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Abstract

Background: Splice sites prediction has been a long-standing problem in bioinformatics. Although many computational
approaches developed for splice site prediction have achieved satisfactory accuracy, further improvement in predictive
accuracy is significant, for it is contributing to predict gene structure more accurately. Determining a proper window size
before prediction is necessary. Overly long window size may introduce some irrelevant features, which would reduce
predictive accuracy, while the use of short window size with maximum information may performs better in terms of
predictive accuracy and time cost. Furthermore, the number of false splice sites following the GT–AG rule far exceeds that
of true splice sites, accurate and rapid prediction of splice sites using imbalanced large samples has always been a
challenge. Therefore, based on the short window size and imbalanced large samples, we developed a new
computational method named chi-square decision table (χ2-DT) for donor splice site prediction.
Results: Using a short window size of 11 bp, χ2-DT extracts the improved positional features and compositional features
based on chi-square test, then introduces features one by one based on information gain, and constructs a balanced
decision table aimed at implementing imbalanced pattern classification. With a 2000:271,132 (true sites:false sites) training
set, χ2-DT achieves the highest independent test accuracy (93.34%) when compared with three classifiers (random forest,
artificial neural network, and relaxed variable kernel density estimator) and takes a short computation time (89 s). χ2-DT
also exhibits good independent test accuracy (92.40%), when validated with BG-570 mutated sequences with frameshift
errors (nucleotide insertions and deletions). Moreover, χ2-DT is compared with the long-window size-based methods and
the short-window size-based methods, and is found to perform better than all of them in terms of predictive accuracy.

Conclusions: Based on short window size and imbalanced large samples, the proposed method not only achieves
higher predictive accuracy than some existing methods, but also has high computational speed and good robustness
against nucleotide insertions and deletions.
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Background
The amount of genomic sequence data has increased expo-
nentially as a result of the advancement in sequencing
technology. Therefore, there is an urgent need to complete
genome annotation quickly and reliably. Gene identification
is an important task in genome annotation. Most eukaryotic
genes consist of protein-coding regions (exons) and non-
coding regions (introns), with the exons being separated by
intervening introns [1]. The boundaries between exons and
introns are called splice sites and are the locations where
RNA splicing occurs. The 5′ end of an intron is a donor
splice site and the 3′ end is an acceptor splice site. If we can
accurately detect splice sites, the coding regions of DNA
sequences can be located, so splice site prediction plays a
key role in gene identification. Almost 99% of splice sites
are canonical GT–AG pairs [2], that is, dinucleotides GT
and AG for donor and acceptor splice sites, respectively.
However, this strong conservation observed in splice sites is
not sufficient to accurately identify them, due to the abun-
dance of dinucleotides GT and AG appearing at non-splice
site positions. We therefore face an extremely imbalanced
classification task, namely, the discrimination of small
numbers of true splice sites from much larger volumes of
decoy positions with the dinucleotides GT and AG [3].
For splice site prediction based on machine learning

approaches, the main steps are feature extraction and
classifier selection or design. The extracted features are
usually based on nucleotide position information [4–9],
the frequency of k-mers [4, 6, 10], dependence between
adjacent and nonadjacent nucleotides [1, 6, 11–13],
RNA secondary structure information [14–18], DNA
structural properties [19], and some other attributes that
can be calculated directly from sequence information
[20–22]. The commonly used classifiers include support
vector machine (SVM) [1, 3, 5, 6, 10, 18, 23–25],
artificial neural network (ANN) [26–29], random forest
(RF) [13], and decision tree [30].
Although relatively high accuracy has been achieved

with the methods currently available (e.g., the accuracy
for most donor splice site prediction based on the HS3D
dataset has exceeded 90% [6, 10, 12, 13, 19, 24, 31]),
further study is still necessary due to the following
factors: 1) Determining a suitable window size prior to
the application of any prediction method is essential
[32]. Overly long window size may introduce some
irrelevant features that would reduce predictive accur-
acy, and may take more computational time and
memory space. 2) The HS3D dataset contains 2796/
271,937 true/false donor sites (i.e., the ratio of true sites
to false sites is almost 1:100). If all negative samples
(false sites) are employed for building the prediction
model, the huge number of training samples will in-
crease the time complexity of some classifiers (e.g., SVM
and ANN) [3, 33], and an extremely imbalanced class

distribution will lead to poor predictive accuracy for
some methods, for example, weighted matrix model
(WMM) [9] and maximal dependency decomposition
(MDD) [34]. If only a part of negative samples (e.g.,
2796 negative samples [20]) are employed, predictive
accuracy may be lost due to the underutilization of nega-
tive samples. 3) There are three billion DNA base pairs
in the human genome, so the expected number of GT/
AG is over 187 million. This abundance means that even
a subtle improvement of the total predictive accuracy
would drastically increase the absolute quantity of de-
tected real splice sites.
In this study, we developed a computational approach

to predict donor splice sites based on short window size
and extremely imbalanced large samples. Our method,
named chi-square decision table (χ2-DT), extracts the
improved positional features based on chi-square tests,
combines them with the frequencies of dinucleotides, and
then designs a balanced decision table to predict the test
samples, which can effectively resolve the imbalanced pat-
tern classification problem. The results show that χ2-DT
can achieve high predictive accuracy, high computational
speed, and relatively good robustness against DNA
sequencing errors (nucleotide insertions and deletions).

Datasets and methods
Datasets
We collected 2796/271,928 true/false donor splice sites
from the publicly available HS3D dataset [35] (http://www.
sci.unisannio.it/docenti/rampone/) for the experiments, and
named them HS3Dall. Each true/false donor splice
site-containing sequence has 140 nucleotides, with the con-
served dinucleotide GT at the 71st and 72nd positions, and
does not contain non-ACGT bases. Setting the positions of
the conserved GT as 00, the upstream positions were
successively labeled as − 1, − 2, …, − 70, whereas the down-
stream positions were successively labeled as 1, 2, …, 68.
From HS3Dall, we randomly selected 796 true sites and 796
false sites to constitute a balanced testing set, named
HS3D-test1:1, and then used the remaining sites to construct
the training sets with different ratios of true sites to false
sites. Additionally, to compare the performance of χ2-DT
with that of other methods, we selected 2796 true sites and
different numbers of false sites from HS3Dall to construct
four datasets, namely, HS3DI, HS3DII, HS3DIII, and HS3DIV.
The BG-570 dataset [36] (http://genome.crg.es/data-

sets/genomics96/) contains 570 human genomic DNA
sequences and 570 corresponding mutated sequences.
The mutated sequences were generated by introducing
1% random frameshift errors (nucleotide insertions and
deletions) into the original DNA sequences. Using the
BG-570 dataset, we constructed two testing sets (BG-570orig
and BG-570muta) to evaluate the robustness of χ2-DT
against the frameshift errors. The extracting process of
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true/false sites in these two testing sets is described in the
“Results and Discussion” section.
The numbers of true/false sites in the datasets

described above are given in Table 1.

