Darwin C: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. 1859, London: Murray, J
Google Scholar
Koonin EV: Darwinian evolution in the light of genomics. Nucleic Acids Res. 2009, 37: 1011-1034. 10.1093/nar/gkp089.
PubMed
CAS
PubMed Central
Google Scholar
Shapiro JA: Mobile DNA and evolution in the 21st century. Mob DNA. 2010, 1: 4-10.1186/1759-8753-1-4.
PubMed
PubMed Central
Google Scholar
Fox Keller E: A feeling for the organism. 1983, New York: Owl Books
Google Scholar
Hedges RW, Jacob AE: Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet. 1974, 132: 31-40. 10.1007/BF00268228.
PubMed
CAS
Google Scholar
Dawkins R: The selfish gene. 1976, Oxford: Oxford University Press
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al: A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007, 8: 973-982. 10.1038/nrg2165.
PubMed
CAS
Google Scholar
Simon DM, Zimmerly S: A diversity of uncharacterized reverse transcriptases in bacteria. Nucleic Acids Res. 2008, 36: 7219-7229. 10.1093/nar/gkn867.
PubMed
CAS
PubMed Central
Google Scholar
Ohshima K, Okada N: SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res. 2005, 110: 475-490. 10.1159/000084981.
PubMed
CAS
Google Scholar
Eickbush TH, Malik HS: Origin and evolution of retrotransposons. Mobile DNA II. Edited by: Craig NL, Craigie R, Gellert M, Lambowitz AM. 2002, Washington D.C.: American Society for Microbiology Press, 1111-1146.
Google Scholar
Lerat E, Brunet F, Bazin C, Capy P: Is the evolution of transposable elements modular?. Genetica. 1999, 107: 15-25. 10.1023/A:1004026821539.
PubMed
CAS
Google Scholar
Bao W, Jurka MG, Kapitonov VV, Jurka J: New superfamilies of eukaryotic DNA transposons and their internal divisions. Mol Biol Evol. 2009, 26: 983-993. 10.1093/molbev/msp013.
PubMed
CAS
PubMed Central
Google Scholar
Kapitonov VV, Jurka J: A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008, 9: 411-412. 10.1038/nrg2165-c1. author reply 414
PubMed
Google Scholar
Chandler M, Mahillon J: Insertion Sequences revisited. Mobile DNA II. Edited by: Craig NL, Craigie R, Gellert M, Lambowitz AM. 2002, Washington, D.C.: ASM Press, 305-360.
Google Scholar
Filee J, Siguier P, Chandler M: Insertion sequence diversity in archaea. Microbiol Mol Biol Rev. 2007, 71: 121-157. 10.1128/MMBR.00031-06.
PubMed
CAS
PubMed Central
Google Scholar
Feschotte C, Pritham EJ: DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007, 41: 331-368. 10.1146/annurev.genet.40.110405.090448.
PubMed
CAS
PubMed Central
Google Scholar
Goodwin TJ, Butler MI, Poulter RT: Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. Microbiology. 2003, 149: 3099-3109. 10.1099/mic.0.26529-0.
PubMed
CAS
Google Scholar
Pritham EJ, Putliwala T, Feschotte C: Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene. 2007, 390: 3-17. 10.1016/j.gene.2006.08.008.
PubMed
CAS
Google Scholar
Kapitonov VV, Jurka J: Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet. 2007, 23: 521-529. 10.1016/j.tig.2007.08.004.
PubMed
CAS
Google Scholar
Ronning DR, Guynet C, Ton-Hoang B, Perez ZN, Ghirlando R, Chandler M, Dyda F: Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Mol Cell. 2005, 20: 143-154. 10.1016/j.molcel.2005.07.026.
PubMed
CAS
Google Scholar
Burrus V, Waldor MK: Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol. 2004, 155: 376-386. 10.1016/j.resmic.2004.01.012.
PubMed
CAS
Google Scholar
Toussaint A, Merlin C: Mobile elements as a combination of functional modules. Plasmid. 2002, 47: 26-35. 10.1006/plas.2001.1552.
PubMed
CAS
Google Scholar
Touchon M, Rocha EP: Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol. 2007, 24: 969-981. 10.1093/molbev/msm014.
PubMed
CAS
Google Scholar
Kidwell MG: Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002, 115: 49-63. 10.1023/A:1016072014259.
PubMed
CAS
Google Scholar
Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, et al: Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009, 461: 393-398. 10.1038/nature08358.
PubMed
CAS
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062.
PubMed
CAS
Google Scholar
Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O: Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006, 16: 1262-1269. 10.1101/gr.5290206.
PubMed
CAS
PubMed Central
Google Scholar
Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR: Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA. 2006, 103: 17620-17625. 10.1073/pnas.0605421103.
PubMed
CAS
PubMed Central
Google Scholar
Vieira C, Lepetit D, Dumont S, Biemont C: Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol Biol Evol. 1999, 16: 1251-1255.
PubMed
CAS
Google Scholar
Brosius J, Tiedge H: Reverse transcriptase: mediator of genomic plasticity. Virus Genes. 1995, 11: 163-179. 10.1007/BF01728656.
PubMed
CAS
Google Scholar
Gdula DA, Gerasimova TI, Corces VG: Genetic and molecular analysis of the gypsy chromatin insulator of Drosophila. Proc Natl Acad Sci USA. 1996, 93: 9378-9383. 10.1073/pnas.93.18.9378.
PubMed
CAS
PubMed Central
Google Scholar
Minervini CF, Marsano RM, Casieri P, Fanti L, Caizzi R, Pimpinelli S, Rocchi M, Viggiano L: Heterochromatin protein 1 interacts with 5'UTR of transposable element ZAM in a sequence-specific fashion. Gene. 2007, 393: 1-10. 10.1016/j.gene.2006.12.028.
PubMed
CAS
Google Scholar
Delprat A, Negre B, Puig M, Ruiz A: The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS One. 2009, 4: e7883-10.1371/journal.pone.0007883.
PubMed
PubMed Central
Google Scholar
Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, Birchler J, Peterson T: Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev. 2009, 23: 755-765. 10.1101/gad.1776909.
