Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H: A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998, 12: 3715-3727. 10.1101/gad.12.23.3715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murchison EP, Hannon GJ: miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opinion Cell Biol. 2004, 16: 223-229. 10.1016/j.ceb.2004.04.003.
Article
CAS
PubMed
Google Scholar
Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Lo Sardo F, Saxena A, Miyoshi K, Siomi H, et al: Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature. 2011, 480: 391-395. 10.1038/nature10492.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halic M, Moazed D: Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell. 2010, 140: 504-516. 10.1016/j.cell.2010.01.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, Young R, Morozova N, Fenouil R, Descostes N, Andrau JC, et al: Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct Mol Biol. 2012, 19: 998-1004. 10.1038/nsmb.2373.
Article
CAS
PubMed
Google Scholar
Mochizuki K: RNA-directed epigenetic regulation of DNA rearrangements. Essays Biochem. 2010, 48: 89-100. 10.1042/bse0480089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chalker DL, Yao MC: DNA elimination in ciliates: transposon domestication and genome surveillance. Ann Rev Gen. 2011, 45: 227-246. 10.1146/annurev-genet-110410-132432.
Article
CAS
Google Scholar
Aliyari R, Ding SW: RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev. 2009, 227: 176-188. 10.1111/j.1600-065X.2008.00722.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song JJ, Smith SK, Hannon GJ, Joshua-Tor L: Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004, 305: 1434-1437. 10.1126/science.1102514.
Article
CAS
PubMed
Google Scholar
Rand TA, Petersen S, Du F, Wang X: Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell. 2005, 123: 621-629. 10.1016/j.cell.2005.10.020.
Article
CAS
PubMed
Google Scholar
Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD: Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell. 2005, 123: 607-620. 10.1016/j.cell.2005.08.044.
Article
CAS
PubMed
Google Scholar
Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC: Slicer function of drosophila argonautes and its involvement in RISC formation. Genes Dev. 2005, 19: 2837-2848. 10.1101/gad.1370605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leuschner PJ, Ameres SL, Kueng S, Martinez J: Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 2006, 7: 314-320. 10.1038/sj.embor.7400637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007, 128: 1089-1103. 10.1016/j.cell.2007.01.043.
Article
CAS
PubMed
Google Scholar
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC: A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science. 2007, 315: 1587-1590. 10.1126/science.1140494.
Article
CAS
PubMed
Google Scholar
Yang JS, Lai EC: Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle. 2010, 9: 4455-4460. 10.4161/cc.9.22.13958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Djuranovic S, Nahvi A, Green R: A parsimonious model for gene regulation by miRNAs. Science. 2011, 331: 550-553. 10.1126/science.1191138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerutti L, Mian N, Bateman A: Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci. 2000, 25: 481-482. 10.1016/S0968-0004(00)01641-8.
Article
CAS
PubMed
Google Scholar
Aravind L, Koonin EV: Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. Gen Res. 2000, 10: 1172-1184. 10.1101/gr.10.8.1172.
Article
CAS
Google Scholar
Makarova KS, Wolf YI, van der Oost J, Koonin EV: Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009, 4: 29-10.1186/1745-6150-4-29.
Article
PubMed
PubMed Central
Google Scholar
Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ: Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 2005, 434: 666-670. 10.1038/nature03514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ: Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell. 2005, 19: 405-419. 10.1016/j.molcel.2005.07.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al: The Pfam protein families database. Nucleic Acids Res. 2010, 38: D211-D222. 10.1093/nar/gkp985.
Article
CAS
PubMed
Google Scholar
Aravind L, Leipe DD, Koonin EV: Toprim–a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 1998, 26: 4205-4213. 10.1093/nar/26.18.4205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frank F, Sonenberg N, Nagar B: Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature. 2010, 465: 818-822. 10.1038/nature09039.
