.a008888.
Article
PubMed
PubMed Central
Google Scholar
Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006;7(3):207–19. doi:10.1038/nrn1868.
Article
CAS
PubMed
Google Scholar
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism. Nature. 1998;392(6676):605–8. doi:10.1038/33416.
Article
CAS
PubMed
Google Scholar
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60. doi:10.1126/science.1096284.
Article
CAS
PubMed
Google Scholar
Lin W, Kang UJ. Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem. 2008;106(1):464–74. doi:10.1111/j.1471-4159.2008.05398.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 2010;191(5):933–42. doi:10.1083/jcb.201008084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamano K, Youle RJ. PINK1 is degraded through the N-end rule pathway. Autophagy. 2013;9(11):1758–69. doi:10.4161/auto.24633.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298. doi:10.1371/journal.pbio.1000298.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J. 2014;460(1):127–39. doi:10.1042/BJ20140334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate Parkin. Nature. 2014;510(7503):162–6. doi:10.1038/nature13392.
CAS
PubMed
Google Scholar
Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209(1):111–28. doi:10.1083/jcb.201410050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496(7445):372–6. doi:10.1038/nature12043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010;29(5):969–80. doi: 10.1038/emboj.2009.405.
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–14. doi:10.1038/nature14893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell. 2015;60(1):7–20. doi:10.1016/j.molcel.2015.08.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31. doi:10.1038/ncb2012.
Article
CAS
PubMed
Google Scholar
Ziviani E, Tao RN, Whitworth AJ. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A. 2010;107(11):5018–23. doi:10.1073/pnas.0913485107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol. 2010;191(7):1367–80. doi:10.1083/jcb.201007013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286(22):19630–40. doi:10.1074/jbc.M110.209338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Y, Chiang WC, Sumpter Jr R, Mishra P, Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 2017;168(1–2):224–38. doi:10.1016/j.cell.2016.11.042. e10.
Article
CAS
PubMed
Google Scholar
Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C, Coons M, et al. USP30 and Parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol. 2015;17(2):160–9. doi:10.1038/ncb3097.
Article
CAS
PubMed
Google Scholar
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, et al. The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature. 2014;510(7505):370–5. doi:10.1038/nature13418.
CAS
PubMed
Google Scholar
Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet. 2014;23(19):5227–42. doi:10.1093/hmg/ddu244.
Article
CAS
PubMed
Google Scholar
Winklhofer KF. The Parkin protein as a therapeutic target in Parkinson’s disease. Expert Opin Ther Targets. 2007;11(12):1543–52. doi:10.1517/14728222.11.12.1543.
Article
CAS
PubMed
Google Scholar
Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, et al. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci Off J Soc Neurosci. 2007;27(8):1868–78. doi:10.1523/JNEUROSCI.5537-06.2007.
Article
CAS
Google Scholar
Muller-Rischart AK, Pilsl A, Beaudette P, Patra M, Hadian K, Funke M, et al. The E3 ligase Parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell. 2013;49(5):908–21. doi:10.1016/j.molcel.2013.01.036.
Article
PubMed
CAS
Google Scholar
Rawal N, Corti O, Sacchetti P, Ardilla-Osorio H, Sehat B, Brice A, et al. Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling. Biochem Biophys Res Commun. 2009;388(3):473–8. doi:10.1016/j.bbrc.2009.07.014.
Article
CAS
PubMed
Google Scholar
Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, Mcadams H, et al. Parkin, a gene implicated in autosomal recessive juvenile Parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–q27. Proc Natl Acad Sci U S A. 2003;100(10):5956–61. doi:10.1073/pnas.0931262100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T, et al. Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res. 2004;10(8):2720–4.
Article
CAS
PubMed
Google Scholar
Wang F, Denison S, Lai JP, Philips LA, Montoya D, Kock N, et al. Parkin gene alterations in hepatocellular carcinoma. Genes Chromosomes Cancer. 2004;40(2):85–96. doi:10.1002/gcc.20020.
Article
CAS
PubMed
Google Scholar
Moore DJ, West AB, Dikeman DA, Dawson VL, Dawson TM. Parkin mediates the degradation-independent ubiquitination of Hsp70. J Neurochem. 2008;105(5):1806–19. doi:10.1111/j.1471-4159.2008.05261.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hampe C, Ardila-Osorio H, Fournier M, Brice A, Corti O. Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum Mol Genet. 2006;15(13):2059–75. doi:10.1093/hmg/ddl131.
Article
CAS
PubMed
Google Scholar
Lim KL, Dawson VL, Dawson TM. Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson’s and other conformational diseases? Neurobiol Aging. 2006;27(4):524–9. doi:10.1016/j.neurobiolaging.2005.07.023.
