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Abstract

This is a review of the current state of molecular profiling in gastrointestinal (Gl) cancers and what to expect from this
evolving field in the future. Individualized medicine is moving from broad panel testing of numerous genes or gene
products in tumor biopsy samples, identifying biomarkers of prognosis and treatment response, to relatively noninva-
sive liquid biopsy assays, building on what we have learned in our tumor analysis and growing into its own evolving
predictive and prognostic subspecialty. Hence, the field of Gl precision oncology is exploding, and this review endeav-
ors to summarize where we are now in preparation for the journey ahead.
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Introduction

Comprehensive molecular profiling has evolved over the
last decade. The evolution of molecular profiling changed
the face of oncology from standard chemotherapy based
on histology to personalized therapy. Using immuno-
histochemistry (IHC), fluorescence in situ hybridization
(FISH), and whole-genome sequencing, oncologists are
able to recognize the genomic drivers of tumorigenesis
and provide patients with prognostic biomarkers and tar-
geted therapy options (Fig. 1; Table 1).

Molecular profiling using tissue next-generation
sequencing (NGS) has become a standard of care prac-
tice, and recently, circulating tumor DNA (ctDNA) has
emerged as a tool for molecular profiling, a predictor of
response to systemic treatment, and a powerful way to
measure minimal residual disease (MRD) using less inva-
sive approaches [1-3].
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A decade ago, the treatment of colorectal cancer (CRC)
was the first of all GI malignancies to be influenced by
molecular profiling. It was initially observed that patients
with KRAS mutant CRC do not respond to epidermal
growth factor rector (EGFR)-targeted agents such as the
monoclonal antibodies cetuximab and panitumumab
[4, 5]. Later, it was recognized that BRAF, NRAS, and
PIK3CA mutations and HER2 mutations and amplifica-
tions also confer non-responsiveness to EGFR-targeted
agents and carry a generally poorer patient prognosis
than wild-type disease [6, 7]. Subsequently, patients with
BRAF V600E mutant CRC were shown to benefit from
treatment with vemurafenib, a small molecule tyrosine
kinase inhibitor [8], and later, encorafenib combined
with cetuximab emerged as a standard of care for this
subset of patients following chemotherapy [9] (Table 1).
With the advent of immune checkpoint inhibitors (ICIs)
that target PD-1/PD-L1, microsatellite instability (MSI)
was found to be the most significant predictor of CRC
treatment response. MSI can be sporadic or driven by
germline mutations in one of the MMR genes (MLHI,
MSH2, MSHS6, or PMS2), as found in hereditary Lynch
syndrome [10, 11].
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Predictive Biomarkers in
Gl Malignancies

Hepatocellular Carcinoma
- MSI-H (pembrolizumab, dostarlimab-gxly)
- NTRK (larotrectinib, entrectinib)

Biliary Tract Cancer

- FGFR2 (pemigatinib, infigratinib)

- IDH1 (ivosidenib)

- BRAF-V600E (dabrafenib + trametinib)

- MSI-H/dMMR (pembrolizumab, dostarlimab-gxly)
- TMB-H (pembrolizumab)

- NTRK (larotrectinib, entrectinib)

Pancreatic Ductal Adenocarcinoma

- BRCA1/2 or PALBZ (olaparib, platinum
chemotherapy)

- MSI-H/dMMR (pembrolizumab)

- NTRK (larotrectinib, entrectinib)

Fig. 1 Predictive biomarkers in GI malignancies

Esophageal and Esophagogastric Junction Carcinoma

- HER2 (trastuzumab, fam-trastuzumab deruxtecan-nxki)
- PD-L1 CPS > 10 (pembrolizumab)

- MSI-H/dMMR (pembrolizumab, dostarlimab-gxly)

- TMB-H (pembrolizumab)

- NTRK (larotrectinib, entrectinib)

Gastric Carcinoma

- HERZ (trastuzumab, fam-trastuzumab deruxtecan-nxki)
- PD-L1 CPS = 5 (nivolumab*)

- MSI-H/dMMR (pembrolizumab, dostarlimab-gxly)

- TMB-H (pembrolizumab)

- NTRK (larotrectinib, entrectinib)

*nivolumab is U.S. FDA approved for all CPS

Colorectal Adenocarcinoma

- HER2 (trastuzumab, pertuzumab, lapatinib,
fam-trastuzumab deruxtecan-nxki)

- BRAF V600 (encorafenib)

- MSI-H/dMMR (pembrolizumab, nivolumab +
ipilimumab, dostarlimab-gxly)

- NTRK (larotrectinib, entrectinib)

Left-sided Colon and Rectal Adenocarcinoma only
- KRAS/NRAS/BRAF wild type (cetuximab,
panitumumab)

Created with BioRender.com

MSI testing is essential for all GI malignancies
because localized MSI-high (MSI-H) tumors will have
a good prognosis, and advanced disease will likely
respond to PD-1/PD-L1 inhibitors [12, 13] (Table 1).
Until very recently, advanced gastric and gastroesoph-
ageal cancers were treated solely with conventional
chemotherapy. Now, advances in molecular profiling
and signaling pathway knowledge have provided new
treatment options for patients with PD-L1 or HER-2
overexpressing tumors, including PD-1/PD-L1 inhibi-
tor therapy, HER2 targeted treatment, and anti-vascular

endothelial growth factor (VEGF) antibody therapy
[14-17].

Advances in molecular profiling have led to therapeu-
tic options targeting advanced biliary tract cancers with
IDH1/2 mutations, FGFR alterations, HER2 amplifica-
tions, and BRAF V600E mutations [18—21] (Table 1).