Compressing 2 × 4 contingency table of each position
with chi-square test
Just like Pearson correlation coefficient [37] and mutual
information estimators [38] that are used for identifying
relationships between variables, maximal information
coefficient (MIC) [39] is a novel measure proposed to
capture dependences between paired variables. For a pair of
data series x and y, to calculate their MICvalue, Approx-
MaxMI algorithm [39] sets nx × ny < n0.6 as the maximal
grid size restriction; here, n is the sample size, and nx and
ny are partition bins on x and y, respectively. Given n = 100,
the MIC score for independent paired variables should be
zero, and the corresponding partition should be a 2 × 2
grid. However, the ApproxMaxMI algorithm tends to fall
into the maximal grid size (1000.6 ≈ 16), the corresponding
partition is a 2 × 8 grid and the corresponding MIC score is
0.24, which leads to a nontrivial MIC score for independent
paired variables under finite samples [40]. Recently, Chen
et al. [40] presented the ChiMIC algorithm, which can
control the excessive grid partitions of the ApproxMaxMI
algorithm. Removing the maximal grid size limitation in
ApproxMaxMI, ChiMIC uses a chi-square test based on a
local r × 2 grid to determine whether the new endpoint
should be introduced. If the p-value of the chi-square test is
lower than a given threshold, the new endpoint is intro-
duced for partition and ChiMIC continues searching for
the next optimal endpoint. If the p-value of the chi-square
test is greater than the given threshold, the new endpoint is
discarded and the process of partition is terminated. For
paired independent variables with n = 100, the MIC score

calculated by ChiMIC is only about 0.06, and the corre-
sponding partition is a 2 × 2 or 2 × 3 grid, clearly, the grid
partition produced by ChiMIC is more reasonable.
Similarly, for each position in donor splice site-containing

sequences, we can build a 2 × 4 contingency table to re-
spectively count the frequencies of four bases in positive
and negative samples. Figure 1a is the 2 × 4 table or 2 × 4
grid of position 6 based on HS3D-train1:135. Is the 2 × 4
table reasonable? Could it be compressed into a 2 × 3 table,
or even a 2 × 2 table? For the local 2 × 2 contingency table
(the light gray area in Fig. 1a), the p-value of the chi-square
test is 0.8933 (> 0.01). This indicates that the endpoint
between A and T should not be introduced according to
the ChiMIC algorithm. In other words, that the base at pos-
ition 6 is A or T cannot provide valuable information for
distinguishing positive and negative samples. Similarly, the
endpoint between C and G should not be introduced. Fi-
nally, the 2 × 4 contingency table of position 6 is com-
pressed into a 2 × 2 contingency table (see Fig. 1b).
The process of compressing the 2 × 4 contingency table

of each position is described below. First, compress the
2 × 4 contingency table into six 2 × 3 contingency tables
by merging any two different bases, and pick out the 2 × 3
contingency table that has the maximum chi-square value,
denoted as max2 × 3. Next, reconstruct a local 2 × 2 contin-
gency table based on the merged bases in max2 × 3 and
perform a chi-square test. If the p-value is lower than a
given threshold, max2 × 3 is unreasonable and should be
backtracked to the 2 × 4 contingency table; then, the com-
pression process is terminated. If the p-value is greater
than a given threshold, max2 × 3 is reasonable; then, try to
compress max2 × 3 into a 2 × 2 contingency table following
the two steps above. Figure 2 further illustrates the
compression procedure in detail.

Window size determination
For each position in the sequences of 140 bp, we obtain
a 2 × r contingency Table (2 ≤ r ≤ 4) after compression
based on HS3D-train1:135; then, we perform a chi-square
test with the 2 × r contingency table and calculate the
logarithm of the reciprocal of p-value, here denoted as
log(p− 1) (see Fig. 3). Higher log(p− 1) values mean that
the corresponding positions are more important for
discriminating positives from negatives. Therefore, we
determine 11 bp (positions − 3 to + 8, excluding GT at
positions 00) as the window size for donor splice site
prediction. In the following text, the study will be based
on the window size of 11 bp unless otherwise specified.

Feature extraction
From each sample (a sequence of 11 bp in length), we
extract 11 positional features and 16 compositional
features. The compositional features are the frequencies
of dinucleotides, which range from 0 to 10 because the

Table 1 Descriptions of various datasets

Datasets Number of true
donor sites

Number of false
donor sites

HS3Dall 2796 271928

HS3DI 2796 2796

HS3DII 2769 5000

HS3DIII 2796 10000

HS3DIV 2796 15000

HS3D-test1:1 796 796

HS3D-train1:1 2000 2000

HS3D-train1:10 2000 20000

HS3D-train1:20 2000 40000

HS3D-train1:50 2000 100000

HS3D-train1:135 2000 271132

BG-570orig 2127 149039

BG-570muta 2081 149572
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sequence sample is only 11 bp. For each feature, we can
obtain a 2 × r contingency Table (2 ≤ r ≤ 11) after
compression; then, the status values of each feature
correspond to r columns of the 2 × r table. For example,
based on HS3D-train1:135, position 6 whose original
status values are {A, C, G, T} corresponds to a 2 × 2 con-
tingency table after compression, so it has two status
values as {AT, CG}; the frequency of dinucleotide AA
whose original status values are {0, 1, …, 10} corresponds
to a 2 × 3 contingency table after compression, so it has
three status values as {0, 1, 2–10}. It should be noted
that, for the compositional features, only the adjacent
original status values can be merged together in com-
pression because they are sequential.

Feature introduction
Suppose the proportion of the kth class samples in
sample set D is pk (k = 1,2); then, the information
entropy of D is defined as:

A T C G
A

positive

negative

399 461 571 569

67977 77641 61049 64465

860

145618

1140

125514

AT CG

positive

negative

B

Fig. 1 Compressing the 2 × 4 contingency table of position 6. a: 2×4
contingency table of position 6. b: 2×2 contingency table of
position 6 after compression

Fig. 2 Illustration of compression procedure (position 6 in HS3D-train1:135)
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H Dð Þ ¼ −
X2
k¼1

pk log2pk ð1Þ

Given a feature Xi (1 ≤ i ≤ 27) that has r(2 ≤ r ≤ 11)
status values as {s1, s2, …, sj, …, sr}, the information gain
[41] that Xi brings for D can be calculated by:

Gain D;Xið Þ ¼ H Dð Þ−
Xr

j¼1

j Dj j
j D j H Dj

� � ð2Þ

where Dj represents the samples in D whose Xi takes the
status value as sj(1 ≤ j ≤ r), while H(Dj) is the information
entropy of Dj.
From the features whose information gains are above

the average level, we pick out the one that has the
highest gain ratio to be the first introduced feature.
Here, the gain ratio of Xi is defined as:

GainRatio D;Xið Þ ¼ Gain D;Xið Þ
IV Xið Þ ð3Þ

where

IV Xið Þ ¼ −
Xr

j¼1

Dj
�� ��
Dj j log2

Dj
�� ��
Dj j ð4Þ

and IV(Xi) is the intrinsic value of Xi.
Next, we introduce the remaining features one by one

as follows.