Article
CAS
PubMed
Google Scholar
Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, et al. SEPT5_v2 is a Parkin-binding protein. Brain Res Mol Brain Res. 2003;117(2):179–89.
Article
CAS
PubMed
Google Scholar
Salmena L, Pandolfi PP. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat Rev Cancer. 2007;7(6):409–13. doi:10.1038/nrc2145.
Article
CAS
PubMed
Google Scholar
Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29. doi:10.1146/annurev-biochem-060310-170328.
Article
CAS
PubMed
Google Scholar
Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol. 2003;5(5):461–6. doi:10.1038/ncb983.
Article
CAS
PubMed
Google Scholar
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011;471(7340):591–6. doi:10.1038/nature09816.
Article
CAS
PubMed
Google Scholar
Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell. 2009;136(6):1098–109. doi:10.1016/j.cell.2009.03.007.
Article
CAS
PubMed
Google Scholar
Tenno T, Fujiwara K, Tochio H, Iwai K, Morita EH, Hayashi H, et al. Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells. 2004;9(10):865–75. doi:10.1111/j.1365-2443.2004.00780.x.
Article
CAS
PubMed
Google Scholar
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 2009;137(1):133–45. doi:10.1016/j.cell.2009.01.041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol. 2010;17(8):939–47. doi:10.1038/nsmb.1873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eddins MJ, Varadan R, Fushman D, Pickart CM, Wolberger C. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J Mol Biol. 2007;367(1):204–11. doi:10.1016/j.jmb.2006.12.065.
Article
CAS
PubMed
Google Scholar
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011;44(2):325–40. doi:10.1016/j.molcel.2011.08.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Tu D, Brunger AT, Ye Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature. 2007;446(7133):333–7. doi:10.1038/nature05542.
Article
CAS
PubMed
Google Scholar
Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell. 2010;39(3):477–84. doi:10.1016/j.molcel.2010.07.001.
Article
CAS
PubMed
Google Scholar
Piper RC, Dikic I, Lukacs GL. Ubiquitin-dependent sorting in endocytosis. Cold spring harbor perspectives in biology. 2014;6 (1). doi:10.1101/cshperspect.a016808.
Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315(5809):201–5. doi:10.1126/science.1127085.
Article
CAS
PubMed
Google Scholar
Freudenthal BD, Gakhar L, Ramaswamy S, Washington MT. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat Struct Mol Biol. 2010;17(4):479–84. doi:10.1038/nsmb.1776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bienko M, Green CM, Sabbioneda S, Crosetto N, Matic I, Hibbert RG, et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol Cell. 2010;37(3):396–407. doi:10.1016/j.molcel.2009.12.039.
Article
CAS
PubMed
Google Scholar
Bellare P, Small EC, Huang X, Wohlschlegel JA, Staley JP, Sontheimer EJ. A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol. 2008;15(5):444–51. doi:10.1038/nsmb.1401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spence J, Gali RR, Dittmar G, Sherman F, Karin M, Finley D. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell. 2000;102(1):67–76.
Article
CAS
PubMed
Google Scholar
Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009;11(2):123–32. doi:10.1038/ncb1821.
Article
CAS
PubMed
Google Scholar
Stringer DK, Piper RC. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. J Cell Biol. 2011;192(2):229–42. doi:10.1083/jcb.201008121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell. 2005;16(11):5163–74. doi:10.1091/mbc.E05-06-0560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore DJ. Parkin: a multifaceted ubiquitin ligase. Biochem Soc Trans. 2006;34(Pt 5):749–53. doi:10.1042/BST0340749.
Article
CAS
PubMed
Google Scholar
Chin LS, Olzmann JA, Li L. Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem Soc Trans. 2010;38(Pt 1):144–9. doi:10.1042/BST0380144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J. 2015;282(11):2076–88. doi:10.1111/febs.13249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dove KK, Klevit RE. Structural biology: Parkin’s serpentine shape revealed in the year of the snake. Current Biology : CB. 2013;23(16):R691–3. doi:10.1016/j.cub.2013.07.039.
Article
CAS
PubMed
Google Scholar
Wauer T, Komander D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 2013;32(15):2099–112. doi:10.1038/emboj.2013.125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, et al. Structure of Parkin reveals mechanisms for ubiquitin ligase activation. Science. 2013;340(6139):1451–5. doi:10.1126/science.1237908.
Article
CAS
PubMed
Google Scholar
Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009;10(5):319–31. doi:10.1038/nrm2673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol. 2009;10(11):755–64. doi:10.1038/nrm2780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399–434. doi:10.1146/annurev.biochem.78.101807.093809.
Article
CAS
PubMed
Google Scholar
Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, et al. Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25(3):302–5. doi:10.1038/77060.