In pancreatic cancer, understanding the role of ger-
mline testing for BRCAI, BRCA2, and PALB2 in homolo-
gous recombination repair has allowed the emergence of
poly(adenosine diphosphate-ribose) polymerase inhibi-
tors (PARPi) as a treatment option [22].
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Biomarkers

PD-L1

PD-1 is an inhibitory receptor expressed on several
immune cells, particularly cytotoxic T cells. It interacts
with 2 ligands: PD-L1 and PD-L2. PD-L1 is expressed
on tumor cells and immune cells, whereas PD-L2 is
expressed on macrophages and dendritic cells. The
interaction of PD-1 with PD-L1 inhibits T-cell activa-
tion and cytokine production, which is vital to main-
taining homeostasis of the immune response and
preventing autoimmunity [23, 24]. However, PD-1/
PD-L1 interactions within the tumor microenviron-
ment provide an immune escape pathway for tumor
cells by turning off cytotoxic T cells [25]. Tumor
cells upregulate the PD-1 receptor or ligand to evade
destruction by the host immune system. Thus, in block-
ing the PD-1 pathway with antibodies to PD-1 and
PD-L1/PD-L2, the adaptive immune response is acti-
vated against tumor cells resulting in an anticancer
response. Tumor cell PD-L1 expression is associated
with response to anti-PD-1/anti-PD-L1 therapy [26].

PD-L1 protein expression in many cancer types,
assessed via immunohistochemistry (IHC), is one of
the FDA-approved predictive biomarkers for anti-PD-1
and anti-PD-L1 ICI monotherapy [26]. However, PD-L1
expression within tumors and between tumor sites may
be heterogeneous [27-29], and assays may give variable
results. To the latter point, there are multiple qualita-
tive PD-L1 assays involving different antibodies to
assess the expression of PD-L1 by IHC using chromo-
genic methods [30], and different antibody assays may
give different results.

In esophageal/GE]/gastric cancer, the PD-L1 com-
bined positive score (CPS) has been tested as a predic-
tive biomarker for immunotherapy. CPS is the number
of cells staining for PD-L1 cells (tumor cells, lympho-
cytes, and macrophages) divided by the total number of
evaluated tumor cells, multiplied by 100 [31]. Tumors
are considered PD-L1 positive if they have a CPS>1.
A positive CPS is associated with improved GI cancer
patient outcomes upon ICI therapy. In KEYNOTE 062,
KEYNOTE 061, and KEYNOTE 059, the PD-1 inhibitor
pembrolizumab demonstrated efficacy against gastric
and GEJ cancer as first, second, or third-line treat-
ment based on a CPS of > 1 [32]. On the other hand, the
PD-1 inhibitor nivolumab is FDA approved in esopha-
geal/GE]/gastric cancers regardless of CPS, based on
CHECKMATE 648 and CHECKMATE 649 studies [14,
33]. How to use CPS in the selection of upper GI can-
cer patients for frontline ICI therapy remains a point of
debate in the oncology community [34].
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TMB: tumor mutation burden

TMB, defined as the total number of exon mutations in
a tissue sample [35], has emerged as an important bio-
marker associated with immunotherapy response in
multiple tumor types [26]. TMB is a critical driver in the
generation of immunogenic neopeptides presented on
major histocompatibility complexes on the tumor cell
surface [36]. These immunogenic components influence
response to ICIs, meaning that TMB impacts ICI efficacy.
This TMB effect on ICI efficacy is reflected in many ret-
rospective studies, including the Phase II Keynote-158
trial [37], which led to the FDA approval of pembroli-
zumab in patients with unresectable or metastatic high
TMB (> 10 mutations/megabase) solid tumors [38].

Detecting ctDNA in the blood is a noninvasive test
called liquid biopsy (see the section on Molecular pro-
filing in the blood). With an increasing interest in
ctDNA, studies have been carried out to develop meth-
ods, including NGS, that can estimate the tumor frac-
tion in a patient’s plasma and measure the TMB from
their blood with high accuracy [39]. Chalmers et al. [40]
demonstrated that TMB can be accurately measured in
blood by sequencing targeted gene panels, but accuracy
is compromised when the sequenced genome region is
less than 0.5 MB. The Guardant Health Omni panel (500
genes, 2.1 MB) and Foundation Medicine bTMB panel
(394 genes, 1.14 MB) are plasma-based NGS assays con-
taining sufficiently large genome region sizes to measure
TMB across a broad range of TMB values. In a study by
Qiu et al. [41], Guardant Health and Foundation Medi-
cine tests were evaluated and compared in their ability
to evaluate TMB from ctDNA. The investigators ascer-
tained that tissue and plasma TMB correlated well using
both assays as long as analyzed samples contained a high
TMB; the correlation was compromised if samples con-
tained only low to medium TMB [41].

TMB has been used as a predictor for response to ICI
therapy, and early measurements of ctDNA were shown
to help detect treatment failure [42]. MRD is another
important biomarker of treatment failure. It refers to
residual tumor cells present after cancer treatment and is
associated with disease recurrence. MRD can be detected
in blood using techniques like quantitative PCR and
NGS. However, most recently, ctDNA has been used to
detect MRD in the blood, serving as a powerful diagnos-
tic and predictive tool (Fig. 2) [43].