Step 1: Under the conditions in which the introduced
features have existed, further compress the 2 × r
contingency table of each remaining feature, in
accordance with the compression process previously
described. If the r columns are compressed into one
column, the remaining feature cannot be introduced. If
the r columns are not compressed into one column, the
remaining feature is a candidate feature to be introduced.

Step 2: Calculate the information gain of every
candidate feature. Then, from the candidate features
whose information gains are above the average level,
pick out the one with the highest gain ratio to be the
next introduced feature.
Step 3: Repeat steps 1 and 2 until no feature can be
introduced.

Decision table design
The introduced features with their status values will form
various decision rules. Taking HS3D-train1:135 as an
example, 27 introduced features (including 11 positional
features and 16 compositional features) have formed 201
decision rules (see Additional file 1: Table S1). We separ-
ately count the numbers of positive and negative samples
that conform to the decision rules, and then construct a
2 × 201 imbalanced decision table (Table 2). In Table 2,
the decision rule “(P3 = A)∧(P− 1 = ACT)∧(0 ≤ fGT ≤ 2)”
represents position 3 taking a value of A and position − 1
taking a value of ACT, while the frequency of dinucleotide
GT takes values from 0 to 2. Other decision rules have
similar representations. Given that the number of negative
samples far exceeds that of positive samples, to resolve the
imbalanced pattern classification problem, we adjust the
decision weight of negative samples in each column of
Table 2, i.e., multiply the number of negative samples in
each column by θ (here, θ = 2000/271,132), and then get a
2 × 201 balanced decision table (Table 3).

Fig. 3 log(p− 1) values for different positions. ↑:The columns with arrows represent that log(p− 1) values of the corresponding positions are higher
than that of position − 2. For simplicity, we just present the log(p− 1) values of positions − 15 to + 15

Table 2 Imbalanced decision table based on HS3D-train1:135
Sample Decision rule Total

(P3 = A)∧(P−1 = ACT)∧
(0 ≤ fGT ≤ 2)

… (P3 = G)∧(P− 1 = G)∧
(P1 = G)∧(P2 = G)∧
(P4 = T)
∧(P−2 = CGT)

positive 5 … 11 2000

negative 47,512 … 368 271,132
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When using the balanced decision table for making
decisions, suppose a test sample meets the decision rule
“(P3 = A)∧(P− 1 = ACT)∧(0 ≤ fGT ≤ 2)”, first we assume
that it is positive, replace 5 with 5 + 1, and calculate the
corresponding chi-square value χ2iþ . Then, we assume
that it is negative, replace 350.5 with 350.5 + 1, and
calculate the corresponding chi-square value χ2i− . If χ2iþ
> χ2i− , the test sample is predicted to be positive;
otherwise, it is predicted to be negative. The decision
process based on an imbalanced decision table is similar.

Performance evaluation
Sensitivity (SN), specificity (SP), and the Matthew
correlation coefficient (MCC) as common measures for
evaluating binary classifications are defined as follows:

SN ¼ TP
TP þ FN

ð5Þ

SP ¼ TN
TN þ FP

ð6Þ

MCC ¼ TP � TN−FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TP þ FPð Þ � TN þ FPð Þ � TN þ FNð Þp

ð7Þ
Here, TP, FP, TN, and FN denote the numbers of true

positives, false positives, true negatives, and false negatives,
respectively. SN represents the percentage of positive sam-
ples correctly predicted as true. SP represents the percent-
age of negative samples correctly predicted as false. MCC
takes into account true and false positives and negatives,
and is generally regarded as a balanced measure. However,
when the class distribution of the testing set is imbalanced,
the MCC value will become relatively small, which cannot
really reflect the performance of a classification model.
The global accuracy index Q9 [42] is independent of

the class distribution and has been used by some
researchers to evaluate the classifier performance in
splice site prediction. Therefore, in this study, we choose
Q9 as the measure of global accuracy to assess predictive
performance in the case of an imbalanced testing set. Q9

is defined as follows:

Q9 ¼ 1þ q9
� �

=2 ð8Þ
where

The receiver operating characteristic (ROC) curve, which
is widely used in evaluating the predictive accuracy of stat-
istical predictors, is given by SN against 1 − SP. When deal-
ing with highly skewed datasets, the Precision–Recall (PR)
curve can provide better insight into an algorithm’s per-
formance [43]. The areas under ROC and PR curves are de-
noted by AUC-ROC and AUC-PR, respectively. AUC-ROC
and AUC-PR are estimated using the Davis–Goadrich
method [43]. The closer the values of AUC-ROC and
AUC-PR get to 1, the better the prediction model.

Results and discussion
Advantage with the short window size of 11 bp
Based on HS3D-train1:1 and HS3D-test1:1, the independent
tests were performed to compare the performance of
χ2-DT using various window sizes. The results (Table 4)
show the following: 1) Comparing with the longer window
sizes (e.g., 20 bp, 40 bp, 138 bp), χ2-DT with the window
size of 11 bp can achieve the higher independent test accur-
acy. This indicates that overly long window sizes may intro-
duce some irrelevant sequence information, thereby reduce
prediction accuracy. 2) Short window size reduces feature
dimension and saves computational time. For example,
using the window size of 138 bp, the feature dimension is
154 (138 positional features and 16 compositional features);
however, using the window size of 11 bp, the feature di-
mension drops to 27 (11 positional features and 16 com-
positional features), and there is about a 96% decrease in
the elapsed time, running in the same computer system
(Intel Core i5-3320M 2.6 GHz/8GB RAM). Therefore, we
have more confident on the short window size of 11 bp.
The follow-up results are all based on 11-bp-long window
size.

