Rogozin IB, Carmel L, Csuros M, Koonin EV: Origin and evolution of spliceosomal introns. Biol Direct. 2012, 7: 11-10.1186/1745-6150-7-11.
PubMed
CAS
PubMed Central
Google Scholar
Koonin EV: Intron-dominated genomes of early ancestors of eukaryotes. J Hered. 2009, 100: 618-623. 10.1093/jhered/esp056.
PubMed
CAS
PubMed Central
Google Scholar
Graveley BR: Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 2001, 17: 100-107. 10.1016/S0168-9525(00)02176-4.
PubMed
CAS
Google Scholar
Choi T, Huang M, Gorman C, Jaenisch R: A generic intron increases gene expression in transgenic mice. Mol Cell Biol. 1991, 11: 3070-3074.
PubMed
CAS
PubMed Central
Google Scholar
Le HH, Nott A, Moore MJ: How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci. 2003, 28: 215-220. 10.1016/S0968-0004(03)00052-5.
Google Scholar
Valencia P, Dias AP, Reed R: Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci USA. 2008, 105: 3386-3391. 10.1073/pnas.0800250105.
PubMed
CAS
PubMed Central
Google Scholar
Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A: Critical association of ncRNA with introns. Nucleic Acids Res. 2011, 39: 2357-2366. 10.1093/nar/gkq1080.
PubMed
CAS
PubMed Central
Google Scholar
Mattick JS, Makunin IV: Non-coding RNA. Hum Mol Genet. 2006, 15 (Spec No 1): R17-R29.
PubMed
CAS
Google Scholar
Rogers J: Exon shuffling and intron insertion in serine protease genes. Nature. 1985, 315: 458-459. 10.1038/315458a0.
PubMed
CAS
Google Scholar
Sverdlov AV, Babenko VN, Rogozin IB, Koonin EV: Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion. Gene. 2004, 338: 85-91. 10.1016/j.gene.2004.05.027.
PubMed
CAS
Google Scholar
Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol. 2003, 13: 1512-1517. 10.1016/S0960-9822(03)00558-X.
PubMed
CAS
Google Scholar
Roy SW, Fedorov A, Gilbert W: Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc Natl Acad Sci USA. 2003, 100: 7158-7162. 10.1073/pnas.1232297100.
PubMed
CAS
PubMed Central
Google Scholar
Nielsen CB, Friedman B, Birren B, Burge CB, Galagan JE: Patterns of intron gain and loss in fungi. PLoS Biol. 2004, 2: e422-10.1371/journal.pbio.0020422.
PubMed
PubMed Central
Google Scholar
Roy SW, Hartl DL: Very little intron loss/gain in Plasmodium: intron loss/gain mutation rates and intron number. Genome Res. 2006, 16: 750-756. 10.1101/gr.4845406.
PubMed
CAS
PubMed Central
Google Scholar
Lin H, Zhu W, Silva JC, Gu X, Buell CR: Intron gain and loss in segmentally duplicated genes in rice. Genome Biol. 2006, 7: R41-10.1186/gb-2006-7-5-r41.
PubMed
PubMed Central
Google Scholar
Stajich JE, Dietrich FS: Evidence of mRNA-mediated intron loss in the human-pathogenic fungus Cryptococcus neoformans. Eukaryot Cell. 2006, 5: 789-793. 10.1128/EC.5.5.789-793.2006.
PubMed
CAS
PubMed Central
Google Scholar
Coulombe-Huntington J, Majewski J: Intron loss and gain in Drosophila. Mol Biol Evol. 2007, 24: 2842-2850.
PubMed
CAS
Google Scholar
Knowles DG, McLysaght A: High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes. Mol Biol Evol. 2006, 23: 1548-1557. 10.1093/molbev/msl017.
PubMed
CAS
Google Scholar
Coulombe-Huntington J, Majewski J: Characterization of intron loss events in mammals. Genome Res. 2007, 17: 23-32.
PubMed
CAS
PubMed Central
Google Scholar
Loh YH, Brenner S, Venkatesh B: Investigation of loss and gain of introns in the compact genomes of pufferfishes (Fugu and Tetraodon). Mol Biol Evol. 2008, 25: 526-535. 10.1093/molbev/msm278.
PubMed
CAS
Google Scholar
Sharpton TJ, Neafsey DE, Galagan JE, Taylor JW: Mechanisms of intron gain and loss in Cryptococcus. Genome Biol. 2008, 9: R24-10.1186/gb-2008-9-1-r24.