Article
CAS
PubMed
Google Scholar
Boland A, Tritschler F, Heimstadt S, Izaurralde E, Weichenrieder O: Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep. 2010, 11: 522-527. 10.1038/embor.2010.81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker JS, Roe SM, Barford D: Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature. 2005, 434: 663-666. 10.1038/nature03462.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ: Structure of the guide-strand-containing argonaute silencing complex. Nature. 2008, 456: 209-213. 10.1038/nature07315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ: Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature. 2008, 456: 921-926. 10.1038/nature07666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ: Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. 2009, 461: 754-761. 10.1038/nature08434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker JS, Roe SM, Barford D: Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 2004, 23: 4727-4737. 10.1038/sj.emboj.7600488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourbon HM: Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 2008, 36: 3993-4008. 10.1093/nar/gkn349.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boland A, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O: Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc Nat Acad Sci USA. 2011, 108: 10466-10471. 10.1073/pnas.1103946108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak PB, Tomari Y: The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol. 2012, 19: 145-151. 10.1038/nsmb.2232.
Article
CAS
PubMed
Google Scholar
Aravind L: Guilt by association: contextual information in genome analysis. Gen Res. 2000, 10: 1074-1077. 10.1101/gr.10.8.1074.
Article
CAS
Google Scholar
Huynen M, Snel B, Lathe W, Bork P: Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Gen Res. 2000, 10: 1204-1210. 10.1101/gr.10.8.1204.
Article
CAS
Google Scholar
Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM: The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev. 2005, 29: 231-262.
Article
CAS
PubMed
Google Scholar
Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, Cann IK, Spies M: The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction. J Biol Chem. 2008, 283: 1732-1743.
Article
CAS
PubMed
Google Scholar
Rudolf J, Makrantoni V, Ingledew WJ, Stark MJ, White MF: The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell. 2006, 23: 801-808. 10.1016/j.molcel.2006.07.019.
Article
CAS
PubMed
Google Scholar
Singleton MR, Dillingham MS, Wigley DB: Structure and mechanism of helicases and nucleic acid translocases. Ann Rev Biochem. 2007, 76: 23-50. 10.1146/annurev.biochem.76.052305.115300.
Article
CAS
PubMed
Google Scholar
Fairman-Williams ME, Guenther UP, Jankowsky E: SF1 and SF2 helicases: family matters. Curr Opinion Struct Biol. 2010, 20: 313-324. 10.1016/j.sbi.2010.03.011.
Article
CAS
Google Scholar
Ren B, Duan X, Ding H: Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster. J Biol Chem. 2009, 284: 4829-4835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM: Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol. 2012, 2: 89-
Article
CAS
PubMed
PubMed Central
Google Scholar
Bickle TA, Kruger DH: Biology of DNA restriction. Microbiol Rev. 1993, 57: 434-450.
CAS
PubMed
PubMed Central
Google Scholar
Bourniquel AA, Bickle TA: Complex restriction enzymes: NTP-driven molecular motors. Biochimie. 2002, 84: 1047-1059. 10.1016/S0300-9084(02)00020-2.
Article
CAS
PubMed
Google Scholar
McRobbie AM, Meyer B, Rouillon C, Petrovic-Stojanovska B, Liu H, White MF: Staphylococcus aureus DinG, a helicase that has evolved into a nuclease. Biochem J. 2012, 442: 77-84. 10.1042/BJ20111903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bukowy Z, Harrigan JA, Ramsden DA, Tudek B, Bohr VA, Stevnsner T: WRN Exonuclease activity is blocked by specific oxidatively induced base lesions positioned in either DNA strand. Nucleic Acids Res. 2008, 36: 4975-4987. 10.1093/nar/gkn468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray NE: Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). MMBR. 2000, 64: 412-434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghavendra NK, Bheemanaik S, Rao DN: Mechanistic insights into type III restriction enzymes. Front Biosci J Virt Library. 2012, 17: 1094-1107. 10.2741/3975.