Superior performance with large extremely imbalanced
dataset
For HS3D-test1:1, we respectively used imbalanced and
balanced decision tables that were built based on various
HS3D training sets to make decisions. The independent
test results are given in Table 5.
The results indicate the following: 1) When training sets

are imbalanced, a balanced decision table can accurately
predict donor splice sites. For a balanced decision table,
MCC remains stable (0.847–0.867) with training sets hav-
ing different positive-to-negative ratios. By contrast, for an

q9 ¼
TN−FPð Þ= TN þ FPð Þ;
TP−FNð Þ= TP þ FNð Þ;
1−

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FN= TP þ FNð Þ½ �2 þ FP= TN þ FPð Þ½ �2;

q
if TP þ FN ¼ 0
if TN þ FP ¼ 0
if TPþ FN≠0 and TNþ FP≠0

8><
>:
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imbalanced decision table, MCC continually drops with an
increase in negative training samples, and declines from
0.847 (HS3D-train1:1) to 0.694 (HS3D-train1:135). Therefore,
the follow-up results are produced by using balanced deci-
sion Tables. 2) Taking full advantage of training samples
can improve predictive accuracy. Using a balanced decision
table, MCC keeps on growing as the number of negative
samples increases, and when the negative sample quantity
peaks (271,132), MCC is at its highest (0.867).
Based on the same input features (11 positional features

and 16 compositional features), χ2-DT was compared with
the traditional classifiers including RF, ANN, and relaxed
variable kernel density estimator (RVKDE) [44]. We se-
lected RVKDE as a classifier for comparison because it can
deliver the same level of accuracy as SVM and has lower
time complexity when the training set is too large. We used
Weka 3.8.1 software (https://www.cs.waikato.ac.nz/ml/
weka/index.html) and the neural network toolbox [45] of
Matlab R2015a to build RF and ANN classifiers, respect-
ively, and all of the parameters took default values. The
performance comparisons still employed the inde-
pendent tests based on the HS3D-test1:1, HS3D-train1:1,
and HS3D-train1:135; the corresponding results are
given in Table 6.
The results indicate the following: 1) Using the

extremely imbalanced training set, χ2-DT outperforms
all of the other classifiers. As Table 6 shows, based on
HS3D-train1:1, MCC of χ2-DT is 0.847, which is compar-
able to those of RF, ANN, and RVKDE. In contrast,
based on HS3D-train1:135, MCC of χ2-DT rises to 0.867,
and is significantly higher than those of the other classi-
fiers (0.248–0.353). 2) With the large training set, χ2-DT
has an advantage with regard to computational speed.
We ran all of the simulations on an Intel Core i5-3320M
2.6 GHz/8 GB RAM system. For HS3D-train1:135, the
elapsed time of χ2-DT was just 89 s, while RVKDE took

more than 32 h. This speed of χ2-DT is due to the fact
that no parameters need to be optimized.

Good robustness against DNA sequencing errors
In BG-570 dataset, setting the window size as 11 bp
(including positions − 3 to − 1 upstream of the conserved
GT and positions + 1 to + 8 downstream of it, but exclud-
ing the conserved GT), we can extract 2127/149,039 true/
false donor splice site-containing sequences from 570 ori-
ginal DNA sequences to constitute a testing set called
BG-570orig, and extract 2081/149,572 true/false donor
splice site-containing sequences from 570 mutated DNA
sequences to constitute another testing set called
BG-570muta. Based on HS3D-train1:135, the independent test
results respectively employing the positional features and
the combination of positional and compositional features
are shown in Table 7.
The MCC values in Table 7 are low (0.329–0.352) due

to the highly imbalanced testing sets. To effectively assess
predictive performance, the global accuracy index Q9,
which is invariant to class skew, is added for evaluation
purposes. The comparative results demonstrate that: 1)
The compositional features have tolerance to frameshift
errors of DNA sequencing. Based on the positional fea-
tures, Q9obtained under the testing of BG-570muta is
0.9114, lower than that under BG-570orig (0.9258). How-
ever, after adding compositional features, Q9 rises back to
0.9239 when still tested by BG-570muta. 2) Whether or not
there are frameshift errors in testing sets, χ2-DT can
achieve satisfactory performance (Q9 ≥ 0.92).

Better performance in comparison with existing methods
10-fold cross validation was applied to assess the predictive
performance of χ2-DT, with the aim of comparing it with
existing methods. To perform 10-fold cross validation, the
dataset was randomly divided into ten non-overlapping
subsets of equal size. In each repetition, one subset was
used as a testing set and the remaining nine subsets were
used as a training set. Based on each training set, we built a
balanced decision table independently. The average of ten
values of predictive accuracy was used as the final accuracy.
All comparisons were carried out in the HS3D datasets, and
the 10-fold cross accuracy values of the methods for com-
parison were obtained directly from the corresponding
references.

Table 4 Independent test accuracy based on various window sizes

Window size Feature dimension SN (%) SP (%) (SN + SP)/2(%) MCC Time (mm:ss)

11 bp(−3~ + 8) 27 93.09 91.58 92.34 0.847 00:18

20 bp(−10~ + 10) 36 93.34 90.95 92.15 0.843 00:24

40 bp(−20~ + 20) 56 91.33 91.83 91.58 0.832 01:09

138 bp(−70~ + 68) 154 92.71 89.45 91.08 0.822 07:18

Table 3 Balanced decision table based on HS3D-train1:135
Sample Decision rule Total

(P3 = A)∧(P−1 =
ACT)∧(0 ≤ fGT ≤ 2)

… (P3 = G)∧(P−1 = G)∧(P1 =
G)∧(P2 = G)∧(P4 = T)
∧(P−2 = CGT)

positive 5 … 11 2000

negative
(adjusted)

350.5 … 2.7 2000
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On the one hand, χ2-DT was compared with the methods
using longer window size (≥100 bp), including a first-order
Markov model combined with a dinucleotide-based hidden
Markov model (MM1-H2MM) [31], SVM with a Bayes
kernel (SVM-B) [25], and Meher’s method [13]. The web
server (MaLDoSS) based on Meher’s method is available at
http://cabgrid.res.in:8080/maldoss. The 10-fold cross accur-
acy of χ2-DT was calculated based on HS3Dall. Table 8
shows that χ2-DT with much shorter window size can
achieve better predictive performance, despite the degree of
imbalance of the training set being higher.
On the other hand, χ2-DT was compared with the

methods using short window size (9 bp). Maximum
entropy model (MEM) [46] and SAE [12] are the typical
methods for predicting donor splice sites using short win-
dow size. The web server (MaxEntScan) based on MEM is
available at http://genes.mit.edu/burgelab/maxent/Xmax-
entscan_scoreseq.html. The web server based on SAE is
available at http://cabgrid.res.in:8080/sspred. Based on the
HS3D datasets with different ratios of positive-to-negative
samples (i.e., 2796:2796, 2796:5000, 2796:10000,
2796:15000), the AUC-ROC and AUC-PR values of SAE,
MEM, WMM, MDD and first-order Markov model (MM1)
were calculated by MaxEntScan, employing 9-bp-long win-
dow size. For comparison, we also calculated the
AUC-ROC and AUC-PR values of χ2-DT based on HS3DI,
HS3DII, HS3DIII, and HS3DIV. The results (Table 9) showed
that the predictive performance of χ2-DT was clearly super-
ior to those of all of the other methods. As the degree of
imbalance of the dataset increased, the AUC-PRs of all of
the methods continuously declined, partly due to the fact
that the evaluation indicator AUC-PR is sensitive to class
skew. However, for the other methods besides χ2-DT, their
AUC-PRs declined more dramatically. For example, when

the degree of imbalance peaked (2796:15,000), AUC-PRs of
the other methods were around 0.68, with decline of up to
28%, while the AUC-PR value of χ2-DT was 0.85, represent-
ing a decline of only about 10%.