MSI

Microsatellite instability (MSI) is a molecular fin-
gerprint for defects in the mismatch repair system
(dMMR), which is associated with an increased risk
of cancer [44]. The MMR system is composed of
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Potential ctDNA applications

Cancer Assess Detect MRD  Detect radiographic ' Assess treatment

screening treatment relapse earlier responses
response Identify N

high-risk Identify emerging

patients for  Identify actionable resistance

relapse mutations isms on
progression

Guide earlier
and more

sufr‘sgi‘l‘fa‘x“'ce Treatment

diagnostics

Guide
intensification
of adjuvant
therapies

ctDNA levels

Peri-operative
therapy + surgery

|||||||

Time

Fig. 2 Potential ctDNA applications

heterodimers (MSH2/MSH6 and MSH2/MSH3 com-
plexes) that ensure the specific recognition of mis-
paired nucleotides generated due to DNA damage
[45]. In humans, these complexes initiate DNA repair
and recruit MLH1/PMS1, MLH1/PMS2, and MLH1/
MLH3 heterodimers to catalyze the excision of the
mispaired nucleotides as well as error-free DNA resyn-
thesis. Genetic and epigenetic inactivation of MMR
genes cause MMR defects (AMMR) and give rise to
spontaneous, genome-wide mutations [45]. This mainly
affects the short tandem repeat DNA sequences termed
microsatellites, which occur at specific foci throughout
the genome.

MSI-H tumors contain many mutation-associated
neoantigens, which, it is believed, are recognized as
foreign by the immune system. The benefit of ICIs for
patients with MSI-H/dMMR tumors was first docu-
mented in a Phase II trial, in which patients with meta-
static cancer (78% colorectal) with and without dAMMR
received pembrolizumab. Only the patients with
MSI-H/dMMR tumors benefited from the ICI therapy
[46]. Results from this trial were confirmed in the larger
Phase II KEYNOTE 158 study evaluating pembroli-
zumab in dMMR metastatic colorectal patients [37].
Later, results from the KEYNOTE 177 trial of pem-
brolizumab as first-line treatment for patients with
MSI-H/dMMR metastatic colorectal cancer showed
longer progression-free survival (PFS) compared to
standard chemotherapy [47]. Similarly, the CHECK-
MATE 142 trial suggested durable benefit from com-
bined nivolumab plus ipilimumab (anti-CTLA-4) in
patients with MSI-H/dMMR tumors [48].

Conventional methods used for MSI testing include
immunohistochemistry (IHC) and PCR-based assays
performed on tumor tissue samples. Tumor tissue-
based NGS can also determine MSI status.
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HER2

HER2 is a member of the human epidermal growth factor
receptor (HER) family. This family includes HER1 (ErbB1;
EGFR), HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4)
[49-52]. The HER2 receptor regulates normal cell prolif-
eration, survival, and differentiation via different signal
transduction pathways. Amplification or overexpression
of HER2 is found in 2-6% of patients with metastatic
colorectal cancer [53-55]. The frequency of HER2 over-
expression in gastric and gastroesophageal cancer ranges
from 4.4 to 53.4%, with a mean of 17.9% [56, 57].

Several strategies have been developed to target
HER2, including extracellular antibodies like trastu-
zumab, which targets domain IV of the receptor, and
pertuzumab which binds to domain II and inhibits the
heterodimerization of HER2 with other ErbB receptors
[58]. Additionally, small tyrosine kinase inhibitors like
lapatinib, tucatinib, or neratinib inhibit HER2 activity,
while antibody—drug conjugates (ADCs), such as trastu-
zumab emtansine (T-DM1) and trastuzumab deruxtecan
(T-Dxd), bind HER2 and introduce a potent cytotoxic
agent into cells overexpressing the receptor [16].

The Phase III ToGA (Trastuzumab for Gastric Cancer)
trial for patients with gastric or GEJ cancer with overex-
pression of HER2 or gene amplification was the first study
to demonstrate the therapeutic benefit of targeting HER2
in GI cancers [15]. The US FDA subsequently approved
trastuzumab for the first-line treatment of patients with
metastatic, HER2-positive gastric or gastroesophageal
cancer.

Subsequent trials in patients with GI cancers include
the Phase 2 HERACLES trial [59] and the ongoing
MyPathway basket trial [60]. In the HERACLES trial [59],
standard treatment-refractory patients with KRAS wild-
type (wt) CRC harboring a HER2 amplification received
trastuzumab and lapatinib. In a subset of the ongo-
ing MyPathway basket trial [60], patients with HER2-
amplified metastatic CRC received pertuzumab plus
trastuzumab. The objective response rates were around
30% in both studies, and several other patients had sta-
ble disease, demonstrating that HER2 amplification is
an actionable target. More recently, a trial of T-Dxd in
previously treated patients with gastric or GE] cancer
found improved overall survival (OS; 12.5 months vs.
8.4 months; P=0.0097) and ORR (40.5% vs. 11.3%) com-
pared to standard chemotherapy. These results led to the
US FDA approval of T-Dxd in the third or later lines of
therapy [16].

The development of tumor resistance to HER2 inhibi-
tors is a problem for which there are multiple possi-
ble mechanisms, including loss of HER2 expression
and HER3 ligand-dependent HER2-HER3 interactions
leading to evasion of apoptosis [61]. A TAF/FGF5/
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FGFR2/c-Src/HER2 axis might act as a HER2-targeted
therapy escape pathway, which seems to be reversed by
FGER inhibition [62].

Prior attempts to demonstrate an OS benefit from sec-
ond-line HER2-targeted vs. standard cytotoxic therapy
have failed, possibly due to loss of HER2 expression fol-
lowing trastuzumab-based first-line treatment. MOUN-
TAINEER-02 trial investigators hope that dual targeting
of HER2 with tucatinib and trastuzumab will overcome
this resistance. Tucatinib is a small molecule tyrosine
kinase inhibitor, which was shown to have “very potent,’
selective activity against HER2, with minimal off-target
effects [63]. The ongoing Phase II/III MOUNTAIN-
EER-02 trial [NCT04499924] [64] is enrolling patients
with advanced or metastatic HER2-positive (overexpres-
sion or amplification) gastric or GEJ cancer with dis-
ease progression (PD) after frontline therapy, including
a HER2-directed antibody. Patients receive second-line
treatment with paclitaxel plus ramucirumab, either with
tucatinib plus trastuzumab, tucatinib plus trastuzumab-
placebo, tucatinib-placebo plus trastuzumab, or two
placebos.