PubMed
PubMed Central
Google Scholar
Zhang LY, Yang YF, Niu DK: Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi. J Mol Evol. 2010, 71: 364-373. 10.1007/s00239-010-9391-6.
PubMed
Google Scholar
Yenerall P, Krupa B, Zhou L: Mechanisms of intron gain and loss in Drosophila. BMC Evol Biol. 2011, 11: 364-10.1186/1471-2148-11-364.
PubMed
PubMed Central
Google Scholar
Coghlan A, Wolfe KH: Origins of recently gained introns in Caenorhabditis. Proc Natl Acad Sci USA. 2004, 101: 11362-11367. 10.1073/pnas.0308192101.
PubMed
CAS
PubMed Central
Google Scholar
Denoeud F, Henriet S, Mungpakdee S, Aury JM, Da SC, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, Canestro C, et al: Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science. 2010, 330: 1381-1385. 10.1126/science.1194167.
PubMed
CAS
PubMed Central
Google Scholar
Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, et al: The ecoresponsive genome of Daphnia pulex. Science. 2011, 331: 555-561. 10.1126/science.1197761.
PubMed
CAS
PubMed Central
Google Scholar
Li W, Tucker AE, Sung W, Thomas WK, Lynch M: Extensive, recent intron gains in Daphnia populations. Science. 2009, 326: 1260-1262. 10.1126/science.1179302.
PubMed
CAS
Google Scholar
Farlow A, Meduri E, Dolezal M, Hua L, Schlotterer C: Nonsense-mediated decay enables intron gain in Drosophila. PLoS Genet. 2010, 6: e1000819-10.1371/journal.pgen.1000819.
PubMed
PubMed Central
Google Scholar
Csuros M, Rogozin IB, Koonin EV: A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comput Biol. 2011, 7: e1002150-10.1371/journal.pcbi.1002150.
PubMed
CAS
PubMed Central
Google Scholar
Farlow A, Meduri E, Schlotterer C: DNA double-strand break repair and the evolution of intron density. Trends Genet. 2010, 27: 1-6.
PubMed
Google Scholar
Hankeln T, Friedl H, Ebersberger I, Martin J, Schmidt ER: A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene. 1997, 205: 151-160. 10.1016/S0378-1119(97)00518-0.
PubMed
CAS
Google Scholar
Fedorov A, Roy S, Fedorova L, Gilbert W: Mystery of intron gain. Genome Res. 2003, 13: 2236-2241. 10.1101/gr.1029803.
PubMed
CAS
PubMed Central
Google Scholar
Tarrio R, Ayala FJ, Rodriguez-Trelles F: Alternative splicing: a missing piece in the puzzle of intron gain. Proc Natl Acad Sci USA. 2008, 105: 7223-7228. 10.1073/pnas.0802941105.
PubMed
CAS
PubMed Central
Google Scholar
Roy SW, Irimia M: Mystery of intron gain: new data and new models. Trends Genet. 2009, 25: 67-73. 10.1016/j.tig.2008.11.004.
PubMed
CAS
Google Scholar
Cohen NE, Shen R, Carmel L: The role of reverse-transcriptase in intron gain and loss mechanisms. Mol Biol Evol. 2011, 29: 179-186.
PubMed
Google Scholar
Derr LK, Strathern JN: A role for reverse transcripts in gene conversion. Nature. 1993, 361: 170-173. 10.1038/361170a0.
PubMed
CAS
Google Scholar
Roy SW, Gilbert W: The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006, 7: 211-221.
PubMed
Google Scholar
Sharp PA: On the origin of RNA splicing and introns. Cell. 1985, 42: 397-400. 10.1016/0092-8674(85)90092-3.
PubMed
CAS
Google Scholar
Crick F: Split genes and RNA splicing. Science. 1979, 204: 264-271. 10.1126/science.373120.
PubMed
CAS
Google Scholar
Rogers JH: How were introns inserted into nuclear genes?. Trends Genet. 1989, 5: 213-216.
PubMed
CAS
Google Scholar
Irimia M, Rukov JL, Penny D, Vinther J, Garcia-Fernandez J, Roy SW: Origin of introns by 'intronization' of exonic sequences. Trends Genet. 2008, 24: 378-381. 10.1016/j.tig.2008.05.007.
PubMed
CAS
Google Scholar
Roy SW: Intronization, de-intronization and intron sliding are rare in Cryptococcus. BMC Evol Biol. 2009, 9: 192-10.1186/1471-2148-9-192.