PubMed
CAS
PubMed Central
Google Scholar
Jehle JA, Nickel A, Vlak JM, Backhaus H: Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3.2 into Cydia pomonella granulovirus. J Mol Evol. 1998, 46: 215-224. 10.1007/PL00006296.
PubMed
CAS
Google Scholar
Drezen JM, Bezier A, Lesobre J, Huguet E, Cattolico L, Periquet G, Dupuy C: The few virus-like genes of Cotesia congregata bracovirus. Arch Insect Biochem Physiol. 2006, 61: 110-122. 10.1002/arch.20108.
PubMed
CAS
Google Scholar
Filee J, Siguier P, Chandler M: I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 2007, 23: 10-15. 10.1016/j.tig.2006.11.002.
PubMed
CAS
Google Scholar
Orgel LE, Crick FH: Selfish DNA: the ultimate parasite. Nature. 1980, 284: 604-607. 10.1038/284604a0.
PubMed
CAS
Google Scholar
Kidwell MG, Lisch DR: Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution. 2001, 55: 1-24.
PubMed
CAS
Google Scholar
Kidwell MG, Lisch D: Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA. 1997, 94: 7704-7711. 10.1073/pnas.94.15.7704.
PubMed
CAS
PubMed Central
Google Scholar
Lukens LN, Zhan S: The plant genome's methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol. 2007, 10: 317-322. 10.1016/j.pbi.2007.04.012.
PubMed
CAS
Google Scholar
Girard L, Freeling M: Regulatory changes as a consequence of transposon insertion. Dev Genet. 1999, 25: 291-296. 10.1002/(SICI)1520-6408(1999)25:4<291::AID-DVG2>3.0.CO;2-5.
PubMed
CAS
Google Scholar
Morgante M, De Paoli E, Radovic S: Transposable elements and the plant pan-genomes. Curr Opin Plant Biol. 2007, 10: 149-155. 10.1016/j.pbi.2007.02.001.
PubMed
CAS
Google Scholar
Bhattacharyya MK, Smith AM, Ellis TH, Hedley C, Martin C: The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell. 1990, 60: 115-122. 10.1016/0092-8674(90)90721-P.
PubMed
CAS
Google Scholar
Daboussi MJ, Langin T: Transposable elements in the fungal plant pathogen Fusarium oxysporum. Genetica. 1994, 93: 49-59. 10.1007/BF01435239.
CAS
Google Scholar
McClintock B: Controlling element and the gene. Cold Spring Harbor Symp Quant Biol. 1956, 31: 197-216.
Google Scholar
Clegg MT, Durbin ML: Flower color variation: a model for the experimental study of evolution. Proc Natl Acad Sci USA. 2000, 97: 7016-7023. 10.1073/pnas.97.13.7016.
PubMed
CAS
PubMed Central
Google Scholar
Zufall RA, Rausher MD: The genetic basis of a flower color polymorphism in the common morning glory (Ipomoea purpurea). J Hered. 2003, 94: 442-448. 10.1093/jhered/esg098.
PubMed
CAS
Google Scholar
Almeida J, Carpenter R, Robbins TP, Martin C, Coen ES: Genetic interactions underlying flower color patterns in Antirrhinum majus. Genes Dev. 1989, 3: 1758-1767. 10.1101/gad.3.11.1758.
PubMed
CAS
Google Scholar
Koga A, Iida A, Hori H, Shimada A, Shima A: Vertebrate DNA transposon as a natural mutator: the medaka fish Tol2 element contributes to genetic variation without recognizable traces. Mol Biol Evol. 2006, 23: 1414-1419. 10.1093/molbev/msl003.
PubMed
CAS
Google Scholar
Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E: A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008, 319: 1527-1530. 10.1126/science.1153040.
PubMed
CAS
Google Scholar
Macdonald SJ, Pastinen T, Long AD: The effect of polymorphisms in the enhancer of split gene complex on bristle number variation in a large wild-caught cohort of Drosophila melanogaster. Genetics. 2005, 171: 1741-1756. 10.1534/genetics.105.045344.
PubMed
CAS
PubMed Central
Google Scholar
Valle J, Vergara-Irigaray M, Merino N, Penades JR, Lasa I: sigmaB regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation. J Bacteriol. 2007, 189: 2886-2896. 10.1128/JB.01767-06.
PubMed
CAS
PubMed Central
Google Scholar
Ziebuhr W, Krimmer V, Rachid S, Lossner I, Gotz F, Hacker J: A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol. 1999, 32: 345-356. 10.1046/j.1365-2958.1999.01353.x.
PubMed
CAS
Google Scholar
McEvoy CR, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM: The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb). 2007, 87: 393-404. 10.1016/j.tube.2007.05.010.
CAS
Google Scholar
Vitte C, Panaud O: LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res. 2005, 110: 91-107. 10.1159/000084941.
PubMed
CAS
Google Scholar
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL: The paleontology of intergene retrotransposons of maize. Nat Genet. 1998, 20: 43-45. 10.1038/1695.
PubMed
CAS
Google Scholar
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, et al: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003, 35: 32-40. 10.1038/ng1227.
PubMed
Google Scholar
Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, et al: Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA. 2004, 101: 13826-13831. 10.1073/pnas.0404012101.
PubMed
CAS
PubMed Central
Google Scholar
Glockner G, Heidel AJ: Centromere sequence and dynamics in Dictyostelium discoideum. Nucleic Acids Res. 2009, 37: 1809-1816. 10.1093/nar/gkp017.
PubMed
PubMed Central
Google Scholar
Mizuno H, Ito K, Wu J, Tanaka T, Kanamori H, Katayose Y, Sasaki T, Matsumoto T: Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes. DNA Res. 2006, 13: 267-274. 10.1093/dnares/dsm001.
PubMed
CAS
Google Scholar
Obado SO, Bot C, Nilsson D, Andersson B, Kelly JM: Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi. Genome Biol. 2007, 8: R37-10.1186/gb-2007-8-3-r37.