Future directions include using liquid biopsy genotyp-
ing assays as a viable, real-time alternative to tissue-based
genotyping in the identification of HER2 alterations in
the metastatic setting. HER2 copy number is typically
assessed using surgically-obtained tissue, but necessary
information can now be obtained conveniently and non-
invasively using ctDNA (See the “Molecular profiling in
blood” section).

FGFR 1-4

Fibroblast growth factors (FGFs) and their receptors
(FGFR 1, 2, 3, and 4) are vital to many cellular processes.
After ligand stimulation, FGFRs undergo dimerization
and phosphorylation, prompting intracellular signaling
that triggers a number of intracellular survival and pro-
liferative pathways [65-67]. Aberrant FGFR signaling
(found in just over 7% of all cancers) has been shown to
have an oncogenic role. FGFR alterations (primarily in
FGFR2) are found in approximately 13% of intrahepatic
cholangiocarcinomas (CCA), 3% of gallbladder cancers,
9% of gastric cancers in a Western population, and 3% of
gastric cancers in an Asian population) [68—73].

Of all FGFR2 aberrations, 66% are amplifications, 26%
mutations, and 8% rearrangements [74]. Oncogenesis
most often occurs through FGFR pathway activation. For
example, FGFR amplifications and rearrangements lead
to protein overexpression and dependence on FGFR
signaling, although conversely, preclinical models sug-
gest that amplifications also predict increased sensitivity
to FGFR inhibition [75, 76]. Mutations in FGFRs cause
increased downstream phosphorylation [72, 75].

Page 8 of 22

FGFR has become a molecular target of increas-
ing interest in CCA. There are several FGFR-targeted
therapies of interest, mostly in the form of tyrosine
kinase inhibitors (TKIs). Pemigatinib is a selective oral
FGFR1-3 inhibitor investigated in the open-label single-
arm FIGHT-202 trial for previously treated advanced
CCA [77]. Among patients with FGFR2 alterations,
pemigatinib displayed an overall response rate (ORR)
of 36%, disease control rate (DCR) of 80%, and median
duration of response (DOR) of 7.5 months. Pemigatininb
is now FDA approved for previously treated, unresect-
able, locally advanced, or metastatic CCA with an FGFR2
alteration. Pemigatininb combined with gemcitabine
and cisplatin is currently being studied in the first-line,
phase III FIGHT-302 trial (NCT03656536). Infigratinib,
another selective FGFR 1-3 TKI, obtained accelerated
FDA approval in subsequent-line settings for FGFR2-
altered CCA. This drug demonstrated an ORR of 23%
and mDOR of 5 months [78]. In CCA, other drugs cur-
rently under study include derazantinib (FGFR1-3 inhibi-
tor) and erdafinitib (FGFR1-4 inhibitor). Toxicities of
FGEFR inhibitors are predictable and similar across this
class of therapeutics and include hyperphosphatemia
(50—80%), nail toxicity (35%), and ophthalmologic toxic-
ity (4-9%) [77, 79-81].

IDH1/2
Isocitrate dehydrogenase (IDH) is a key enzyme in the
tricarboxylic acid cycle and comprises 2 subtypes: IDH1,
located in the peroxisomes and cytosol, and IDH2,
located in the mitochondria [82, 83]. In CCA, IDHI
mutations are found in 15-25% of cases, particularly in
intrahepatic CCA. IDH2 mutations are less frequent,
found in up to 3% of CCAs [84, 85]. IDH mutations gen-
erally lead to a gain-of-function that disrupts normal
catalytic activity. The net effect is increased conversion
of a-ketoglutarate to D-2-hydroxyglutarate, which leads
to downstream cellular proliferation through pathways
including DNA methylation and VEGER [82, 83, 86].
Multiple IDH-selective inhibitors are being investi-
gated in vitro and in clinical trials. Ivosidenib, an oral
small-molecule inhibitor, was among the first to be stud-
ied clinically: A phase I study confirmed tolerability and
demonstrated a median PFS (mPFS) of 3.8 months in pre-
viously treated patients with /DHI-mutated CCA [87].
The recent ClarIDHy Phase III placebo-controlled trial
demonstrated an OS benefit from ivosidenib that trended
towards statistical significance (mOS 10.3 vs. 7.5 months,
HR 0.79, 95% CI 0.56—1.12; p=0.093), becoming statis-
tically significant once a mathematical model adjusting
for treatment crossover effects was employed (mOS 10.3
vs. 5.1 months, HR=10.49; 95% CI 0.34-0.70; p <0.0001)
[88]. Ivosidenib was granted FDA approval in August
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2021 [89]. Additional promising IDH1-targeting drugs
are under early investigation, including another small-
molecule inhibitor, olutasidenib (NCT03684811).

BRCA/PALB2

Germline mutations in BRCA1 and BRCA2 are well stud-
ied and associated with a high risk of cancer, particularly
breast and ovarian cancers, with high hereditary pen-
etrance in an autosomal dominant pattern [90-92]. This
associated risk has been established across other cancers,
including pancreatic cancer, where BRCA2 mutations
pose a relative risk of 3.5-10 compared to non-carriers.

BRCA1I and BRCA2 are suppressor genes of the same
family, located on long arms of chromosome 17 and 13,
respectively [93, 94]. They play instrumental roles in
DNA damage response, particularly in maintaining chro-
mosomal stability in the process of homologous recom-
bination repair [95, 96]. One of the early successes of
whole-genome sequencing was the identification of the
BRCA2 and its partner and localizer gene PALB2 in 1-4%
of familial PDAC [90, 97, 98]. PALB2 colocalizes with
BRCA?2 at the site of DNA damage to enable DNA repair
[99].