PubMed
PubMed Central
Google Scholar
Roy SW, Penny D: Smoke without fire: most reported cases of intron gain in nematodes instead reflect intron losses. Mol Biol Evol. 2006, 23: 2259-2262. 10.1093/molbev/msl098.
PubMed
CAS
Google Scholar
Torriani SF, Stukenbrock EH, Brunner PC, McDonald BA, Croll D: Evidence for extensive recent intron transposition in closely related fungi. Curr Biol. 2011, 21: 2017-2022. 10.1016/j.cub.2011.10.041.
PubMed
CAS
Google Scholar
Weterings E, Chen DJ: The endless tale of non-homologous end-joining. Cell Res. 2008, 18: 114-124. 10.1038/cr.2008.3.
PubMed
CAS
Google Scholar
Lieber MR: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010, 79: 181-211. 10.1146/annurev.biochem.052308.093131.
PubMed
CAS
PubMed Central
Google Scholar
Mahaney BL, Meek K, Lees-Miller SP: Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009, 417: 639-650. 10.1042/BJ20080413.
PubMed
CAS
PubMed Central
Google Scholar
Weterings E, van Gent DC: The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair (Amst). 2004, 3: 1425-1435. 10.1016/j.dnarep.2004.06.003.
CAS
Google Scholar
Rodriguez-Trelles F, Tarrio R, Ayala FJ: Models of spliceosomal intron proliferation in the face of widespread ectopic expression. Gene. 2006, 366: 201-208. 10.1016/j.gene.2005.09.004.
PubMed
CAS
Google Scholar
Tseng CK, Cheng SC: Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science. 2008, 320: 1782-1784. 10.1126/science.1158993.
PubMed
CAS
Google Scholar
Crabb TL, Lam BJ, Hertel KJ: Retention of spliceosomal components along ligated exons ensures efficient removal of multiple introns. RNA. 2010, 16: 1786-1796. 10.1261/rna.2186510.
PubMed
CAS
PubMed Central
Google Scholar
Le HH, Izaurralde E, Maquat LE, Moore MJ: The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 2000, 19: 6860-6869. 10.1093/emboj/19.24.6860.
Google Scholar
Kataoka N, Yong J, Kim VN, Velazquez F, Perkinson RA, Wang F, Dreyfuss G: Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol Cell. 2000, 6: 673-682. 10.1016/S1097-2765(00)00065-4.
PubMed
CAS
Google Scholar
Iwamoto M, Maekawa M, Saito A, Higo H, Higo K: Evolutionary relationship of plant catalase genes inferred from exon-intron structures: isozyme divergence after the separation of monocots and dicots. TAG Theoretical and Applied Genetics. 1998, 97: 9-19. 10.1007/s001220050861.
CAS
Google Scholar
Giroux MJ, Clancy M, Baier J, Ingham L, McCarty D, Hannah LC: De novo synthesis of an intron by the maize transposable element Dissociation. Proc Natl Acad Sci USA. 1994, 91: 12150-12154. 10.1073/pnas.91.25.12150.
PubMed
CAS
PubMed Central
Google Scholar
Hellsten U, Aspden JL, Rio DC, Rokhsar DS: A segmental genomic duplication generates a functional intron. Nat Commun. 2011, 2: 454-
PubMed
PubMed Central
Google Scholar
Gao X, Lynch M: Ubiquitous internal gene duplication and intron creation in eukaryotes. Proc Natl Acad Sci USA. 2009, 106: 20818-20823. 10.1073/pnas.0911093106.
PubMed
CAS
PubMed Central
Google Scholar
Ricchetti M, Tekaia F, Dujon B: Continued colonization of the human genome by mitochondrial DNA. PLoS Biol. 2004, 2: e273-10.1371/journal.pbio.0020273.
PubMed
PubMed Central
Google Scholar
Curtis BA, Archibald JM: A spliceosomal intron of mitochondrial DNA origin. Curr Biol. 2010, 20: R919-R920. 10.1016/j.cub.2010.09.038.
PubMed
CAS
Google Scholar
Chalamcharla VR, Curcio MJ, Belfort M: Nuclear expression of a group II intron is consistent with spliceosomal intron ancestry. Genes Dev. 2010, 24: 827-836. 10.1101/gad.1905010.
PubMed
CAS
PubMed Central
Google Scholar
Szczesniak MW, Ciomborowska J, Nowak W, Rogozin IB, Makalowska I: Primate and rodent specific intron gains and the origin of retrogenes with splice variants. Mol Biol Evol. 2010, 28: 33-37.