Conclusions
Based on the short window size of 11 bp, a high-perform-
ance method for predicting donor splice sites, called χ2-DT,
was proposed. In terms of accuracy, χ2-DT is clearly super-
ior to the methods for comparison. With regard to compu-
tational speed, χ2-DT is fast, even when using a large
training set with more than 270,000 samples, because no
parameters need to be optimized during model training.
Furthermore, the independent test results based on the
BG-570 dataset indicate that χ2-DT has relatively good ro-
bustness against frameshift errors in DNA sequencing, due
to the addition of compositional features.
In future research, we plan to focus on the following:

1) We will attempt to combine more valuable features
(e.g., DNA structural properties) for characterizing the
candidate splice sites, in pursuit of better predictive per-
formance. 2) When χ2-DT is applied to predicting
acceptor splice sites, it does not further improve the
predictive accuracy of existing methods, so it is neces-
sary to devise another optimal model for acceptor sites.
3) The detection of splice sites ultimately involves
identifying genes, so our overall goal is to constantly im-
prove the proposed splice site predictor, and then use it
to find genes.

Reviewers’ comments
Reviewer’s report 1
Ryan McGinty, Ph.D.

Table 5 Independent test accuracy based on imbalanced and balanced decision tables

Training set SN (%) SP (%) (SN + SP)/2 (%) MCC

imbal bal imbal bal imbal bal imbal bal

HS3D-train1:1 93.09 93.09 91.58 91.58 92.34 92.34 0.847 0.847

HS3D-train1:10 81.53 94.35 96.36 91.08 89.51 92.71 0.788 0.855

HS3D-train1:20 78.14 93.59 96.98 92.46 87.56 93.03 0.765 0.861

HS3D-train1:50 76.76 94.22 96.98 92.34 86.87 93.28 0.753 0.866

HS3D-train1:135 68.84 93.97 97.61 92.71 83.23 93.34 0.694 0.867

imbal. Denotes imbalanced decision table and bal. denotes balanced decision table

Table 6 Independent test accuracy based on different classifiers

Classifier SN (%) SP (%) (SN + SP)/2 (%) MCC

HS3D-train1:1 HS3D-train1:135 HS3D-train1:1 HS3D-train1:135 HS3D-train1:1 HS3D-train1:135 HS3D-train1:1 HS3D-train1:135

RF 94.77 16.58 91.31 99.87 93.04 58.23 0.862 0.297

ANN 91.58 12.06 91.83 99.91 91.71 55.98 0.834 0.248

RVKDE 96.23 23.37 88.82 99.50 92.53 61.43 0.853 0.353

χ2-DT 93.09 93.97 91.58 92.71 92.34 93.34 0.847 0.867
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Reviewers’ comments
Reviewer summary:
Zeng, et al. have created a new computational method,

X2-DT, for predicting gene splice donor sites that uses a
very small window size (11 bp), is robust to a very low
true/false ratio in their training data set, and runs effi-
ciently. This method appears to perform as well or better
than previous methods which were compared in this
study. It would benefit the manuscript for the authors to
make a clearer case for the usefulness and applicability of
their tool.
Reviewer recommendations to authors:
Major suggestions: Clarify how X2-DT could be used by

others and why it would be useful. The authors state that
X2-DT can be used for the “prediction of splice sites in
short reads generated by next-generation sequencing.”
However, it is never stated whether it should be applied to
short reads generated from genomic sequencing or tran-
scriptome sequencing. From the context, it would appear
to be the latter, as genomic short read sequences are assem-
bled into longer fragments and therefore the read length is
irrelevant to the window size. Incidentally, there also exists
a field dedicated to predicting splice site strength from gen-
omic sequences, rather than RNA sequences. Assuming the
short reads in question here are from transcriptome se-
quencing, the issue that the authors propose to solve can
be described more clearly. In this case, the short reads
should contain spliced mRNA sequences, and so the issue
becomes whether there is enough sequence context on ei-
ther side of the splice site to unambiguously map the splice
junction without the need for computational prediction.
The authors suggest that “high-throughput DNA sequen-
cing technologies produce billions of short reads with
lengths of about 50 bp [32], while most splice site predic-
tion methods need long sequences (≥100 bp).”In fact, the
read length of the most commonly-used platform varies
from 50 to 150 bp or more, and paired-ends can be utilized
to increase the likelihood of capturing a splice junction. A

2015 study [“The impact of read length on quantification of
differentially expressed genes and splice junction detection.”
Chhangawala, et al.] finds that “there is little difference for
the detection of differential expression regardless of the
read length,” however, “splice junction detection signifi-
cantly improves as the read length increases.” From this, we
can assume that someone designing a sequencing study to
discover splice junctions and other features of the transcrip-
tome would have generated > 100 bp paired-end reads from
the outset, and would not benefit greatly from the new tool
presented here. However, the authors could highlight the
usefulness of X2-DT in discovering splice junctions from
sequencing studies where differential expression rather than
transcriptome profiling was the initial aim of the study, and
thus shorter reads were generated. To this end, I would
suggest the authors conduct the following analyses: First,
perform a parallel analysis of the same data used in Chhan-
gawala, et al. 2015 (see above), showing the ability of
X2-DT to augment splice site detection from RNA-seq data
of various read lengths. For instance, does running X2-DT
on 50 bp reads find as many splice sites as 100 bp reads
without X2-DT? Does X2-DT improve on 100 bp reads at
all? The authors could thus make the case for using their
tool in very practical terms by showing that it is the equiva-
lent of adding N bp to the sequencing read length. Next,
perform a meta-analysis of the read lengths used across all
RNA-seq studies, to show the magnitude of the untapped
source of new splice junctions in existing RNA-seq data,
which can now be found due to the unique short-window
analysis of X2-DT. Combined with the above new analysis,
it may be possible to estimate how many novel splice junc-
tions can be found per transcriptome, how many transcrip-
tomes currently exist to be analyzed, and therefore some
rough estimate of the potential biological impact of this
study.
Authors’ response: We appreciate the detailed recom-

mendations made by the reviewer. This study is limited to
DNA sequence data generated from genomic sequencing.