Deficiencies in homologous recombination and DNA
repair pathways predict sensitivity to platinum-based
chemotherapy regimens as well as poly(ADP-ribose)
polymerase inhibitors (PARPi). Patients with PDAC
and homologous recombination gene mutations had
improved PFS and OS when treated with frontline plat-
inum-based therapy compared to patients without such
mutations (HR 0.44, 95% CI 0.29-0.67; P<0.01) [100,
101]. Similarly, PARPi appear to be active in PDAC; the
phase III POLO trial demonstrated sensitivity to olaparib
of patient tumors with homologous recombination gene
mutations. Maintenance olaparib after platinum-based
induction therapy showed superior mPFS to placebo
(7.4 vs. 3.8 months, HR 0.53, 95% CI 0.35-0.82) [102].
Olaparib is FDA-approved in the maintenance setting for
PDAC.

BRAF V600E mutation
The BRAF V600E mutation is found in about 8-10% of
CRCs [103] and 3—-7% of bile duct cancers [71].

In the NCI-MATCH EAY131-H trial, a combination
of dabrafenib (BRAF inhibitor) and trametinib (MEK
inhibitor) produced favorable response rates in a total of
35 pretreated patients with a range of solid tumors, all
harboring a BRAF V600E mutation [104]. A confirmed
objective response rate (ORR) of 37.9% (90% CI 22.9—
54.9%; P <0.0001 against a null rate of 5%) was reported.
The median duration of response was 25.1 months. Four
of the 35 patients enrolled on trial had CCA, and 3 of
these 4 experienced a partial response (PR) [104].
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The same drug combination was tested in patients
with bile duct cancer harboring BRAFV600E mutations
as part of the ROAR Basket Trial [21]. The ROAR Bas-
ket Trial enrolled 9 different cohorts of 178 patients with
rare malignancies, all harboring BRAF V600E mutations.
The bile-duct cancer cohort included 35 patients treated
with the combination of the BRAF inhibitor dabrafenib
and the MEK inhibitor trametinib. Most patients (74%)
had stage IV disease at enrollment, and all 35 patients
with biliary tract cancer had received prior chemother-
apy (80% had received at least 2 prior lines). The median
duration of treatment exposure was 6 months, with 86%
of the patients being treated for more than 3 months. The
median follow-up was 8 months. A PR was reported in
42% of the cohort by investigator assessment and 36% by
independent review. Stable disease was achieved in 45%
and 39%, respectively, and 12% had progressive disease as
their best response (by either assessment method). The
mPFS by investigator assessment was 9.2 months, and
the median OS was 11.7 months. With regard to safety,
adverse effects (AEs) were found to be comparable to
those previously reported with each agent alone, with
no new toxicities observed. Potential study treatment-
related toxicities included fatigue, neutropenia, hypona-
tremia, and hypophosphatemia. No grade 5 events were
observed [21].

Molecular profiling in the blood

A liquid biopsy identifies components of a tumor in the
blood, such as ctDNA, circulating tumor cells (CTC), cir-
culating tumor RNAs, and circulating tumor exosomes
[105]. Of all these entities, ctDNA is the most studied to
date and comprises fragments of cell-free DNA (cfDNA)
that retain tumor-specific mutations and epigenetic char-
acteristics [106—108]. These fragments are released into
the circulation spontaneously or after apoptosis or necro-
sis. ctDNA makes up a highly variable fraction of total
cfDNA in peripheral blood, and this fraction (reportedly
ranging from less than 0.1% to almost 90%) is impacted
by disease stage, tumor type, and analysis technique,
to name a few. The half-life of ctDNA is 16 min to 2 h,
allowing for indirect real-time tumor characterization
[109-111]. Although the liquid biopsy was described as
early as the 1940s, it is only recently, with enhancements
in genomic sequencing techniques and identification of
novel biomarkers, that we have seen more commercial-
ized applications of liquid biopsy platforms [112—114].

Overview

The advantages of blood-based molecular profil-
ing include the ability to study intra- and inter-tumor
genomic heterogeneity, the ability to perform tumor
profiling in the absence of available tissue, avoidance of
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invasive biopsy procedures, the feasibility of frequent
longitudinal testing, and a quick turnaround time to
inform treatment plans [115]. To date, numerous com-
mercial liquid biopsy profiling assays are available to
providers. Methodologies overlap with tissue profiling
and involve comprehensive genomic, single-gene, or hot-
spot gene testing. In hotspot testing, commonly altered
regions within select genes are evaluated. Of the com-
prehensive genomic tests, only two are FDA approved
today. Guardant Health’s Guardant360 CDx, targeting
55-74 genes using DNA NGS, was first FDA approved
on August 7, 2020. Roche’s FoundationOne Liquid
CDx, targeting over 300 genes using DNA NGS, was
first approved on August 26, 2020 [116-118]. Although
approved as companion diagnostic tests for therapeutics
in lung, prostate, ovarian, and breast cancer, these assays
are increasingly studied and adopted in GI cancers to
identify prognostic and predictive biomarkers, action-
able mutations with FDA-approved therapies, responses
to treatment, and mechanisms of resistance. These and
other comprehensive gene-based assays utilize NGS and
can identify single nucleotide variants (SNVs), inser-
tion and deletions, gene rearrangements, copy number
variants (CNVs), TMB scoring, and microsatellite status
[112, 116, 119, 120].