Article
CAS
PubMed
Google Scholar
Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A. 2000;97(24):13354–9. doi:10.1073/pnas.240347797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N, Tanaka K. Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem. 2006;281(6):3204–9. doi:10.1074/jbc.M510393200.
Article
CAS
PubMed
Google Scholar
Doss-Pepe EW, Chen L, Madura K. Alpha-synuclein and Parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. J Biol Chem. 2005;280(17):16619–24. doi:10.1074/jbc.M413591200.
Article
CAS
PubMed
Google Scholar
Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001;105(7):891–902.
Article
CAS
PubMed
Google Scholar
Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits Parkin’s ubiquitination and protective function. Proc Natl Acad Sci U S A. 2010;107(38):16691–6. doi:10.1073/pnas.1006083107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubio De La Torre E, Luzon-Toro B, Forte-Lago I, Minguez-Castellanos A, Ferrer I, Hilfiker S. Combined kinase inhibition modulates Parkin inactivation. Hum Mol Genet. 2009;18(5):809–23. doi:10.1093/hmg/ddn407.
CAS
PubMed
Google Scholar
Avraham E, Rott R, Liani E, Szargel R, Engelender S. Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem. 2007;282(17):12842–50. doi:10.1074/jbc.M608243200.
Article
CAS
PubMed
Google Scholar
Yamamoto A, Friedlein A, Imai Y, Takahashi R, Kahle PJ, Haass C. Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem. 2005;280(5):3390–9. doi:10.1074/jbc.M407724200.
Article
CAS
PubMed
Google Scholar
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun. 2008;377(3):975–80. doi:10.1016/j.bbrc.2008.10.104.
Article
CAS
PubMed
Google Scholar
Sha D, Chin LS, Li L. Phosphorylation of Parkin by Parkinson disease-linked kinase PINK1 activates Parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet. 2010;19(2):352–63. doi:10.1093/hmg/ddp501.
Article
CAS
PubMed
Google Scholar
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2012;2:1002. doi:10.1038/srep01002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012;2(5):120080. doi:10.1098/rsob.120080.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, et al. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol. 2014;4:130213. doi:10.1098/rsob.130213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLos Genet. 2014;10(6):e1004391. doi:10.1371/journal.pgen.1004391.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kazlauskaite A, Martinez-Torres RJ, Wilkie S, Kumar A, Peltier J, Gonzalez A, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 2015;16(8):939–54. doi:10.15252/embr.201540352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Dorn 2nd GW. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471–5. doi:10.1126/science.1231031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, et al. Novel regulation of Parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci. 2011;31(1):157–63. doi:10.1523/JNEUROSCI.1833-10.2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem. 2000;275(46):35661–4. doi:10.1074/jbc.C000447200.
Article
CAS
PubMed
Google Scholar
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 2011;30(14):2853–67. doi:10.1038/emboj.2011.204.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Bie P, Ciechanover A. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 2011;18(9):1393–402. doi:10.1038/cdd.2011.16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Durcan TM, Kontogiannea M, Thorarinsdottir T, Fallon L, Williams AJ, Djarmati A, et al. The Machado-Joseph disease-associated mutant form of ataxin-3 regulates Parkin ubiquitination and stability. Hum Mol Genet. 2011;20(1):141–54. doi:10.1093/hmg/ddq452.
Article
CAS
PubMed
Google Scholar
Durcan TM, Fon EA. Mutant ataxin-3 promotes the autophagic degradation of Parkin. Autophagy. 2011;7(2):233–4.
Article
PubMed
Google Scholar
Durcan TM, Kontogiannea M, Bedard N, Wing SS, Fon EA. Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme. J Biol Chem. 2012;287(1):531–41. doi:10.1074/jbc.M111.288449.
Article
CAS
PubMed
Google Scholar
Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA, Mclelland GL, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin. EMBO J. 2014;33(21):2473–91. doi:10.15252/embj.201489729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerra De Souza AC, Prediger RD, Cimarosti H. SUMO-regulated mitochondrial function in Parkinson’s disease. J Neurochem. 2016;137(5):673–86. doi:10.1111/jnc.13599.
Article
CAS
PubMed
Google Scholar
Shinbo Y, Niki T, Taira T, Ooe H, Takahashi-Niki K, Maita C, et al. Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ. 2006;13(1):96–108. doi:10.1038/sj.cdd.4401704.
Article
CAS
PubMed
Google Scholar
Dorval V, Fraser PE. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem. 2006;281(15):9919–24. doi:10.1074/jbc.M510127200.
Article
CAS
PubMed
Google Scholar
Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, et al. Sumoylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol. 2011;194(1):49–60. doi:10.1083/jcb.201010117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Um JW, Chung KC. Functional modulation of Parkin through physical interaction with SUMO-1. J Neurosci Res. 2006;84(7):1543–54. doi:10.1002/jnr.21041.