Table 7 Independent test accuracy based on different features

Testing set Feature SN (%) SP (%) (SN+SP)/2 (%) MCC Q9 (%)

BG-570orig positional 93.09 92.11 92.60 0.349 92.58

positional+compositional 93.51 92.15 92.83 0.352 92.70

BG-570muta positional 90.55 91.77 91.16 0.329 91.14

positional+compositional 92.67 92.12 92.40 0.344 92.39

Table 8 10-fold cross accuracy based on comparisons with the long-window size-based methods

Method Window size (bp) Ratio of positive-to-negative samples SN (%) SP (%) (SN + SP)/2 (%) Q9 (%)

MM1-H2MM 140 2796:27960 (1:10) 93.81 91.69 92.75 92.63

SVM-B 140 2796:27960 (1:10) 94.13 90.99 92.56 92.39

Meher’s method 102 2796:53124 (1:19) 88.30 89.40 88.90 88.80

χ2-DT 11 2796:271928 (1:97) 94.11 92.58 93.35 93.30
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As mentioned by the reviewer, genomic short read
sequences are assembled into longer fragments before splice
site prediction, so it is inappropriate to highlight the argu-
ment that χ2-DT can predict the splice sites in short reads
generated by next-generation sequencing. In the revised
manuscript, we removed this inappropriate argument.
However, for our method, the use of short window size

(11 bp) is necessary as far as improving prediction accuracy
and simplifying the prediction model. In the revised manu-
script, we discussed the benefits that 11-bp-long window
size brought. Based on HS3D-train1:1 and HS3D-test1:1, the
independent tests were performed to compare the perform-
ance of χ2-DT using various window sizes. The results
(Table 10) show the following: 1) Comparing with the lon-
ger window sizes (e.g., 20 bp, 40 bp, 138 bp), χ2-DT with
11-bp-long window size can achieve higher independent
test accuracy. This indicates that overly long window sizes
may introduce some irrelevant sequence information,
thereby reduce the prediction accuracy. 2) Short window
size reduces feature dimension and saves computational
time. For example, based on 138-bp-long window size, the
feature dimension is 154 (138 positional features and 16
compositional features); while, as for 11 bp-long window
size, the feature dimension drops to 27 (11 positional fea-
tures and 16 compositional features), and there is about a
96% decrease in the elapsed time, running in the same
computer system.
Additionally, as described in the results and discussion

part of manuscript, χ2-DT using 11-bp-long window size
was compared with several existing approaches that used
longer window sizes (e.g., 140 bp). The results (Table 8) in-
dicate that χ2-DT obtains better predictive performance.
From the results above, we have more confident on

the short window size we used. Though, we still believe

that correct identification depends more on the pro-
posed method itself. As shown in the results and discus-
sion part of manuscript, when compared with three
traditional classifiers (RF, ANN, RVKDE) that are input-
ted the same feature vectors, our method obtains higher
prediction accuracy (see Table 6); when compared with
other splice site prediction approaches that also used
short window size (e.g., 9 bp), our method is found to
perform better (see Table 9). Therefore, although many
computational methods have been developed pres-
ently for predicting splice sites, our method provides
a supplement to the commonly used splice site pre-
diction methods because of its high performance,
and is believed to contribute to the prediction of
eukaryotic gene structure.
Necessary changes have been made in the revised manu-

script: Title of manuscript, Abstract, Keywords, page 4
(lines 108–110), page 5 (line 123), page 8 (lines 200–201),
page 12 (lines 294–307), page 15 (lines 373,378,381–383),
page 16 (line 401), titles of Tables 8 and 9; we add Table 4
and reference [32].
Minor issues:
The authors compare their work to several existing

methods. While these methods are categorized and listed
by their method or strategy, it would be of some practical
use to know the name of each tool being compared in each
table. Stylistically, I would prefer more detailed explanations
of the methods that might help the study be understood by
a broader audience. As written, there is a heavy prerequisite
for knowledge of statistical and computational methods, in-
cluding much undefined terminology. This knowledge is
likely not shared by many readers interested in the biology
of splicing, or with a practical need to employ the best spli-
cing prediction program.

Table 9 10-fold cross accuracy based on comparisons with the short-window size-based methods

Method AUC-ROC(±SE) AUC-PR(±SE)

2796:2796 2796:5000 2796:10000 2796:15000 2796:2796 2796:5000 2796:10000 2796:15000

SAE 0.946 (±0.0031) 0.945 (±0.0031) 0.944 (±0.0030) 0.945 (±0.0030) 0.945 (±0.0031) 0.876 (±0.0045) 0.772 (±0.0055) 0.682 (±0.0059)

MEM 0.948 (±0.0031) 0.946 (±0.0031) 0.947 (±0.0030) 0.947 (±0.0030) 0.947 (±0.0031) 0.878 (±0.0045) 0.773 (±0.0055) 0.683 (±0.0059)

MDD 0.945 (±0.0031) 0.942 (±0.0032) 0.944 (±0.0030) 0.944 (±0.0030) 0.944 (±0.0031) 0.872 (±0.0046) 0.769 (±0.0055) 0.680 (±0.0059)

MM1 0.945 (±0.0031) 0.941 (±0.0032) 0.936 (±0.0032) 0.941 (±0.0031) 0.942 (±0.0032) 0.870 (±0.0046) 0.765 (±0.0056) 0.679 (±0.0060)

WMM 0.927 (±0.0036) 0.924 (±0.0036) 0.924 (±0.0035) 0.925 (±0.0034) 0.924 (±0.0037) 0.867 (±0.0046) 0.703 (±0.0060) 0.675 (±0.0060)

χ2-DT 0.965 (±0.0023) 0.969 (±0.0027) 0.971 (±0.0025) 0.971 (±0.0025) 0.953 (±0.0030) 0.932 (±0.0034) 0.879 (±0.0042) 0.856 (±0.0038)

SE Standard error

Table 10 Independent test accuracy based on various window sizes

Window size Feature dimension SN (%) SP (%) (SN + SP)/2(%) MCC Time (mm:ss)

11 bp(−3~ + 8) 27 93.09 91.58 92.34 0.847 00:18

20 bp(−10~ + 10) 36 93.34 90.95 92.15 0.843 00:24

40 bp(−20~ + 20) 56 91.33 91.83 91.58 0.832 01:09

138 bp(−70~ + 68) 154 92.71 89.45 91.08 0.822 07:18
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Authors’ response: SVM-B, WMM, MDD, MM1 and
MEM are the conventional models for predicting splice sites,
and they are often employed for comparing with new pre-
sented methods. In Table 9, the results of MEM, MDD,
WMM and MM1 were obtained by executing the MaxEntS-
can (a web server) which is available at http://genes.mit.
edu/burgelab/maxent/Xmaxentscan_scoreseq.html. Meher’s
method and SAE are recently developed methods for donor
splice site prediction. Based on Meher’s method, a web ser-
ver (MaLDoSS) has been developed, and is available at
http://cabgrid.res.in:8080/maldoss. The web server based on
SAE can be available at http://cabgrid.res.in:8080/sspred.
As per suggestion, we supplement the above contents in the
revised manuscript for the convenience of practical applica-
tion. As for written, we have checked and revised carefully,
to avoid undefined terminology, in the hope that many
readers interested in this study can understand.
Necessary changes have been made in the revised

manuscript: page 15 (lines 364, 375–377, 383), page 16
(lines 384–388).