PubMed
PubMed Central
Google Scholar
Yang Z, Huang J: De novo origin of new genes with introns in Plasmodium vivax. FEBS Lett. 2011, 585: 641-644. 10.1016/j.febslet.2011.01.017.
PubMed
CAS
Google Scholar
Dibb NJ, Newman AJ: Evidence that introns arose at proto-splice sites. EMBO J. 1989, 8: 2015-2021.
PubMed
CAS
PubMed Central
Google Scholar
Qiu WG, Schisler N, Stoltzfus A: The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol Biol Evol. 2004, 21: 1252-1263. 10.1093/molbev/msh120.
PubMed
CAS
Google Scholar
Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV: Reconstruction of ancestral protosplice sites. Curr Biol. 2004, 14: 1505-1508. 10.1016/j.cub.2004.08.027.
PubMed
CAS
Google Scholar
Lee VD, Stapleton M, Huang B: Genomic structure of Chlamydomonas caltractin. Evidence for intron insertion suggests a probable genealogy for the EF-hand superfamily of proteins. J Mol Biol. 1991, 221: 175-191. 10.1016/0022-2836(91)80213-E.
PubMed
CAS
Google Scholar
Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, Dyer DW, Roe BA, Murphy JW: Introns and splicing elements of five diverse fungi. Eukaryot Cell. 2004, 3: 1088-1100. 10.1128/EC.3.5.1088-1100.2004.
PubMed
PubMed Central
Google Scholar
Fahey ME, Higgins DG: Gene expression, intron density, and splice site strength in Drosophila and Caenorhabditis. J Mol Evol. 2007, 65: 349-357. 10.1007/s00239-007-9015-y.
PubMed
CAS
Google Scholar
Burset M, Seledtsov IA, Solovyev VV: SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res. 2001, 29: 255-259. 10.1093/nar/29.1.255.
PubMed
CAS
PubMed Central
Google Scholar
Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S: Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996, 24: 3439-3452. 10.1093/nar/24.17.3439.
PubMed
CAS
PubMed Central
Google Scholar
Mount SM, Burks C, Hertz G, Stormo GD, White O, Fields C: Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992, 20: 4255-4262. 10.1093/nar/20.16.4255.
PubMed
CAS
PubMed Central
Google Scholar
Rothkamm K, Kruger I, Thompson LH, Lobrich M: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003, 23: 5706-5715. 10.1128/MCB.23.16.5706-5715.2003.
PubMed
CAS
PubMed Central
Google Scholar
Shrivastav M, De Haro LP, Nickoloff JA: Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008, 18: 134-147. 10.1038/cr.2007.111.
PubMed
CAS
Google Scholar
Paques F, Haber JE: Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999, 63: 349-404.
PubMed
CAS
PubMed Central
Google Scholar
Ricchetti M, Fairhead C, Dujon B: Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature. 1999, 402: 96-100. 10.1038/47076.
PubMed
CAS
Google Scholar
Pelczar P, Kalck V, Kovalchuk I: Different genome maintenance strategies in human and tobacco cells. J Mol Biol. 2003, 331: 771-779. 10.1016/S0022-2836(03)00839-8.
PubMed
CAS
Google Scholar
Li G, Nelsen C, Hendrickson EA: Ku86 is essential in human somatic cells. Proc Natl Acad Sci USA. 2002, 99: 832-837.
PubMed
CAS
PubMed Central
Google Scholar
Lewis LK, Resnick MA: Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res. 2000, 451: 71-89. 10.1016/S0027-5107(00)00041-5.
PubMed
CAS
Google Scholar
Sharma S, Choudhary B, Raghavan SC: Efficiency of nonhomologous DNA end joining varies among somatic tissues, despite similarity in mechanism. Cell Mol Life Sci. 2010, 68: 661-676.
PubMed
Google Scholar
Yu J, Yang Z, Kibukawa M, Paddock M, Passey DA, Wong GK: Minimal introns are not "junk". Genome Res. 2002, 12: 1185-1189. 10.1101/gr.224602.
PubMed
CAS
PubMed Central
Google Scholar
Varga T, Aplan PD: Chromosomal aberrations induced by double strand DNA breaks. DNA Repair. 2005, 4: 1038-1046. 10.1016/j.dnarep.2005.05.004.
PubMed
CAS
PubMed Central
Google Scholar
Gorbunova V, Levy AA: Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 1997, 25: 4650-4657. 10.1093/nar/25.22.4650.
PubMed
CAS
PubMed Central
Google Scholar
Hazkani-Covo E, Covo S: Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet. 2008, 4: e1000237-10.1371/journal.pgen.1000237.