PubMed
PubMed Central
Google Scholar
Wong LH, Choo KH: Evolutionary dynamics of transposable elements at the centromere. Trends Genet. 2004, 20: 611-616. 10.1016/j.tig.2004.09.011.
PubMed
CAS
Google Scholar
Bergman CM, Quesneville H, Anxolabehere D, Ashburner M: Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol. 2006, 7: R112-10.1186/gb-2006-7-11-r112.
PubMed
PubMed Central
Google Scholar
The Arabidopsis Genome Initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000, 408: 796-815. 10.1038/35048692.
Google Scholar
Dimitri P, Junakovic N: Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 1999, 15: 123-124. 10.1016/S0168-9525(99)01711-4.
PubMed
CAS
Google Scholar
Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, et al: Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004, 430: 471-476. 10.1038/nature02651.
PubMed
CAS
Google Scholar
Slotkin RK, Martienssen R: Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007, 8: 272-285. 10.1038/nrg2072.
PubMed
CAS
Google Scholar
Arkhipova IR, Morrison HG: Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci USA. 2001, 98: 14497-14502. 10.1073/pnas.231494798.
PubMed
CAS
PubMed Central
Google Scholar
De Felice B, Wilson RR, Argenziano C, Kafantaris I, Conicella C: A transcriptionally active copia-like retroelement in Citrus limon. Cell Mol Biol Lett. 2009, 14: 289-304. 10.2478/s11658-008-0050-5.
PubMed
CAS
Google Scholar
Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD, Jurka J: Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 2007, 17: 992-1004. 10.1101/gr.6070707.
PubMed
CAS
PubMed Central
Google Scholar
Zou S, Kim JM, Voytas DF: The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends. Nucleic Acids Res. 1996, 24: 4825-4831. 10.1093/nar/24.23.4825.
PubMed
CAS
PubMed Central
Google Scholar
Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, Dean R, Farman M: Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res. 2006, 34: 4685-4701. 10.1093/nar/gkl588.
PubMed
CAS
PubMed Central
Google Scholar
George JA, DeBaryshe PG, Traverse KL, Celniker SE, Pardue ML: Genomic organization of the Drosophila telomere retrotransposable elements. Genome Res. 2006, 16: 1231-1240. 10.1101/gr.5348806.
PubMed
CAS
PubMed Central
Google Scholar
Inukai T, Sano Y: Sequence rearrangement in the AT-rich minisatellite of the novel rice transposable element Basho. Genome. 2002, 45: 493-502. 10.1139/g02-010.
PubMed
CAS
Google Scholar
Jordan IK, Rogozin IB, Glazko GV, Koonin EV: Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003, 19: 68-72. 10.1016/S0168-9525(02)00006-9.
PubMed
CAS
Google Scholar
Tikhonov AP, Bennetzen JL, Avramova ZV: Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Plant Cell. 2000, 12: 249-264. 10.1105/tpc.12.2.249.
PubMed
CAS
PubMed Central
Google Scholar
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al: Initial sequencing and comparative analysis of the mouse genome. Nature. 2002, 420: 520-562. 10.1038/nature01262.
PubMed
CAS
Google Scholar
McClintock B: The significance of responses of the genome to challenge. Science. 1984, 226: 792-801. 10.1126/science.15739260.
PubMed
CAS
Google Scholar
Raskina O, Barber JC, Nevo E, Belyayev A: Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008, 120: 351-357. 10.1159/000121084.
PubMed
CAS
Google Scholar
Rebollo R, Horard B, Hubert B, Vieira C: Jumping genes and epigenetics: Towards new species. Gene. 2010, 454: 1-7. 10.1016/j.gene.2010.01.003.
PubMed
CAS
Google Scholar
Kidwell MG: Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc Natl Acad Sci USA. 1983, 80: 1655-1659. 10.1073/pnas.80.6.1655.
PubMed
CAS
PubMed Central
Google Scholar
Charlesworth B, Barton NH: Recombination load associated with selection for increased recombination. Genet Res. 1996, 67: 27-41. 10.1017/S0016672300033450.
PubMed
CAS
Google Scholar
Caceres M, Puig M, Ruiz A: Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res. 2001, 11: 1353-1364. 10.1101/gr.174001.
PubMed
CAS
PubMed Central
Google Scholar
Kersulyte D, Lee W, Subramaniam D, Anant S, Herrera P, Cabrera L, Balqui J, Barabas O, Kalia A, Gilman RH, Berg DE: Helicobacter Pylori's plasticity zones are novel transposable elements. PLoS One. 2009, 4: e6859-10.1371/journal.pone.0006859.
PubMed
PubMed Central
Google Scholar
Burrus V, Pavlovic G, Decaris B, Guedon G: Conjugative transposons: the tip of the iceberg. Mol Microbiol. 2002, 46: 601-610. 10.1046/j.1365-2958.2002.03191.x.
PubMed
CAS
Google Scholar
Nakayama K, Yamashita A, Kurokawa K, Morimoto T, Ogawa M, Fukuhara M, Urakami H, Ohnishi M, Uchiyama I, Ogura Y, et al: The Whole-genome sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive gene amplification during reductive genome evolution. DNA Res. 2008, 15: 185-199. 10.1093/dnares/dsn011.
PubMed
CAS
PubMed Central
Google Scholar
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A: Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet. 2005, 37: 997-1002. 10.1038/ng1615.
PubMed
CAS
Google Scholar
Weil CF: Too many ends: aberrant transposition. Genes Dev. 2009, 23: 1032-1036. 10.1101/gad.1801309.
PubMed
CAS
Google Scholar
Dooner HK, Weil CF: Give-and-take: interactions between DNA transposons and their host plant genomes. Curr Opin Genet Dev. 2007, 17: 486-492. 10.1016/j.gde.2007.08.010.
PubMed
CAS
Google Scholar
Doolittle WF, Sapienza C: Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980, 284: 601-603. 10.1038/284601a0.