Reviewer’s report 2
Dirk Walther

Reviewers’ comments
Reviewer summary:
Prediction of splice-sites has been a long-standing prob-

lem in Bioinformatics and many algorithms have been
developed, essentially exhausting all possible ways to for-
mulate and solve the computational problem. Despite the
many methods and their reasonable success, and despite
the increased availability of transcript sequencing data
which allow determining splices sites based on experimen-
tal information, this reviewer is willing to be open to new
in-silico methods. Clearly, correct splice site prediction
would help tremendously for genome annotation purposes.
Reviewer recommendations to authors:
(1) The authors highlight as an advantage and pose as a

need to base predictions on short sequence motifs (11mers)
as necessitated by the short available sequence reads from
DNAseq data. Though, I would think, splices site predic-
tions would always be applied to assembled genomes or
genes, not individual reads. So for me, this is not an argu-
ment at all. The length of the k-mer should reflect what is
truly necessary for correct identifications. That aside, I still

believe it is interesting to see how well methods based on
short k-mers can work.
Authors’ response: We agree with the recommendations

given by the reviewer. In the revised manuscript, we removed
the inappropriate argument that χ2-DT can predict the
splice sites in short reads generated by next-generation se-
quencing. And we changed “short sequence” in the title to
“short window size” which we thought may be more
appropriate.
In this study, the use of short window size (11 bp) is ne-

cessary as far as improving prediction accuracy and simpli-
fying the prediction model. In the revised manuscript, we
discussed the benefits that 11-bp-long window size brought.
Based on HS3D-train1:1 and HS3D-test1:1, the independent
tests were performed to compare the performance of
χ2-DT using various window sizes. The results (Table 11)
show the following: 1) Comparing with the longer window
sizes (e.g., 20 bp, 40 bp, 138 bp), χ2-DT with 11-bp-long
window size can achieve the highest independent test ac-
curacy. This indicates that overly long window sizes may
introduce some irrelevant sequence information, thereby
reduce the prediction accuracy. 2) Short window size re-
duces feature dimension and saves computational time. For
example, based on 138-bp-long window size, the feature di-
mension is 154 (138 positional features and 16 compos-
itional features); while, as for 11-bp-long window size, the
feature dimension drops to 27 (11 positional features and
16 compositional features), and there is about a 96%
decrease in the elapsed time, when running in the same
computer system.
Additionally, as described in the results and discussion

part of manuscript, χ2-DT using 11-bp-long window size
was compared with several existing approaches that used
long window sizes (e.g., 140 bp). The results (Table 8) in-
dicate that χ2-DT obtains better predictive performance.
Necessary changes have been made in the revised manu-

script: Title of manuscript, Abstract, Keywords, page 4 (lines
108–110), page 5 (line 123), page 8 (lines 200–201), page 12
(lines 294–307), page 15 (lines 373,378,381–383), page 16
(line 401), titles of Tables 8 and 9; we add Table 4 and refer-
ence [32].
(2) The study reports results on donor sites only. The au-

thors state that with regard to acceptor sites, no perform-
ance gain has been achieved, leading me to believe that
performance was at least comparable. This should be dis-
cussed more - why gain for donor sites, not acceptor sites.

Table 11 Independent test accuracy based on various window sizes

Window size Feature dimension SN (%) SP (%) (SN + SP)/2(%) MCC Time (mm:ss)

11 bp(− 3~ + 8) 27 93.09 91.58 92.34 0.847 00:18

20 bp(−10~ + 10) 36 93.34 90.95 92.15 0.843 00:24

40 bp(−20~ + 20) 56 91.33 91.83 91.58 0.832 01:09

138 bp(−70~ + 68) 154 92.71 89.45 91.08 0.822 07:18
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Also, this point should be mentioned much sooner in the
manuscript than in the very last paragraph. Furthermore,
the equal performance of their method relative to others
should be documented.
Authors’ response:We determined the 18-bp-long window

size (− 17~ + 1) by chi-square test, for predicting acceptor
splice sites. Using 2880/28,800 true/false acceptor splice sites
from HS3D dataset, 10-fold cross validation was applied to
assess the performance of χ2-DT, and the predictive accur-
acy is: SN = 0.8901, SP = 0.8751, Q9 = 0.8826. Based on the
same dataset, Q9achieved by SVM-B and MM1-H2MM are
0.8951 and 0.9057, respectively, which are slightly higher
than that of our method.
χ2-DT employs positional features and compositional fea-

tures. While, as for acceptor sites, we found positional fea-
tures and compositional features were not enough to
characterize the candidate samples, maybe some other valu-
able features, such as DNA structural properties [19],
should be involved. We are working on a new model for
predicting acceptor splice sites with improved prediction
accuracy, and the related researches will be reported in the
forthcoming paper.
(3) The method section needs a better introduction/mo-

tivation. I had difficulties grasping the basic rationale of the
method. In fact, I am not sure, I did. I could not follow the
arguments with regard to “compressing that tables” at all.
More explanation is needed.
Authors’ response: Let’s begin with maximal information

coefficient (MIC) [39]. Just like Pearson correlation coeffi-
cient [37] and mutual information estimators [38] that are
used for identifying relationships between variables, MIC is
a novel measure proposed to capture dependences between
paired variables. Giving an independent paired variables
{xi, yi}(i = 1,2,…20), xi, yi∈(0,1), as shown in following:
To calculate the MIC value of x and y, a maximum

grid solution (a 2 × 9 grid, i.e., y and x are respectively
partitioned as 2 bins and 9 bins) with the highest in-
duced mutual information will be searched. And a 2 × 9
table (Table 12) is generated for counting the number of
the samples falling into each grid.

The MIC value of x and y calculated based on the
2 × 9 grid (2 × 9 table) will achieve 1, clearly, it is il-
logical, because MIC value should be tend to 0 for
statistically independent variables. Thus, to avoid
producing the nontrivial MIC values due to excessive
grid partitions, ApproxMaxMI algorithm [39] sets
n0.6 as the maximal grid size restriction, here, n is
the sample size. Then, a 2 × 3 grid would be gener-
ated to partition data, and the corresponding MIC
value falls to 0.31. So the 2 × 9 table is compressed
into a 2 × 3 table (Table 13).
Recently, our research group presented the ChiMIC al-

gorithm [40] for calculating MIC value. ChiMIC uses a
chi-square test based on a local r × 2 grid to determine
whether the new endpoint should be introduced, and
removes the maximal grid size limitation in Approx-
MaxMI. For the example above, the grid partition gener-
ated by ChiMIC is a 2 × 2 grid, and the corresponding
MIC value is only about 0.11 that is more close to 0. It
means that further compressing the 2 × 3 grid (2 × 3
table) is reasonable.
Similarly, for each position in donor splice site-con-

taining sequences, we can build a 2 × 4 contingency table
to respectively count the frequencies of four bases in
positive and negative samples. Is the 2 × 4 table reason-
able? Could it be compressed into a 2 × 3 table, or even
a 2 × 2 table? Taking position 6 as an example, its 2 × 4
contingency table is finally compressed into a 2 × 2 con-
tingency table, according to the ChiMIC algorithm (see
Fig. 1).
Moreover, if do not compress the 2 × 4 contingency

table of each position, we will get a 2 × 411 decision table
after introducing 11 positional features, and with the
further introduction of features, the number of columns
in decision table will be grow exponentially, then the de-
cision table would be quite sparse.
Therefore, we compressed the 2 × r contingency

table of each feature, including positional and com-
positional features. And the results indicate the com-
pression strategy is effective for correct prediction.