Article
CAS
Google Scholar
Voloshin ON, Camerini-Otero RD: The DinG protein from Escherichia coli is a structure-specific helicase. J Biol Chem. 2007, 282: 18437-18447. 10.1074/jbc.M700376200.
Article
CAS
PubMed
Google Scholar
Aguilera A, Garcia-Muse T: R loops: from transcription byproducts to threats to genome stability. Mol Cell. 2012, 46: 115-124. 10.1016/j.molcel.2012.04.009.
Article
CAS
PubMed
Google Scholar
Boubakri H, de Septenville AL, Viguera E, Michel B: The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 2010, 29: 145-157. 10.1038/emboj.2009.308.
Article
CAS
PubMed
Google Scholar
Makarova KS, Aravind L, Wolf YI, Koonin EV: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct. 2011, 6: 38-10.1186/1745-6150-6-38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreuzer KN, Brister JR: Initiation of bacteriophage T4 DNA replication and replication fork dynamics: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J. 2010, 7: 358-10.1186/1743-422X-7-358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itoh T, Tomizawa J: Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Nat Acad Sci USA. 1980, 77: 2450-2454. 10.1073/pnas.77.5.2450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kogoma T: Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. MMBR. 1997, 61: 212-238.
CAS
PubMed
PubMed Central
Google Scholar
Grewal SI, Elgin SC: Transcription and RNA interference in the formation of heterochromatin. Nature. 2007, 447: 399-406. 10.1038/nature05914.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker JS, Parizotto EA, Wang M, Roe SM, Barford D: Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol Cell. 2009, 33: 204-214. 10.1016/j.molcel.2008.12.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW: The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci. 2005, 30: 250-255. 10.1016/j.tibs.2005.03.002.
Article
CAS
PubMed
Google Scholar
Malik S, Roeder RG: Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem Sci. 2005, 30: 256-263. 10.1016/j.tibs.2005.03.009.
Article
CAS
PubMed
Google Scholar
Conaway RC, Conaway JW: Function and regulation of the Mediator complex. Curr Opinion Gen Dev. 2011, 21: 225-230. 10.1016/j.gde.2011.01.013.
Article
CAS
Google Scholar
Andrau JC, van de Pasch L, Lijnzaad P, Bijma T, Koerkamp MG, van de Peppel J, Werner M, Holstege FC: Genome-wide location of the coactivator mediator: binding without activation and transient Cdk8 interaction on DNA. Mol Cell. 2006, 22: 179-192. 10.1016/j.molcel.2006.03.023.
Article
CAS
PubMed
Google Scholar
Zhu X, Wiren M, Sinha I, Rasmussen NN, Linder T, Holmberg S, Ekwall K, Gustafsson CM: Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions. Mol Cell. 2006, 22: 169-178. 10.1016/j.molcel.2006.03.032.
Article
CAS
PubMed
Google Scholar
Samuelsen CO, Baraznenok V, Khorosjutina O, Spahr H, Kieselbach T, Holmberg S, Gustafsson CM: TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution. Proc Nat Acad Sci USA. 2003, 100: 6422-6427. 10.1073/pnas.1030497100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuchin S, Yeghiayan P, Carlson M: Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc Nat Acad Sci USA. 1995, 92: 4006-4010. 10.1073/pnas.92.9.4006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS: The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. Development. 2010, 137: 113-122. 10.1242/dev.043174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA: Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell. 1998, 2: 43-53. 10.1016/S1097-2765(00)80112-4.
Article
CAS
PubMed
Google Scholar
Akoulitchev S, Chuikov S, Reinberg D: TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature. 2000, 407: 102-106. 10.1038/35024111.
Article
CAS
PubMed
Google Scholar
Elmlund H, Baraznenok V, Lindahl M, Samuelsen CO, Koeck PJ, Holmberg S, Hebert H, Gustafsson CM: The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Nat Acad Sci USA. 2006, 103: 15788-15793. 10.1073/pnas.0607483103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ: The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Gen Dev. 2009, 23: 439-451. 10.1101/gad.1767009.