PubMed
CAS
Google Scholar
Green M: Mobile DNA elements and spontaneous gene mutation. Eukaryotic Transposable Elements As Mutagenic Agents. Edited by: Lambert M, McDonald J, Weinstein I. 1988, Cold Spring Harbor: Cold Spring Harbor Laboratory Press
Google Scholar
Callinan PA, Batzer MA: Retrotransposable elements and human disease. Genome Dyn. 2006, 1: 104-115. full_text.
PubMed
CAS
Google Scholar
Zampicinini G, Blinov A, Cervella P, Guryev V, Sella G: Insertional polymorphism of a non-LTR mobile element (NLRCth1) in European populations of Chironomus riparius (Diptera, Chironomidae) as detected by transposon insertion display. Genome. 2004, 47: 1154-1163. 10.1139/g04-066.
PubMed
CAS
Google Scholar
Nikaido M, Piskurek O, Okada N: Toothed whale monophyly reassessed by SINE insertion analysis: the absence of lineage sorting effects suggests a small population of a common ancestral species. Mol Phylogenet Evol. 2007, 43: 216-224. 10.1016/j.ympev.2006.08.005.
PubMed
CAS
Google Scholar
Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE: Natural genetic variation caused by transposable elements in humans. Genetics. 2004, 168: 933-951. 10.1534/genetics.104.031757.
PubMed
CAS
PubMed Central
Google Scholar
Huang X, Lu G, Zhao Q, Liu X, Han B: Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. Plant Physiol. 2008, 148: 25-40. 10.1104/pp.108.121491.
PubMed
CAS
PubMed Central
Google Scholar
McCollum AM, Ganko EW, Barrass PA, Rodriguez JM, McDonald JF: Evidence for the adaptive significance of an LTR retrotransposon sequence in a Drosophila heterochromatic gene. BMC Evol Biol. 2002, 2: 5-10.1186/1471-2148-2-5.
PubMed
PubMed Central
Google Scholar
Gonzalez J, Lenkov K, Lipatov M, Macpherson JM, Petrov DA: High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biol. 2008, 6: e251-10.1371/journal.pbio.0060251.
PubMed
PubMed Central
Google Scholar
Gonzalez J, Macpherson JM, Petrov DA: A recent adaptive transposable element insertion near highly conserved developmental loci in Drosophila melanogaster. Mol Biol Evol. 2009
Google Scholar
Schlenke TA, Begun DJ: Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci USA. 2004, 101: 1626-1631. 10.1073/pnas.0303793101.
PubMed
CAS
PubMed Central
Google Scholar
Lyon MF: LINE-1 elements and X chromosome inactivation: a function for "junk" DNA?. Proc Natl Acad Sci USA. 2000, 97: 6248-6249. 10.1073/pnas.97.12.6248.
PubMed
CAS
PubMed Central
Google Scholar
Ray DA, Feschotte C, Pagan HJ, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL: Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res. 2008, 18: 717-728. 10.1101/gr.071886.107.
PubMed
CAS
PubMed Central
Google Scholar
Volff JN, Korting C, Schartl M: Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol. 2000, 17: 1673-1684.
PubMed
CAS
Google Scholar
Eldredge N, Gould SJ: Punctuated Equilibria: an alternative to phyletic gradualism. Models in Paleobiology. Edited by: Schopf TJMr. 1972, Cooper & Co. San Francisco, 82-115.
Google Scholar
Oliver KR, Greene WK: Transposable elements: powerful facilitators of evolution. Bioessays. 2009, 31: 703-714. 10.1002/bies.200800219.
PubMed
CAS
Google Scholar
Zeh DW, Zeh JA, Ishida Y: Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays. 2009
Google Scholar
Koerner MV, Barlow DP: Genomic imprinting-an epigenetic gene-regulatory model. Curr Opin Genet Dev. 2010, 20: 164-170. 10.1016/j.gde.2010.01.009.
PubMed
CAS
PubMed Central
Google Scholar
Martin A, Bendahmane A: A blessing in disguise: Transposable elements are more than parasites. Epigenetics. 2010, 5: 378-380. 10.4161/epi.5.5.11852.
PubMed
CAS
Google Scholar
Banaszynski LA, Allis CD, Lewis PW: Histone variants in metazoan development. Dev Cell. 19: 662-674. 10.1016/j.devcel.2010.10.014.
Kaufmann K, Pajoro A, Angenent GC: Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet. 11: 830-842. 10.1038/nrg2885.
Kota SK, Feil R: Epigenetic transitions in germ cell development and meiosis. Dev Cell. 19: 675-686. 10.1016/j.devcel.2010.10.009.
Huda A, Marino-Ramirez L, Jordan IK: Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA. 2010, 1: 2-10.1186/1759-8753-1-2.
PubMed
PubMed Central
Google Scholar
Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008, 9: 465-476. 10.1038/nrg2341.
PubMed
CAS
Google Scholar
Su Z, Han L, Zhao Z: Conservation and divergence of DNA methylation in eukaryotes: New insights from single base-resolution DNA methylomes. Epigenetics. 2010, 6:
Google Scholar
Zilberman D: The evolving functions of DNA methylation. Curr Opin Plant Biol. 2008, 11: 554-559. 10.1016/j.pbi.2008.07.004.
PubMed
CAS
Google Scholar
Weil C, Martienssen R: Epigenetic interactions between transposons and genes: lessons from plants. Curr Opin Genet Dev. 2008, 18: 188-192. 10.1016/j.gde.2008.01.015.
PubMed
CAS
Google Scholar
Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF: RNA regulation of epigenetic processes. Bioessays. 2009, 31: 51-59. 10.1002/bies.080099.
PubMed
CAS
Google Scholar
Berger SL: The complex language of chromatin regulation during transcription. Nature. 2007, 447: 407-412. 10.1038/nature05915.
PubMed
CAS
Google Scholar
Suganuma T, Workman JL: Crosstalk among histone modifications. Cell. 2008, 135: 604-607. 10.1016/j.cell.2008.10.036.
PubMed
CAS
Google Scholar
Josse T, Teysset L, Todeschini AL, Sidor CM, Anxolabehere D, Ronsseray S: Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation. PLoS Genet. 2007, 3: 1633-1643. 10.1371/journal.pgen.0030158.