Article
CAS
PubMed
Google Scholar
Oh Y, Kim YM, Mouradian MM, Chung KC. Human Polycomb protein 2 promotes alpha-synuclein aggregate formation through covalent SUMOylation. Brain Res. 2011;1381:78–89. doi:10.1016/j.brainres.2011.01.039.
Article
CAS
PubMed
Google Scholar
Abeywardana T, Pratt MR. Extent of inhibition of alpha-synuclein aggregation in vitro by SUMOylation is conjugation site- and SUMO isoform-selective. Biochemistry. 2015;54(4):959–61. doi:10.1021/bi501512m.
Article
CAS
PubMed
Google Scholar
Dil Kuazi A, Kito K, Abe Y, Shin RW, Kamitani T, Ueda N. NEDD8 protein is involved in ubiquitinated inclusion bodies. J Pathol. 2003;199(2):259–66. doi:10.1002/path.1283.
Article
PubMed
CAS
Google Scholar
Um JW, Han KA, Im E, Oh Y, Lee K, Chung KC. Neddylation positively regulates the ubiquitin E3 ligase activity of Parkin. J Neurosci Res. 2012;90(5):1030–42. doi:10.1002/jnr.22828.
Article
CAS
PubMed
Google Scholar
Choo YS, Vogler G, Wang D, Kalvakuri S, Iliuk A, Tao WA, et al. Regulation of Parkin and PINK1 by neddylation. Hum Mol Genet. 2012;21(11):2514–23. doi:10.1093/hmg/dds070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripathy D, Chakraborty J, Mohanakumar KP. Antagonistic pleiotropic effects of nitric oxide in the pathophysiology of Parkinson’s disease. Free Radic Res. 2015;49(9):1129–39. doi:10.3109/10715762.2015.1045505.
Article
CAS
PubMed
Google Scholar
Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, et al. S-nitrosylation of Parkin regulates ubiquitination and compromises Parkin’s protective function. Science. 2004;304(5675):1328–31. doi:10.1126/science.1093891.
Article
CAS
PubMed
Google Scholar
Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, et al. Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of Parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A. 2004;101(29):10810–4. doi:10.1073/pnas.0404161101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozawa K, Komatsubara AT, Nishimura Y, Sawada T, Kawafune H, Tsumoto H, et al. S-nitrosylation regulates mitochondrial quality control via activation of Parkin. Sci Rep. 2013;3:2202. doi:10.1038/srep02202.
PubMed
PubMed Central
Google Scholar
Sunico CR, Nakamura T, Rockenstein E, Mante M, Adame A, Chan SF, et al. S-Nitrosylation of Parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease. Mol Neurodegener. 2013;8:29. doi:10.1186/1750-1326-8-29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010;9(2):135–46. doi:10.1111/j.1474-9726.2009.00543.x.
Article
CAS
PubMed
Google Scholar
Kida K, Yamada M, Tokuda K, Marutani E, Kakinohana M, Kaneki M, et al. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid Redox Signal. 2011;15(2):343–52. doi:10.1089/ars.2010.3671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu M, Zhao FF, Tang JJ, Su CJ, Fan Y, Ding JH, et al. The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid Redox Signal. 2012;17(6):849–59. doi:10.1089/ars.2011.4507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandiver MS, Paul BD, Xu R, Karuppagounder S, Rao F, Snowman AM, et al. Sulfhydration mediates neuroprotective actions of Parkin. Nat Commun. 2013;4:1626. doi:10.1038/ncomms2623.
Article
PubMed
PubMed Central
CAS
Google Scholar
Winklhofer KF, Henn IH, Kay-Jackson PC, Heller U, Tatzelt J. Inactivation of Parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J Biol Chem. 2003;278(47):47199–208. doi:10.1074/jbc.M306769200.
Article
CAS
PubMed
Google Scholar
Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, et al. Oxidation of the cysteine-rich regions of Parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener. 2011;6:34. doi:10.1186/1750-1326-6-34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Aguirre JD, Condos TE, Martinez-Torres RJ, Chaugule VK, Toth R, et al. Disruption of the autoinhibited state primes the E3 ligase Parkin for activation and catalysis. EMBO J. 2015;34(20):2506–21. doi:10.15252/embj.201592337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, et al. A molecular explanation for the recessive nature of Parkin-linked Parkinson’s disease. Nat Commun. 2013;4:1983. doi:10.1038/ncomms2983.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pao KC, Stanley M, Han C, Lai YC, Murphy P, Balk K, et al. Probes of ubiquitin E3 ligases enable systematic dissection of Parkin activation. Nat Chem Biol. 2016;12(5):324–31. doi:10.1038/nchembio.2045.
Article
CAS
PubMed
PubMed Central
Google Scholar