Article
CAS
Google Scholar
Ding N, Zhou H, Esteve PO, Chin HG, Kim S, Xu X, Joseph SM, Friez MJ, Schwartz CE, Pradhan S, Boyer TG: Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell. 2008, 31: 347-359. 10.1016/j.molcel.2008.05.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taft RJ, Kaplan CD, Simons C, Mattick JS: Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle. 2009, 8: 2332-2338. 10.4161/cc.8.15.9154.
Article
CAS
PubMed
Google Scholar
Valen E, Preker P, Andersen PR, Zhao X, Chen Y, Ender C, Dueck A, Meister G, Sandelin A, Jensen TH: Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat Struct Mol Biol. 2011, 18: 1075-1082. 10.1038/nsmb.2091.
Article
CAS
PubMed
Google Scholar
Seila AC, Core LJ, Lis JT, Sharp PA: Divergent transcription: a new feature of active promoters. Cell Cycle. 2009, 8: 2557-2564. 10.4161/cc.8.16.9305.
Article
CAS
PubMed
Google Scholar
Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest AR, Grimmond SM, Schroder K, et al: Tiny RNAs associated with transcription start sites in animals. Nat Gen. 2009, 41: 572-578. 10.1038/ng.312.
Article
CAS
Google Scholar
Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJ, Rasko JE, et al: Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol. 2010, 17: 1030-1034. 10.1038/nsmb.1841.
Article
CAS
PubMed
Google Scholar
Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Suzuki H, Hayashizaki Y, Daub CO: Deep-sequencing of human argonaute-associated small RNAs provides insight into miRNA sorting and reveals argonaute association with RNA fragments of diverse origin. RNA Biol. 2011, 8: 158-177. 10.4161/rna.8.1.14300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrera I, Janody F, Leeds N, Duveau F, Treisman JE: Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Nat Acad Sci USA. 2008, 105: 6644-6649. 10.1073/pnas.0709749105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gobert V, Osman D, Bras S, Auge B, Boube M, Bourbon HM, Horn T, Boutros M, Haenlin M, Waltzer L: A genome-wide RNA interference screen identifies a differential role of the mediator CDK8 module subunits for GATA/RUNX-activated transcription in Drosophila. Mol Cell Biol. 2010, 30: 2837-2848. 10.1128/MCB.01625-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R: Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature. 2013, 494: 497-501. 10.1038/nature11884.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muljo SA, Kanellopoulou C, Aravind L: MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdis Rev Syst Biol Med. 2010, 2: 148-161. 10.1002/wsbm.53.
Article
CAS
Google Scholar
Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC: The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999, 99: 123-132. 10.1016/S0092-8674(00)81644-X.
Article
CAS
PubMed
Google Scholar
Cogoni C, Macino G: Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Nat Acad Sci USA. 1997, 94: 10233-10238. 10.1073/pnas.94.19.10233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson LS, Eddy SR, Portugaly E: Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010, 11: 431-10.1186/1471-2105-11-431.
Article
PubMed
PubMed Central
Google Scholar
Lassmann T, Frings O, Sonnhammer EL: Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res. 2009, 37: 858-865. 10.1093/nar/gkn1006.
Article
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole C, Barber JD, Barton GJ: The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 2008, 36: W197-W201. 10.1093/nar/gkn238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remmert M, Biegert A, Hauser A, Soding J: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods. 2012, 9: 173-175.
Article
CAS
Google Scholar
Holm L, Rosenstrom P: Dali server: conservation mapping in 3D. Nucleic Acids rRes. 2010, 38: W545-W549. 10.1093/nar/gkq366.
Article
CAS
Google Scholar
Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM: MUSTANG: a multiple structural alignment algorithm. Proteins. 2006, 64: 559-574. 10.1002/prot.20921.
Article
CAS
PubMed
Google Scholar