PubMed
CAS
Google Scholar
Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS, Nowosielska A, et al: The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009, 138: 1137-1149. 10.1016/j.cell.2009.07.014.
PubMed
CAS
PubMed Central
Google Scholar
Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002, 297: 1833-1837. 10.1126/science.1074973.
PubMed
CAS
Google Scholar
Lippman Z, May B, Yordan C, Singer T, Martienssen R: Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 2003, 1: E67-10.1371/journal.pbio.0000067.
PubMed
PubMed Central
Google Scholar
Gendrel AV, Colot V: Arabidopsis epigenetics: when RNA meets chromatin. Curr Opin Plant Biol. 2005, 8: 142-147. 10.1016/j.pbi.2005.01.007.
PubMed
CAS
Google Scholar
Cedar H, Bergman Y: Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009, 10: 295-304. 10.1038/nrg2540.
PubMed
CAS
Google Scholar
Fulci V, Macino G: Quelling: post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Curr Opin Microbiol. 2007, 10: 199-203. 10.1016/j.mib.2007.03.016.
PubMed
CAS
Google Scholar
Plasterk RH, Ketting RF: The silence of the genes. Curr Opin Genet Dev. 2000, 10: 562-567. 10.1016/S0959-437X(00)00128-3.
PubMed
CAS
Google Scholar
Girard A, Hannon GJ: Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 2008, 18: 136-148. 10.1016/j.tcb.2008.01.004.
PubMed
CAS
PubMed Central
Google Scholar
Thomson T, Lin H: The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009, 25: 355-376. 10.1146/annurev.cellbio.24.110707.175327.
PubMed
CAS
PubMed Central
Google Scholar
Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, et al: The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003, 422: 859-868. 10.1038/nature01554.
PubMed
CAS
Google Scholar
Galagan JE, Selker EU: RIP: the evolutionary cost of genome defense. Trends Genet. 2004, 20: 417-423. 10.1016/j.tig.2004.07.007.
PubMed
CAS
Google Scholar
Lisch D: Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol. 2009, 60: 43-66. 10.1146/annurev.arplant.59.032607.092744.
PubMed
CAS
Google Scholar
Michalak P: Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity. 2009, 102: 45-50. 10.1038/hdy.2008.48.
PubMed
CAS
Google Scholar
Hollister JD, Gaut BS: Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009
Google Scholar
Gehring M, Bubb KL, Henikoff S: Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science. 2009, 324: 1447-1451. 10.1126/science.1171609.
PubMed
CAS
PubMed Central
Google Scholar
Huda A, Marino-Ramirez L, Landsman D, Jordan IK: Repetitive DNA elements, nucleosome binding and human gene expression. Gene. 2009, 436: 12-22. 10.1016/j.gene.2009.01.013.
PubMed
CAS
PubMed Central
Google Scholar
Eichenbaum Z, Livneh Z: UV light induces IS10 transposition in Escherichia coli. Genetics. 1998, 149: 1173-1181.
PubMed
CAS
PubMed Central
Google Scholar
Ratner VA, Zabanov SA, Kolesnikova OV, Vasilyeva LA: Induction of the mobile genetic element Dm-412 transpositions in the Drosophila genome by heat shock treatment. Proc Natl Acad Sci USA. 1992, 89: 5650-5654. 10.1073/pnas.89.12.5650.
PubMed
CAS
PubMed Central
Google Scholar
Walbot V: Reactivation of Mutator transposable elements of maize by ultraviolet light. Mol Gen Genet. 1992, 234: 353-360. 10.1007/BF00538694.
PubMed
CAS
Google Scholar
Grandbastien MA: Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 1998, 3: 181-187. 10.1016/S1360-1385(98)01232-1.
Google Scholar
Capy P, Gasperi G, Biemont C, Bazin C: Stress and transposable elements: co-evolution or useful parasites?. Heredity. 2000, 85 (Pt 2): 101-106. 10.1046/j.1365-2540.2000.00751.x.
PubMed
CAS
Google Scholar
Bossdorf O, Richards CL, Pigliucci M: Epigenetics for ecologists. Ecol Lett. 2008, 11: 106-115.
PubMed
Google Scholar
Richards EJ: Population epigenetics. Curr Opin Genet Dev. 2008, 18: 221-226. 10.1016/j.gde.2008.01.014.
PubMed
CAS
Google Scholar
Obbard DJ, Gordon KH, Buck AH, Jiggins FM: The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 99-115. 10.1098/rstb.2008.0168.
PubMed
CAS
PubMed Central
Google Scholar
Buchon N, Vaury C: RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity. 2006, 96: 195-202. 10.1038/sj.hdy.6800789.
PubMed
CAS
Google Scholar
Cerutti H, Casas-Mollano JA: On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006, 50: 81-99. 10.1007/s00294-006-0078-x.
PubMed
CAS
PubMed Central
Google Scholar
Shabalina SA, Koonin EV: Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 2008, 23: 578-587. 10.1016/j.tree.2008.06.005.
PubMed
PubMed Central
Google Scholar
Makarova KS, Wolf YI, van der Oost J, Koonin EV: Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009, 4: 29-10.1186/1745-6150-4-29.
PubMed
PubMed Central
Google Scholar
Furuta Y, Abe K, Kobayashi I: Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res. 38: 2428-2443. 10.1093/nar/gkp1226.
Kobayashi I: Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 2001, 29: 3742-3756. 10.1093/nar/29.18.3742.
PubMed
CAS
PubMed Central
Google Scholar
Marraffini LA, Sontheimer EJ: CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010, 11: 181-190. 10.1038/nrg2749.
PubMed
CAS
PubMed Central
Google Scholar
van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ: CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci. 2009, 34: 401-407. 10.1016/j.tibs.2009.05.002.
PubMed
CAS
Google Scholar
Jablonka E, Lamb MJ: Evolution in four dimensions. 2005, Cambridge (MA): MIT Press
Google Scholar
Johannes F, Colot V, Jansen RC: Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet. 2008, 9: 883-890. 10.1038/nrg2467.
