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Abstract

Background: The advent of metagenomic sequencing provides microbial abundance patterns that can be
leveraged for sample origin prediction. Supervised machine learning classification approaches have been reported
to predict sample origin accurately when the origin has been previously sampled. Using metagenomic datasets
provided by the 2019 CAMDA challenge, we evaluated the influence of variable technical, analytical and machine
learning approaches for result interpretation and novel source prediction.

Results: Comparison between 16S rRNA amplicon and shotgun sequencing approaches as well as metagenomic
analytical tools showed differences in normalized microbial abundance, especially for organisms present at low
abundance. Shotgun sequence data analyzed using Kraken2 and Bracken, for taxonomic annotation, had higher
detection sensitivity. As classification models are limited to labeling pre-trained origins, we took an alternative
approach using Lasso-regularized multivariate regression to predict geographic coordinates for comparison. In both
models, the prediction errors were much higher in Leave-1-city-out than in 10-fold cross validation, of which the
former realistically forecasted the increased difficulty in accurately predicting samples from new origins. This
challenge was further confirmed when applying the model to a set of samples obtained from new origins. Overall,
the prediction performance of the regression and classification models, as measured by mean squared error, were
comparable on mystery samples. Due to higher prediction error rates for samples from new origins, we provided
an additional strategy based on prediction ambiguity to infer whether a sample is from a new origin. Lastly, we
report increased prediction error when data from different sequencing protocols were included as training data.

Conclusions: Herein, we highlight the capacity of predicting sample origin accurately with pre-trained origins and
the challenge of predicting new origins through both regression and classification models. Overall, this work
provides a summary of the impact of sequencing technique, protocol, taxonomic analytical approaches, and
machine learning approaches on the use of metagenomics for prediction of sample origin.
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Background
Microbiome studies have demonstrated successes in de-
tecting microbial compositional patterns in health and
environmental contexts. Large scale studies which exem-
plify global efforts to facilitate the understanding of mi-
crobial presence and abundance in relation to diseases
or environmental factors, have included the Human
Microbiome Project [1], the Metagenomics & Metade-
sign of Subways & Urban Biomes (MetaSUB) [2] and the
Earth Microbiome Project [3]. Technological advances
which have enhanced the ability to both detect species
and estimate their abundance in samples, include the
16S ribosomal RNA (rRNA) amplicon sequencing ap-
proach which targets and specifically sequences a region
within the 16S rRNA gene of bacteria and archaea; and
the shotgun whole genome sequencing approach in
which all genetic material present in a sample is se-
quenced. The latter has the potential to allow identifica-
tion of all manner of species to the strain level as well as
allowing for the detection and characterization of func-
tional units such as genes, plasmids, or pathogenicity
islands. Furthermore, the concordance between the two
methods is an area of active debate, with discrepancy
among studies in which direct comparison of these two
methods has been undertaken [4–7]. Despite the pros
and cons of each technique, successes in extracting
meaningful biological information have been found for
disease and environmental studies using both methods
[2, 3, 8–11].
The majority of analytical approaches for sample

source prediction used to date have focused on super-
vised classification methods such as support vector ma-
chines and random forest, in order to assign trained
source labels to unknown samples [9, 10, 12, 13].
Delgado-Baquerizo et al. found high variability in relative
abundance across various geographical locations through
examining soil microbiome, and used random forest
modeling to predict habitat preference for dominant
phylotypes [9]. In the Earth Microbiome Project, random
forest models were built to distinguish samples from
various environmental factors including association with
plants or animals as well as saline presence [10]. From
the perspective of identifying potentially mixed sources,
SourceTracker [14] uses a Bayesian approach to estimate
the proportions of source environments in a sample
without the assumption of one source label. In the 2018
Critical Assessment of Massive Data Analysis (CAMDA)
challenge, supervised classification approaches have been
applied to predict sample source using urban micro-
biome with high accuracies up to 0.91, where the inde-
pendent sample set was of the same origins as samples
previously trained [12, 15–17].
The objective of the 2019 CAMDA metagenomics fo-

rensic challenge was to use urban microbiome data to

predict locations of samples from new origins that had
not been previously sampled (Figure S1). As classifica-
tion models are limited to assigning new samples to
those pre-trained origins from which some samples were
already collected and trained, they can never predict a
novel origin. Thus, for the purpose of predicting new or-
igins, an alternative approach must be used. One such
method is to model urban origins using geographic co-
ordinates, as was demonstrated in a report on the associ-
ation between human genetics and geographical
locations [18]. While the evolution of microorganisms
with respect to locations can be quite different, the asso-
ciation between latitude and microbial composition in
various contexts has been described in several studies
[19–22]. Richness and diversity in planktonic marine
bacteria, and the surface microbiome from ambulances
in the United States were found to be inversely corre-
lated with latitude, a pattern called the “latitudinal diver-
sity gradient” [20, 21]. In the gut microbiome, Suzuki
et al. found significant positive and negative correlations
to latitude with Firmicutes and Bacteriodetes, respect-
ively in 23 populations, using 16S-based data [22], while
Fisman et al. reported correlation between bloodstream
infection from gram negative bacteria and proximity to
the equator measured by latitude-squared [19]. Such
patterned variability may be used to assist in prediction
of novel origins, and was investigated for this study.
Given the availability of both 16S rRNA amplicon and