Table 12 2 × 9 table for counting the number of the samples in each grid

0 < x ≤
0.05

0.05 < x≤
0.29

0.29 < x≤
0.55

0.55 < x ≤
0.57

0.57 < x ≤
0.62

0.62 < x≤
0.69

0.69 < x ≤
0.71

0.71 < x ≤
0.84

0.84 < x≤
0.85

0.85 < x < 1

0 < y≤
0.5

0 4 0 1 0 1 0 2 0 2

0.5 < y < 1 2 0 3 0 3 0 1 0 1 0

x 0.08 0.29 0.71 0.05 0.69 0.58 0.55 0.77 0.06 0.40 0.84 0.90 0.57 0.62 0.01 0.12 0.46 0.59 0.98 0.85

y 0.32 0.45 0.90 0.86 0.01 0.77 0.71 0.19 0.38 0.59 0.12 0.05 0.33 0.87 0.98 0.44 0.81 0.55 0.11 0.63
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Necessary changes have been made in the revised
manuscript: page 6 (lines 155–157), page 7 (lines 172–
176); we add references [37, 38].
(4) Despite trying, I had difficulties understanding,

where and how the imbalance was tested (during
training or during testing or both?) Try to be more
clear about it. So, in essence, I was not able to assess
whether the claimed improved performance on this
imbalanced problem was, in fact, achieved.
Authors’ response: The number of false donor sites far ex-

ceeds that of true donor sites, e.g., the HS3D dataset contains
2796/271,937 true/false donor sites. If all negative samples
(false sites) are employed for building the prediction model,
the extremely imbalanced large training samples will lead
to poor predictive results for many methods.
We give an example to explain how we resolve the im-

balanced pattern classification problem. Suppose there are
87/1687 positive/negative training samples, if only 2 pos-
itional features (position − 1 and 3) are introduced and
have formed 4 decision rules, we separately count the
numbers of positive and negative samples that conform to
the decision rules, then get a 2 × 4 imbalanced decision
table (Table 14).
Giving a positive testing sample, suppose its position

−1 and 3 both take a value of G, the testing sample will
conform to the decision rule “(P− 1 = G)∧(P3 = GC)”. In
Table 14, replace 11 with 11 + 1, and calculate the corre-
sponding chi-square value χ2iþ (109.2); similarly, replace
188 with 188 + 1, and calculate the corresponding
chi-square value χ2i− (110.1). Here, χ2iþ < χ2i− , so this test-
ing sample is wrongly predicted to be negative, accord-
ing to the imbalanced decision table.
Now, we adjust the decision weight of negative samples

in each column, i.e., multiply the number of negative sam-
ples in each column by 87/1687, and then get a balanced
decision table (Table 15). In Table 15, replace 11 with 11 +
1, and calculate the corresponding chi-square value χ2iþ

(46.2); replace 9.7 with 9.7 + 1, and calculate the corre-
sponding chi-square value χ2i− (45.9). Here, χ2iþ > χ2i−, so the
testing sample is predicted to be positive. Therefore, in the
case of imbalanced training set, the use of balanced decision
table can correctly make decisions.
In this study, we use 2000/271,132 positive/negative sam-

ples to generate an extremely imbalanced training set
(HS3D-train1:135), and use 796/796 positive/negative sam-
ples to generate a balanced testing set (HS3D-test1:1). The
independent testing results (Table 6) based on
HS3D-train1:135 and HS3D-test1:1 show that when training
set is imbalanced, the MCC value of our method is 0.867,
while the MCC value of other traditional classifiers (RF,
ANN, and RVKDE) is about 0.25–0.35. Further, it is found
in Table 5 that the MCC values obtained by balanced deci-
sion table keep on growing as the number of negative train-
ing samples increases, i.e., rise from 0.847 to 0.867, which
indicates taking full advantage of training samples could
improve predictive accuracy.
Necessary changes have been made in the revised

manuscript: page 10 (lines 251–253).
Minor issues
Generally, the article is well written (English-wise). Some

minor mistakes need correcting. For example, use present
tense in the Abstract when talking about your method and
results (“The proposed method presents” (not “presented”).
Check use of the definite articles.
Authors’ response: Following the suggestions of reviewer,

we have made language corrections, including tense and
use of the definite articles.
Necessary changes have been made in the revised

manuscript: Abstract, page 14 (line 346).
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Additional file 1: Table S1. The table lists 201 decision rules obtained
based on HS3D-train1:135, and lists the number of positive and negative
training samples conforming to the decision rules. (XLSX 38 kb)
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χ2-DT: Chi-square decision table; ANN: Artificial neural network; AUC-
PR: Areas under PR; AUC-ROC: Areas under ROC; HS3D: Homo Sapiens Splice
Sites Dataset; MCC: Matthew correlation coefficient; MDD: Maximal
dependency decomposition; MEM: Maximum entropy model; MIC: Maximal
information coefficient; MM1: first-order Markov model; MM1-H2MM: First-
order Markov model combined with a dinucleotide-based hidden Markov
model; PR: Precision–Recall; RF: Random forest; ROC: Receiver operating
characteristic; RVKDE: Relaxed variable kernel density estimator; SAE: The sum

Table 14 Imbalanced decision table

Sample Decision rule Total

(P−1 = ACT)∧
(P3 = AT)

(P−1 = ACT)∧
(P3 = GC)

(P− 1 = G)∧
(P3 = AT)

(P− 1 = G)∧
(P3 = GC)

positive 38 12 26 11 87

negative 184 1026 289 188 1687

Table 15 Balanced decision table

Sample Decision rule Total

(P− 1 = ACT)∧
(P3 = AT)

(P− 1 = ACT)∧
(P3 = GC)

(P−1 = G)∧
(P3 = AT)

(P−1 = G)∧
(P3 = GC)

positive 38 12 26 11 87

negative 9.5 52.9 14.9 9.7 87

Table 13 2 × 3 table for counting the number of the samples
in each grid

0 < x≤ 0.05 0.05 < x≤ 0.29 0.29 < x < 1

0 < y≤ 0.5 0 4 6

0.5 < y < 1 2 0 8
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of absolute error; SN: Sensitivity; SP: Specificity; SVM: Support vector machine;
SVM-B: SVM with a Bayes kernel; WMM: weighted matrix model
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