PubMed
CAS
Google Scholar
Chinnusamy V, Zhu JK: Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol. 2009, 12: 133-139. 10.1016/j.pbi.2008.12.006.
PubMed
CAS
PubMed Central
Google Scholar
Jablonka E, Raz G: Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009, 84: 131-176. 10.1086/598822.
PubMed
Google Scholar
Slotkin RK, Freeling M, Lisch D: Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet. 2005, 37: 641-644. 10.1038/ng1576.
PubMed
CAS
Google Scholar
Slotkin RK, Freeling M, Lisch D: Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics. 2003, 165: 781-797.
PubMed
CAS
PubMed Central
Google Scholar
Blumenstiel JP, Hartl DL: Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc Natl Acad Sci USA. 2005, 102: 15965-15970. 10.1073/pnas.0508192102.
PubMed
CAS
PubMed Central
Google Scholar
Chambeyron S, Popkova A, Payen-Groschene G, Brun C, Laouini D, Pelisson A, Bucheton A: piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline. Proc Natl Acad Sci USA. 2008, 105: 14964-14969. 10.1073/pnas.0805943105.
PubMed
CAS
PubMed Central
Google Scholar
Zhang Z, Saier MH: A novel mechanism of transposon-mediated gene activation. PLoS Genet. 2009, 5: e1000689-10.1371/journal.pgen.1000689.
PubMed
PubMed Central
Google Scholar
McDonald JF: Evolution and consequences of transposable elements. Curr Opin Genet Dev. 1993, 3: 855-864. 10.1016/0959-437X(93)90005-A.
PubMed
CAS
Google Scholar
Miller WJ, Hagemann S, Reiter E, Pinsker W: P-element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc Natl Acad Sci USA. 1992, 89: 4018-4022. 10.1073/pnas.89.9.4018.
PubMed
CAS
PubMed Central
Google Scholar
Volff JN: Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays. 2006, 28: 913-922. 10.1002/bies.20452.
PubMed
CAS
Google Scholar
Barry EG, Witherspoon DJ, Lampe DJ: A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics. 2004, 166: 823-833. 10.1534/genetics.166.2.823.
PubMed
CAS
PubMed Central
Google Scholar
Silva JC, Kidwell MG: Horizontal transfer and selection in the evolution of P elements. Mol Biol Evol. 2000, 17: 1542-1557.
PubMed
CAS
Google Scholar
Villasante A, Abad JP, Planello R, Mendez-Lago M, Celniker SE, de Pablos B: Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res. 2007, 17: 1909-1918. 10.1101/gr.6365107.
PubMed
CAS
PubMed Central
Google Scholar
Mallet F, Bouton O, Prudhomme S, Cheynet V, Oriol G, Bonnaud B, Lucotte G, Duret L, Mandrand B: The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA. 2004, 101: 1731-1736. 10.1073/pnas.0305763101.
PubMed
CAS
PubMed Central
Google Scholar
Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, et al: Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000, 403: 785-789. 10.1038/35001608.
PubMed
CAS
Google Scholar
Kapitonov VV, Jurka J: RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 2005, 3: e181-10.1371/journal.pbio.0030181.
PubMed
PubMed Central
Google Scholar
Kipling D, Warburton PE: Centromeres, CENP-B and Tigger too. Trends Genet. 1997, 13: 141-145. 10.1016/S0168-9525(97)01098-6.
PubMed
CAS
Google Scholar
Casola C, Hucks D, Feschotte C: Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol. 2008, 25: 29-41. 10.1093/molbev/msm221.
PubMed
CAS
PubMed Central
Google Scholar
Curcio MJ, Derbyshire KM: The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol. 2003, 4: 865-877. 10.1038/nrm1241.
PubMed
CAS
Google Scholar
Lee SH, Oshige M, Durant ST, Rasila KK, Williamson EA, Ramsey H, Kwan L, Nickoloff JA, Hromas R: The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA. 2005, 102: 18075-18080. 10.1073/pnas.0503676102.
PubMed
CAS
PubMed Central
Google Scholar
Tipney HJ, Hinsley TA, Brass A, Metcalfe K, Donnai D, Tassabehji M: Isolation and characterisation of GTF2IRD2, a novel fusion gene and member of the TFII-I family of transcription factors, deleted in Williams-Beuren syndrome. Eur J Hum Genet. 2004, 12: 551-560. 10.1038/sj.ejhg.5201174.
PubMed
CAS
Google Scholar
Quesneville H, Nouaud D, Anxolabehere D: Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol Biol Evol. 2005, 22: 741-746. 10.1093/molbev/msi064.
PubMed
CAS
Google Scholar
Feschotte C: Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008, 9: 397-405. 10.1038/nrg2337.
PubMed
CAS
PubMed Central
Google Scholar
Sinzelle L, Izsvak Z, Ivics Z: Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci. 2009, 66: 1073-1093. 10.1007/s00018-009-8376-3.
PubMed
CAS
Google Scholar
Lin L, Jiang P, Shen S, Sato S, Davidson BL, Xing Y: Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes. Hum Mol Genet. 2009, 18: 2204-2214. 10.1093/hmg/ddp152.
PubMed
CAS
PubMed Central
Google Scholar
Sorek R, Ast G, Graur D: Alu-containing exons are alternatively spliced. Genome Res. 2002, 12: 1060-1067. 10.1101/gr.229302.
PubMed
CAS
PubMed Central
Google Scholar
Concepcion D, Flores-Garcia L, Hamilton BA: Multipotent genetic suppression of retrotransposon-induced mutations by Nxf1 through fine-tuning of alternative splicing. PLoS Genet. 2009, 5: e1000484-10.1371/journal.pgen.1000484.
PubMed
PubMed Central
Google Scholar
Krull M, Brosius J, Schmitz J: Alu-SINE exonization: en route to protein-coding function. Mol Biol Evol. 2005, 22: 1702-1711. 10.1093/molbev/msi164.
PubMed
CAS
Google Scholar
Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J: Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res. 2007, 17: 1139-1145. 10.1101/gr.6320607.
PubMed
CAS
PubMed Central
Google Scholar
Lipatov M, Lenkov K, Petrov DA, Bergman CM: Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biol. 2005, 3: 24-10.1186/1741-7007-3-24.