shotgun data, we first set out to compare and contrast
normalized organism abundance from datasets gener-
ated using 16S amplicon and shotgun sequencing tech-
nologies in a dataset derived from a single location
(Boston). We then used the knowledge obtained from
this analysis to perform sample source attribution to a
new geographic origin, modeling the longitude and lati-
tude as outcome variables. The normalized taxonomic
abundance levels were used as features, and the multi-
variate regression model with Lasso regularization
was selected for prediction of new sample origins to
avoid model overfitting. Subsequently, we compare pre-
diction performance between multivariate regression
and multiclass classification models for the mystery data
from new origins. Lastly, we report a computational ap-
proach to identify whether a sample is from a new or
pre-trained origin through the Simpson’s diversity index
on classification probabilities.

Methods
Analyses were conducted in R 3.6.0 version unless other-
wise stated.

Dataset description
All Boston Urban [11] and MetaSUB [2] datasets were
provided by the CAMDA organizers: 1) Boston pilot 16S
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and shotgun data of 23 samples, 2) MetaSUB shotgun
data of 294 samples from 16 cities for training and 3)
MetaSUB shotgun data of 60 mystery samples from 8
new city origins as the independent test set. For the Bos-
ton dataset, sequencing of the V4 hypervariable region
of the 16S rRNA gene was conducted as described by
Hsu et al. [11]. Both 16S and shotgun abundance tables
(denoted as 16S and SG-MP) corresponding to these
samples were generated using QIIME v1.8 [23] and
MetaPhlAn2 [24], respectively [11]. We further analyzed
the Boston shotgun data using the Kraken2-Bracken [25,
26] assignment approach described below (denoted as
SG-KB). For the machine learning models, the down-
loaded MetaSUB shotgun training dataset included se-
quencing data from 16 cities: Auckland (AKL), Berlin
(BER), Bogota (BOG), Hamilton (HAM), Hong Kong
(HGK), Ilorin (ILR), London (LON), Marseille (MAR),
New York (NYC), Offa (OFA), Porto (PXO), Sacramento
(SAC), Sao Paulo (SAO), Sofia (SOF), Stockholm (STO)
and Tokyo (TOK). Fifteen of the training cities (276
samples) had paired-end sequencing data at 150-
basepair (bp) reads, whereas SAC data were single-
ended with 125 bp reads. Additional information on
samples regarding sequence lengths, single−/paired-end
and percentage of unclassified reads were reported in
Table S1.

Taxonomic abundance estimation and data processing
Taxonomic sequence classification and organism abun-
dance estimation for shotgun datasets were conducted
using Kraken2 [25] and Bracken [26], respectively, using
a customized reference database which included refer-
ence sequence representatives of the bacterial, viral, ar-
chaeal groups as well as the human genome, all obtained
from NCBI Refseq release 91 on December, 2018. The
Bracken database was constructed using 150 bp as the
read length, since these were the most commonly identi-
fied in the CAMDA dataset. Reads assigned to the hu-
man genome were filtered out. Normalization of the
total abundance count table for each taxonomic scale
was done using the cumulative sum scaling (CSS) ap-
proach at the 50th percentile (metagenomeSeq [27] R
package). The CSS normalization corrects for library size
differences by scaling based only on the lower abundant
taxa under the 50th percentile, so the normalized abun-
dance is different from the standard relative abundance
that have the same total sum from all taxa. Hence we
refer to this dataset as normalized abundance. To avoid
spurious results from sparse features, taxa that did not
contain at least 100 reads in more than one and eight
samples were filtered out in the Boston and MetaSUB
datasets, respectively. The Bray Curtis dissimilarity and
principal coordinate analysis with the Cailliez correction

for negative eigenvalues were powered by the vegan [28]
and ape [29] R packages.