PubMed
PubMed Central
Google Scholar
Lambowitz AM, Zimmerly S: Mobile group II introns. Annu Rev Genet. 2004, 38: 1-35. 10.1146/annurev.genet.38.072902.091600.
PubMed
CAS
Google Scholar
Cech TR: The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell. 1986, 44: 207-210. 10.1016/0092-8674(86)90751-8.
PubMed
CAS
Google Scholar
Lopez-Garcia P, Moreira D: Selective forces for the origin of the eukaryotic nucleus. Bioessays. 2006, 28: 525-533. 10.1002/bies.20413.
PubMed
CAS
Google Scholar
Martin W, Koonin EV: Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006, 440: 41-45. 10.1038/nature04531.
PubMed
CAS
Google Scholar
Lynch M, Kewalramani A: Messenger RNA surveillance and the evolutionary proliferation of introns. Mol Biol Evol. 2003, 20: 563-571. 10.1093/molbev/msg068.
PubMed
CAS
Google Scholar
Bonen L, Vogel J: The ins and outs of group II introns. Trends Genet. 2001, 17: 322-331. 10.1016/S0168-9525(01)02324-1.
PubMed
CAS
Google Scholar
Rodriguez-Trelles F, Tarrio R, Ayala FJ: Origins and evolution of spliceosomal introns. Annu Rev Genet. 2006, 40: 47-76. 10.1146/annurev.genet.40.110405.090625.
PubMed
CAS
Google Scholar
Castillo-Davis CI, Bedford TB, Hartl DL: Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites. Mol Biol Evol. 2004, 21: 1422-1427. 10.1093/molbev/msh143.
PubMed
CAS
Google Scholar
Babenko VN, Rogozin IB, Mekhedov SL, Koonin EV: Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res. 2004, 32: 3724-3733. 10.1093/nar/gkh686.
PubMed
CAS
PubMed Central
Google Scholar
Catania F, Lynch M: Where do introns come from?. PLoS Biol. 2008, 6: e283-10.1371/journal.pbio.0060283.
PubMed
PubMed Central
Google Scholar
Li B, Wachtel C, Miriami E, Yahalom G, Friedlander G, Sharon G, Sperling R, Sperling J: Stop codons affect 5' splice site selection by surveillance of splicing. Proc Natl Acad Sci USA. 2002, 99: 5277-5282. 10.1073/pnas.082095299.
PubMed
CAS
PubMed Central
Google Scholar
Wang J, Chang YF, Hamilton JI, Wilkinson MF: Nonsense-associated altered splicing: a frame-dependent response distinct from nonsense-mediated decay. Mol Cell. 2002, 10: 951-957. 10.1016/S1097-2765(02)00635-4.
PubMed
CAS
Google Scholar
Cartegni L, Chew SL, Krainer AR: Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002, 3: 285-298. 10.1038/nrg775.
PubMed
CAS
Google Scholar
Wang J, Hamilton JI, Carter MS, Li S, Wilkinson MF: Alternatively spliced TCR mRNA induced by disruption of reading frame. Science. 2002, 297: 108-110. 10.1126/science.1069757.
PubMed
CAS
Google Scholar
Carmel L, Rogozin IB, Wolf YI, Koonin EV: Evolutionarily conserved genes preferentially accumulate introns. Genome Res. 2007, 17: 1045-1050. 10.1101/gr.5978207.
PubMed
CAS
PubMed Central
Google Scholar
Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, et al: Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science. 2009, 324: 268-272. 10.1126/science.1167222.
PubMed
CAS
Google Scholar
van der Burgt A, Severing E, de Wit PJ, Collemare J: Birth of New Spliceosomal Introns in Fungi by Multiplication of Introner-like Elements. Curr Biol. 2012, 22: 1260-1265. 10.1016/j.cub.2012.05.011.
PubMed
CAS
Google Scholar
Roy SW, Irimia M: Genome evolution: where do new introns come from?. Curr Biol. 2012, 22: R529-R531. 10.1016/j.cub.2012.05.017.
PubMed
CAS
Google Scholar
Abbotts J, Bebenek K, Kunkel TA, Wilson SH: Mechanism of HIV-1 reverse transcriptase. Termination of processive synthesis on a natural DNA template is influenced by the sequence of the template-primer stem. J Biol Chem. 1993, 268: 10312-10323.
PubMed
CAS
Google Scholar
Klarmann GJ, Schauber CA, Preston BD: Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. J Biol Chem. 1993, 268: 9793-9802.
PubMed
CAS
Google Scholar