Numerous studies have recently evaluated ctDNA
genomic profiling in GI cancers to identify actionable
mutations, monitor disease response, and understand
resistance mechanisms (Fig. 2; Table 2). Concordance
rates of 85-98% have been reported for ctDNA and tis-
sue genomic profiling, and promising sensitivities and
specificities in NGS/PCR-based ctDNA assays, for exam-
ple, 50-93% and 97-100% respectively for RAS muta-
tions, 63—100%, and 98-100% for BRAF mutations, and
33-98% and 98% for ERBB2 amplifications, have been
observed [109, 121-123]. In addition, studies have sug-
gested that ctDNA captures genomic heterogeneity
between primary and metastatic sites, which should act
to enhance therapy selection [124]. As a noninvasive and
convenient test, blood-based genomic profiling has the
potential to replace or complement tissue testing, par-
ticularly when considering targeted therapies.

Taking anti-EGFR therapy as an example [125-127,
131], ctDNA studies demonstrate that RAS/EGFR mutant
clones emerge during treatment, which might regress
upon the withdrawal of anti-EGFR therapy, thereby
allowing for rechallenge with the targeted therapy [128].
This regression could not be reasonably assessed using
tumor tissue because it would mean the risk of repeated
biopsying. Being much less invasive, liquid biopsy and
ctDNA analysis may allow for uncomplicated identifica-
tion of patients suitable for rechallenge based on real-
time genomic analysis. This idea was evaluated in the
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CHRONOS phase II trial, the first prospective inter-
ventional study to use liquid biopsy to guide anti-EGFR
rechallenge therapy in CRC. Hence, liquid biopsy geno-
typing differentiated between patients with RAS/BRAF/
EGFR mutated versus wild-type tumors, and one-third of
wild-type patients had an objective response on rechal-
lenge with an anti-EGFR antibody [129]. Other stud-
ies have identified specific EGFR and RAS mutations in
the plasma after disease progression on treatment and
highlight ctDNA as a tool in clinical practice to inform
therapeutic development and tailor treatments based on
emerging resistance mutations [128]. The feasibility of
BRAF plasma testing and similar potential applications
in this targetable gene have also been demonstrated [130,
131, 135].

Another good example of ctDNA application is in
HER?2 amplified disease. Recent prospective trials have
suggested that plasma HER2 amplifications predict
response to HER2-directed therapies such as lapat-
inib, trastuzumab, pertuzumab, and fam-trastuzumab
deruxtecan-nxki (T-DXd) [136-139]. For example, bet-
ter responses to T-DXd in gastric cancers were seen
when plasma HER2 and higher copy number amplifica-
tions were detected [138]. Also, changes in plasma copy
number during HER2-directed therapy were associated
with therapeutic response and survival in upper GI can-
cers and CRCs [122, 136, 137, 139]. Baseline and emerg-
ing resistance mutations detected in the plasma at the
time of progression, such as MYC, EGFR, FGFR2, and
MET amplification, have also been reported along with
promising therapeutic strategies to overcome resistance,
including combining anti-HER2 and other targeted or
immune therapies [136, 139].

ctDNA can detect plasma FGFR2 alterations, some-
times at a higher frequency than tissue testing, identify
patients who may benefit from infigratinib, and identify
emerging resistance point mutations [140—-142]. Recently,
plasma-tissue accuracy and survival data have also been
described in CCA patients with IDHI plasma mutations
treated with ivosidenib [144]. PDAC is highly KRAS-
mutated and harbors rarer targetable mutations. Many
studies have evaluated KRAS and TP53 ctDNA detection
and kinetics as prognostic and predictive biomarkers in
PDAC cases [145, 147, 149, 150].

Early data suggest that plasma MSS and TMB have
potential roles as prognostic and predictive biomark-
ers in GI cancers, although further study is needed to
validate these assays in the guidance of immunotherapy
[151, 152]. Collectively, these data highlight the evolving
potential of blood-based molecular profiling to precisely
guide patient therapy and overcome tumor resistance
using only minimally invasive procedures. Consequently,
clinical trials across GI cancers are increasingly focused
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on genomic testing of liquid biopsies in place of or in
conjunction with tumor tissue biopsies to enroll patients
and study their outcomes [64, 153, 154].

Limitations

The liquid biopsy has been rapidly integrated into clini-
cal practice for many solid tumors, but physicians should
exercise caution when interpreting results. Tumor sam-
ples provide an abundance of tumor DNA compared
to a liquid biopsy; therefore, liquid-based NGS may be
limited by apparent lower sensitivity due to significantly
lower levels of ctDNA [119]. Often, performing NGS on
several genes means reduced depth of sequencing and
sensitivity, not to mention added cost and effort com-
pared to targeted sequencing of one or a few genes [119,
120, 155].

Studies have demonstrated that ctDNA levels and con-
cordance may vary based on tumor histology, anatomic
location, and stage [110, 156, 157]. Limitations arise if the
tumor is a poor ctDNA shedder [122, 158]. Additionally,
the presence of clonal hematopoiesis may lead to false
positives in genotyping [159]. Unique molecular identi-
fiers, dual barcode indexing, methylation assays, matched
normal WBC DNA analysis, and ¢fDNA fragment length
analysis can improve the accuracy of ctDNA analysis
[109, 160, 161]; however, differences between laboratory
testing platforms can contribute to discordant results
across many mutations [162]. Despite the intrinsic limi-
tations of assays, blood-based genomic profiling remains
a promising tool for patient diagnosis, therapy guidance,
and identification of patients for trial enrollment.