PubMed
PubMed Central
Google Scholar
Barbazuk WB, Fu Y, McGinnis KM: Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res. 2008, 18: 1381-1392. 10.1101/gr.053678.106.
PubMed
CAS
Google Scholar
Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH, Jiang N: The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell. 2009, 21: 25-38. 10.1105/tpc.108.063206.
PubMed
CAS
PubMed Central
Google Scholar
Amit M, Sela N, Keren H, Melamed Z, Muler I, Shomron N, Izraeli S, Ast G: Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene. BMC Mol Biol. 2007, 8: 109-10.1186/1471-2199-8-109.
PubMed
PubMed Central
Google Scholar
Yang S, Arguello JR, Li X, Ding Y, Zhou Q, Chen Y, Zhang Y, Zhao R, Brunet F, Peng L, et al: Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet. 2008, 4: e3-10.1371/journal.pgen.0040003.
PubMed
PubMed Central
Google Scholar
Britten RJ: Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol Phylogenet Evol. 1996, 5: 13-17. 10.1006/mpev.1996.0003.
PubMed
CAS
Google Scholar
Chen B, Walser JC, Rodgers TH, Sobota RS, Burke MK, Rose MR, Feder ME: Abundant, diverse, and consequential P elements segregate in promoters of small heat-shock genes in Drosophila populations. J Evol Biol. 2007, 20: 2056-2066. 10.1111/j.1420-9101.2007.01348.x.
PubMed
CAS
Google Scholar
Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T: A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst. 2008, 83: 321-329. 10.1266/ggs.83.321.
PubMed
CAS
Google Scholar
Wessler SR, Bureau TE, White SE: LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995, 5: 814-821. 10.1016/0959-437X(95)80016-X.
PubMed
CAS
Google Scholar
Gombart AF, Saito T, Koeffler HP: Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics. 2009, 10: 321-10.1186/1471-2164-10-321.
PubMed
PubMed Central
Google Scholar
Xu L, Wang L, Liu T, Qian W, Gao Y, An C: Triton, a novel family of miniature inverted-repeat transposable elements (MITEs) in Trichosanthes kirilowii Maximowicz and its effect on gene regulation. Biochem Biophys Res Commun. 2007, 364: 668-674. 10.1016/j.bbrc.2007.10.069.
PubMed
CAS
Google Scholar
Pereira V, Enard D, Eyre-Walker A: The effect of transposable element insertions on gene expression evolution in rodents. PLoS ONE. 2009, 4: e4321-10.1371/journal.pone.0004321.
PubMed
PubMed Central
Google Scholar
Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y, Wei CL, Ng HH, Liu ET: Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 2008, 18: 1752-1762. 10.1101/gr.080663.108.
PubMed
CAS
PubMed Central
Google Scholar
Britten RJ, Kohne DE: Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968, 161: 529-540. 10.1126/science.161.3841.529.
PubMed
CAS
Google Scholar
Grula JW: Gene regulation in evolution: a history. Science. 2008, 322: 1633-10.1126/science.322.5908.1633.
PubMed
CAS
Google Scholar
Maynard Smith J: The evolution of sex. 1978, Cambridge: Cambridge University Press
Google Scholar
Le Rouzic A, Deceliere G: Models of the population genetics of transposable elements. Genet Res. 2005, 85: 171-181. 10.1017/S0016672305007585.
PubMed
CAS
Google Scholar
Brookfield JF: The ecology of the genome - mobile DNA elements and their hosts. Nat Rev Genet. 2005, 6: 128-136. 10.1038/nrg1524.
PubMed
CAS
Google Scholar
Nuzhdin SV: Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica. 1999, 107: 129-137. 10.1023/A:1003957323876.
PubMed
CAS
Google Scholar
Charlesworth B, Sniegowski P, Stephan W: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994, 371: 215-220. 10.1038/371215a0.
PubMed
CAS
Google Scholar
Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B: On the role of unequal exchange in the containment of transposable element copy number. Genet Res. 1988, 52: 223-235. 10.1017/S0016672300027695.
PubMed
CAS
Google Scholar
Wright SI, Schoen DJ: Transposon dynamics and the breeding system. Genetica. 1999, 107: 139-148. 10.1023/A:1003953126700.
PubMed
CAS
Google Scholar
Quesneville H, Anxolabehere D: Dynamics of transposable elements in metapopulations: a model of P element invasion in Drosophila. Theor Popul Biol. 1998, 54: 175-193. 10.1006/tpbi.1997.1353.
PubMed
CAS
Google Scholar
Le Rouzic A, Boutin TS, Capy P: Long-term evolution of transposable elements. Proc Natl Acad Sci USA. 2007, 104: 19375-19380. 10.1073/pnas.0705238104.
PubMed
CAS
PubMed Central
Google Scholar
Flowers JM, Purugganan MD: The evolution of plant genomes: scaling up from a population perspective. Curr Opin Genet Dev. 2008, 18: 565-570. 10.1016/j.gde.2008.11.005.
PubMed
CAS
Google Scholar
Lynch M, Conery JS: The origins of genome complexity. Science. 2003, 302: 1401-1404. 10.1126/science.1089370.
PubMed
CAS
Google Scholar
Pasyukova EG, Nuzhdin SV, Morozova TV, Mackay TF: Accumulation of transposable elements in the genome of Drosophila melanogaster is associated with a decrease in fitness. J Hered. 2004, 95: 284-290. 10.1093/jhered/esh050.
PubMed
CAS
Google Scholar
Lockton S, Ross-Ibarra J, Gaut BS: Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc Natl Acad Sci USA. 2008, 105: 13965-13970. 10.1073/pnas.0804671105.
PubMed
CAS
PubMed Central
Google Scholar
Picot S, Wallau GL, Loreto EL, Heredia FO, Hua-Van A, Capy P: The mariner transposable element in natural populations of Drosophila simulans. Heredity. 2008, 101: 53-59. 10.1038/hdy.2008.27.