ctDNA use in screening and diagnosing cases

with insufficient tissue

As molecular profiling technology has advanced, there
is increasing interest in using ctDNA for cancer screen-
ing (Fig. 2), diagnosis of inaccessible tumors, and man-
agement of cancers of unknown primary (CUP). Massive
genomic profiling efforts, including The Cancer Genome
Atlas’s Pan-Cancer initiative and other massive genomic
profiling efforts, have identified tumor DNA, RNA, and
protein patterns based on histology, anatomic location,
and tissue types. These patterns can, in turn, be used to
characterize undifferentiated tumors and identify tissues
of origin [163]. For example, the highly-specific Can-
cerSeek test [164] used ctDNA and protein biomarkers
coupled with machine-learning to diagnose 8 early-stage
cancers, including liver, gastric, pancreatic, esophageal,
and colorectal cancer. The Circulating Cell-free Genome
Atlas (CCGA) study [165] used a methylation-based assay
from Grail to allow deeper sequencing and identified
over 50 early-stage cancers, including liver/bile duct, gas-
tric, pancreatic, esophageal, colorectal cancer, and anal
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cancer. The CancerSeek assay demonstrated sensitivi-
ties ranging from 69 to 98% in the detection of 5 cancer
types, including liver, stomach, pancreatic, and esopha-
geal [164]. The CCGA assay had 67.3% (CI 60.7-73.3%)
sensitivity in 12 cancer types, including anal, colorec-
tal, esophageal, liver/bile duct, pancreatic, and stomach
[165]. Both assays had greater than 99% specificity, iden-
tifying the tissue of tumor origin with great accuracy. In
another active study, Grail's c¢fDNA methylation assay
predicted the tissue of tumor origin with 92.3% accuracy
[166]. Although these platforms are promising, they are
still limited by inadequate sensitivity in early-stage dis-
eases. Moreover, questions about disease management
after detection, feasibility, ethics of general population
testing, and cost—benefit ratios remain [167].

As it currently stands, GI cancer-specific but not yet
multicancer screening tests have been FDA approved.
Epigenomics Epi proColon® detects methylated SEPT9
DNA in the blood and was FDA approved on April 13,
2016, as the first blood-based CRC screening tool [168,
169]. Guardant’s LUNAR-2 ctDNA screening test for
CRC is also currently under investigation, among oth-
ers [170]. Blood-based hydroxymethylation and protein
glycosylation signatures are promising biomarkers for
the early detection of PDAC [171, 172]. Distinct circu-
lating miRNAs signatures in blood and bile might act as
biomarkers to differentiate between biliary cancers and
other benign hepatobiliary diseases [173, 174]. However,
miRNAs are nonspecific, and the best source of miRNA
collection and the translation of miRNA assays into clini-
cal practice are as yet undefined [175, 176].

Finally, the feasibility and utility of analyzing ctDNA
from blood to characterize CUPs and identify targeta-
ble mutations have been described in multiple studies
over the past decade [177-180]. Historically, patients
with CUP had limited treatment options and poor prog-
noses because many standard-of-care therapies are
tumor-specific. As more biomarkers are identified, broad
blood-based NGS can uncover targetable mutations and
identify more previously non-indicated therapies for
these patients.

ctDNA in MRD

Efforts are underway to identify patients at high risk
of early relapse and develop interventions to lengthen
patient survival. The strategy of MRD monitoring (Fig. 2)
and eradication is already established in hematologic
malignancies and is stimulating interest in GI cancers
[181-183].

MRD ctDNA assays are often characterized as tumor-
agnostic or tumor-informed. Tumor-agnostic approaches
do not require pre-existing knowledge of a tumor’s
genomic profile and often employ broad-based NGS,
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narrower PCR, or methylation assays to identify common
cancer markers circulating in the blood. Numerous stud-
ies in localized or oligometastatic CRC patients under-
going curative surgery have demonstrated that ctDNA
detection post-surgery or post-adjuvant therapy is a
strong independent prognostic marker for survival [184—
186]. Others suggest that ctDNA levels correlate with
tumor burden and response to treatment [187]. Promis-
ing results in PDAC (often targeting KRAS) and gastroe-
sophageal cancer have also been reported [188-191].
While limited by decreased sensitivity, tumor-agnostic
methods are advantageous in their quick turnaround
time, low cost, and simultaneous broad-based genomic
profiling and resistance mechanism identification
potential.

Although slower and more expensive, a tumor-
informed approach offers higher sensitivity and is par-
ticularly attractive in assessing MRD when the ctDNA
level is low, as in early-stage disease. Here, a patient’s
tumor tissue is tested using genomic sequencing, and
tumor-specific mutations are identified. These muta-
tions are subsequently targeted in the blood using a per-
sonalized assay. Examples include SafeSeqS, CAPP-Seq,
Archer DX, Radar, and Signatera. To date, most GI can-
cer studies have been in CRC and demonstrate sensitivi-
ties ranging from 48 to 100%, specificities ranging from
90 to 100%, positive predictive values (PPV) over 98%,
and median lead times to radiographic relapse of about
8-9 months [192-203]. For example, using the Signatera
test, a ctDNA positive status after adjuvant therapy and
on postoperative longitudinal testing was found to con-
fer 18 times and 30 to 40 times, respectively, higher risk
of relapse compared to a ctDNA negative status. Moreo-
ver, ctDNA was found to outperform CEA in predicting
relapse [192, 193, 198]. Studies characterizing ctDNA in
the provision of early prognostic data are also emerging
in gastroesophageal cancer, PDAC, and CCA [188, 189,
204, 205]. Some studies in the adjuvant and metastatic
setting also suggest that ctDNA clearance or kinetics may
predict treatment response and survival [198, 206].

We know that ctDNA positivity is highly prognostic
but still lack knowledge on optimal disease manage-
ment strategies for patients with MRD. While a positive
test may theoretically hasten surveillance diagnostics,
the role of local or systemic therapy escalation, in this
case, is unclear, especially in the setting of serial, low-
level ctDNA without evidence of radiographic relapse.
Also, despite the achievable 0.01% level of ctDNA
detection using tumor-informed assays, false negatives
due to ctDNA levels being below the limit of detec-
tion should be considered when interpreting negative
results. This is likely to be the case for low-shedding
tumors, for example [207]. Therefore, in the absence
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of prospective, randomized data to support de-esca-
lation strategies, a patient with a negative test should
receive standard adjuvant therapy if not otherwise con-
traindicated. It is also important to realize that each
company’s tests are uniquely constructed, using dif-
ferent error-correcting techniques that are frequently
updated.

Circulating tumor cells (CTCs)

It has been shown that CTCs are an intermediate stage
of cancer metastasis. Like ctDNA, CTCs are obtained
from peripheral blood; however, CTCs may have a
greater clinical impact as they can be grown, propa-
gated, and extensively studied in vitro and in vivo under
optimal conditions [208, 209]. However, it is unclear
if a single cell assay accurately reflects entire tumor
heterogeneity.

Data supporting CTC enumeration as a predictor of
clinical outcome dates back as early as 2004, when it was
shown that patients with metastatic breast cancer had
shorter mPFS and mOS if they had higher CTC levels
[210]. Since then, this finding has been further validated
across a wide range of tumor types, including GI cancers
[208]. CTC enumeration shows promise in clinical man-
agement guidance; for example, as shown in breast can-
cer cases, the discovery of discordant driver mutations
between an individual's CTCs and their primary tumor
may inform targeted treatment decisions [211-213].

Several commercial systems and clinical services (Epic,
RareCyte ", CytoTrack, SRI FASTcell ™) exist [214]. Cur-
rent methods of CTC detection rely on one of three basic
principles. The CellSearch® system was the first and is
the only FDA-approved device for CTC enumeration
[215]. The CellSearch® platform relies on antibody detec-
tion of CTC markers [208, 216]. Cohen et al. used the
CellSearch™ system to estimate CTCs in their prospec-
tive multicenter mCRC study [217]. Their results showed
that patients with>3 CTCs/7.5 mL blood had shorter
mOS than patients with<3 CTCs (P<0.0001), and these
differences persisted at follow-up time points after ther-
apy. It was concluded that the number of CTCs was an
independent predictor of disease-free survival (DES)
and OS in metastatic cancer [217]. An alternative CTC
enumeration approach relies on isolating CTCs accord-
ing to prespecified cancer-specific gene products (RNAs
and proteins) [208, 218]. However, this method involves
the lysing of captured CTCs, limiting their use in down-
stream analyses. A third technique isolates CTCs accord-
ing to their physical characteristics; CTCs are generally
much larger than blood cells (30 pm vs. 7-9 pum), allow-
ing their isolation and enumeration [219].
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Future directions

CTCs and organoids

CTC study has already added to our understanding of
cancer metastases. For example, it has been described
that CTCs often carry genetic variations in driver muta-
tions that are different from the primary tumor; these
differences would likely help explain the propensity
for primary tumors to metastasize and seed into other
organs [220].

As the next frontier in precision medicine, the abil-
ity to grow and expand CTCs ex vivo is an invaluable,
noninvasive tool in the study of cancer biology and
metastasis [208, 209, 216]. One step further, the abil-
ity to create CTC-derived xenografts by injecting CTCs
directly into immunocompromised mouse hosts holds
vast implications in both research and clinical settings.
These organoids maintain tumor heterogeneity and allow
investigation of therapeutic elements on the xenograft
that mirror patient response to the same treatment [221,
222]. Such clinical applications have already been used to
perform in vivo drug screens with high success and hold
implications for new drug discovery [221]. For research
purposes, organoids can be used for disease modeling
to understand the process of carcinogenesis. They can
be manipulated easily using retroviruses and inhibi-
tors, for example, and can be used to identify key driver
mutations, as shown already in some GI cancer organoid
studies [223, 224]. The clinical role of CTCs is currently
limited but is expected to expand on the heels of technol-
ogy improvements, including CTC-isolation and orga-
noid-development techniques.

What can we learn from the blood, and how can we use
biomarker testing in the future?

Tissue molecular profiling provides clinically significant
subtyping of all GI cancers. The liquid biopsy promises
dynamic tumor characterization through various plat-
forms, and we believe these capabilities will be increas-
ingly incorporated into clinical cancer management. The
liquid biopsy is already integrated into the standard of
care for gastric, esophageal, and GE] cancers, for which
NCCN guidelines recommend plasma ctDNA profiling
by NGS to detect targetable alterations or clones with
altered treatment sensitivity when patients are not candi-
dates for tumor-tissue biopsy and NGS [207].

In the future, molecular profiling of the liquid biopsy
will likely complement or replace the GI tumor-tissue
biopsy in select scenarios. Future therapeutic studies
should include ctDNA analyses to identify prognostic
and predictive liquid biopsy biomarkers. Serial test-
ing should also be further assessed as a way to quickly
and noninvasively characterize disease response or
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mechanisms of resistance. Finally, “MIRD with no evi-
dence of radiographic disease” might become a theoreti-
cal “new stage, warranting novel treatment strategies.
As liquid biopsy techniques improve, blood-based test-
ing will hopefully better identify MRD and screen early-
stage GI tumors with hopes of curing more patients and
improving outcomes.

Summary

Molecular profiling for patients with GI malignancies is
clearly making an impact and has become the standard
of care in many situations. In fact, in 2021, ASCO chose
molecular profiling in GI cancers as its Advance[ment] of
the Year [225]. An increasing number of actionable bio-
markers are being identified, and drugs that act on these
biomarkers are continually being developed, providing
patients with better treatment options, improved qual-
ity of life, and increased survival compared to standard
therapy alone. Likewise, analytical methods using tumor
tissue and, more recently, blood are constantly being
developed and improved, promoting the identification
of biomarkers and gene signatures that help diagnose
disease and predict therapy success in this oftentimes
refractory group of malignancies. Together with machine
learning, our evolving biomarker technology is promising
to help us fight an even smarter war against GI cancers.
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