PubMed
CAS
Google Scholar
Hickey DA: Selfish DNA: a sexually-transmitted nuclear parasite. Genetics. 1982, 101: 519-531.
PubMed
CAS
PubMed Central
Google Scholar
Arkhipova IR: Mobile genetic elements and sexual reproduction. Cytogenet Genome Res. 2005, 110: 372-382. 10.1159/000084969.
PubMed
CAS
Google Scholar
Dolgin ES, Charlesworth B: The fate of transposable elements in asexual populations. Genetics. 2006, 174: 817-827. 10.1534/genetics.106.060434.
PubMed
CAS
PubMed Central
Google Scholar
Arkhipova IR, Meselson M: Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA. 2005, 102: 11781-11786. 10.1073/pnas.0505333102.
PubMed
CAS
PubMed Central
Google Scholar
Gladyshev EA, Arkhipova IR: Genome structure of bdelloid rotifers: shaped by asexuality or desiccation?. J Hered. 2010, 101 (Suppl 1): S85-93. 10.1093/jhered/esq008.
PubMed
CAS
Google Scholar
Gladyshev EA, Arkhipova IR: A single-copy IS5-like transposon in the genome of a bdelloid rotifer. Mol Biol Evol. 2009, 26: 1921-1929. 10.1093/molbev/msp104.
PubMed
CAS
Google Scholar
Wagner A: Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol. 2006, 23: 723-733. 10.1093/molbev/msj085.
PubMed
CAS
Google Scholar
Doolittle WF, Kirkwood TB, Dempster MA: Selfish DNAs with self-restraint. Nature. 1984, 307: 501-502. 10.1038/307501b0.
PubMed
CAS
Google Scholar
Charlesworth B, Charlesworth D: The population dynamics of transposable elements. Genet Res Camb. 1983, 42: 1-27. 10.1017/S0016672300021455.
Google Scholar
Morgan MT: Transposable element number in mixed mating populations. Genet Res. 2001, 77: 261-275. 10.1017/S0016672301005067.
PubMed
CAS
Google Scholar
Charlesworth B, Langley CH, Sniegowski PD: Transposable element distributions in Drosophila. Genetics. 1997, 147: 1993-1995.
PubMed
CAS
PubMed Central
Google Scholar
Charlesworth D, Charlesworth B: Transposable elements in inbreeding and outbreeding populations. Genetics. 1995, 140: 415-417.
PubMed
CAS
PubMed Central
Google Scholar
Biemont C, Tsitrone A, Vieira C, Hoogland C: Transposable element distribution in Drosophila. Genetics. 1997, 147: 1997-1999.
PubMed
CAS
PubMed Central
Google Scholar
Dolgin ES, Charlesworth B, Cutter AD: Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes. Genet Res. 2008, 90: 317-329. 10.1017/S0016672308009440.
CAS
Google Scholar
Wright SI, Le QH, Schoen DJ, Bureau TE: Population dynamics of an Ac-like transposable element in self- and cross-pollinating Arabidopsis. Genetics. 2001, 158: 1279-1288.
PubMed
CAS
PubMed Central
Google Scholar
Loreto EL, Carareto CM, Capy P: Revisiting horizontal transfer of transposable elements in Drosophila. Heredity. 2008, 100: 545-554. 10.1038/sj.hdy.6801094.
PubMed
CAS
Google Scholar
Pace JK, Gilbert C, Clark MS, Feschotte C: Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci USA. 2008, 105: 17023-17028. 10.1073/pnas.0806548105.
PubMed
CAS
PubMed Central
Google Scholar
Gladyshev EA, Meselson M, Arkhipova IR: Massive horizontal gene transfer in bdelloid rotifers. Science. 2008, 320: 1210-1213. 10.1126/science.1156407.
PubMed
CAS
Google Scholar
Roulin A, Piegu B, Fortune PM, Sabot F, D'Hont A, Manicacci D, Panaud O: Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae. BMC Evol Biol. 2009, 9: 58-10.1186/1471-2148-9-58.
PubMed
PubMed Central
Google Scholar
Jordan IK, McDonald JF: Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements. Genetica. 1999, 107: 3-13. 10.1023/A:1004022704701.
PubMed
CAS
Google Scholar
Sharma A, Schneider KL, Presting GG: Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations. Proc Natl Acad Sci USA. 2008, 105: 15470-15474. 10.1073/pnas.0805694105.
PubMed
CAS
PubMed Central
Google Scholar
Marco A, Marin I: How Athila retrotransposons survive in the Arabidopsis genome. BMC Genomics. 2008, 9: 219-10.1186/1471-2164-9-219.
PubMed
PubMed Central
Google Scholar
Le Rouzic A, Capy P: The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics. 2005, 169: 1033-1043. 10.1534/genetics.104.031211.
PubMed
CAS
PubMed Central
Google Scholar
Venner S, Feschotte C, Biemont C: Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet. 2009, 25: 317-323. 10.1016/j.tig.2009.05.003.
PubMed
CAS
PubMed Central
Google Scholar
Le Rouzic A, Dupas S, Capy P: Genome ecosystem and transposable elements species. Gene. 2007, 390: 214-220. 10.1016/j.gene.2006.09.023.
PubMed
CAS
Google Scholar
Naas T, Blot M, Fitch WM, Arber W: Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics. 1994, 136: 721-730.
PubMed
CAS
PubMed Central
Google Scholar
Theuri J, Phelps-Durr T, Mathews S, Birchler J: A comparative study of retrotransposons in the centromeric regions of A and B chromosomes of maize. Cytogenet Genome Res. 2005, 110: 203-208. 10.1159/000084953.
PubMed
CAS
Google Scholar
Yang HP, Hung TL, You TL, Yang TH: Genomewide comparative analysis of the highly abundant transposable element DINE-1 suggests a recent transpositional burst in Drosophila yakuba. Genetics. 2006, 173: 189-196. 10.1534/genetics.105.051714.
PubMed
CAS
PubMed Central
Google Scholar
Yang L, Bennetzen JL: Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA. 2009, 106: 19922-19927.
PubMed
CAS
PubMed Central
Google Scholar