Machine learning models for prediction of sample source
Instead of estimating latitude and longitude in separate
models, we chose to take into account dependencies be-
tween the two coordinates, and modeled them together
using multivariate regression with Lasso regularization
(glmnet R package) [30]. For each taxonomic model, the
normalized and log2-transformed microbial abundance
was standardized as input features, and latitudes and
longitudes were the response variables. Ten-fold cross
validation was conducted with mean squared error
(MSE) evaluation to choose the hyperparameter λ such
that the error from the model is within one standard
error of the minimum. The MSE reports the average
squared differences between the actual and estimated
values from a model. While there are other metrics and
debates on the comparison to mean absolute error [31,
32], MSE was used for the assessment of models. Per-
formance was reported using 10-fold nested cross valid-
ation (CV) to evaluate prediction accuracy of samples
from pre-trained cities, whereas leave-1-city-out (L1CO)
CV was used to evaluate accuracy of samples from new
cities. For comparison, a classification (Lasso-regularized
multinomial logistic regression) approach was also per-
formed using the glmnet R package [30]. Due to the
sample size imbalance between cities, samples were
weighted when training the classification model. The
weights were calculated as 1 – (sample count of the cor-
responding city / total sample count). While accuracy is
a common performance measure for classification
models, MSE was also reported for prediction on mys-
tery samples using the classification model in order to
compare to the regression model. Lastly, as the logistic
regression is based on the assumption of linearity be-
tween log odds and the features; we also performed the
random forest classification with down-sampling using
the randomforest R package, and reported the
performance.

Binary machine learning classifier on prediction
ambiguity
To inform whether a sample is from a pre-trained city, a
Simpson’s diversity value, which is the equivalent of the
Gini impurity for decision trees, can be computed using
class prediction probabilities of each sample from the
sample source Lasso-regularized classification model
(vegan R package [28]). The index was used to reflect
the prediction ambiguity of each sample from the model,
as was previously proposed in a genomic study [33].
Samples with higher prediction ambiguity are expected
to have prediction probabilities distributed across mul-
tiple classes, as reflected by higher diversity index in
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class probabilities. Overall, two diversity values were ob-
tained for each sample in L1CO and 10-fold CV settings,
mimicking the predictions of a new origin and a pre-
trained origin, respectively. Subsequently, a Bayes classi-
fier (naivebayes R package [34]) using kernel density es-
timation was built to learn the two distributions of
diversity values from L1CO CV versus 10-fold CV. The
learned model maximized the probability of assigning
the correct class (L1CO or 10-fold CV) of training sam-
ples, given the Simpson’s diversity values as the sole fea-
ture. Classifier performance was evaluated by leaving
each Simpson’s value out and predicting whether it was
from the L1CO or 10-fold CV setting. The final classifier
was then used to predict whether a mystery sample is
from a new origin, given the impurity of its source pre-
diction probabilities.

Results
Abundance differences between technological and
analytical approaches
Given that both 16S and shotgun approaches were used
to sequence the 23 Boston samples collected from sev-
eral surfaces and two sources [11], we first investigated
counts of detected organisms at varying taxonomic
scales and their normalized abundance using both data-
sets. For the shotgun data, we evaluated the abundance
table extracted from Kraken2 [25] and Bracken [26]
(SG-KB) as well as the table provided by CAMDA using
MetaPhlAn2 [24] (SG-MP). Using the SG-KB data, we
evaluated the read count thresholds of each species to
inform our cutoff for taxa filtering (Figure S2). We chose
a cutoff of 100 reads in consideration of the tradeoff be-
tween higher stringency and steady correlation levels
with the 16S data. Overall, there is higher sensitivity in
the SG-KB data at bacterial species, genus and family
levels compared to the other methods. SG-MP data ana-
lysis reported the least distinct taxa at all taxonomic
levels except for species (Table 1). As expected, both
shotgun datasets identified more distinct species than
16S data. While there were 75 overlapping species

identified between SG-KB and 16S data, there were 61
between SG-MP and 16S datasets. We next examined
reported normalized abundance of commonly detected
organisms between technologies in all 23 Boston sam-
ples. Pearson correlation coefficients between normal-
ized 16S and SG-KB abundance at species, genus, family,
order and class levels were 0.46, 0.71, 0.71, 0.84 and
0.89, respectively (Fig. 1a-d). The correlation coefficients
between 16S and SG-KB were slightly higher than those
between 16S and SG-MP data, except at the species level
(One-sided paired t-test p = 0.0639; Fig. 1e-h). Higher
correlation was found at higher taxonomic ranks. At any
given taxonomic rank, variation was greater for organ-
isms detected at lower abundance. The histograms fur-
ther revealed an overall trend of inflated zero counts in
16S datasets for many taxa that were detected at low
normalized abundance by SG-KB (Fig. 1a-d). On the
other hand, such zero inflation was revealed in SG-MP
instead when compared with the 16S data (Fig. 1f-h).
The discrepancy in zero inflation between Kraken2 +
Bracken and MetaPhlAn2 processed shotgun data with
respect to 16S data highlights the impact on overall
model interpretation due to the taxonomic identification
tools and databases used. Given the higher sensitivity of
SG-KB data, we proceeded using the taxonomic analysis
of shotgun data using Kraken2 and Bracken for the rest
of the manuscript. Examination of Bray-Curtis dissimi-
larities between samples from both 16S and SG-KB data
showed clustering according to sequencing methods
(Fig. 2a). The principal coordinate analysis (PCoA)
highlighted the differences in the two sets in the first di-
mension, which explains 35% of the total variance,
whereas samples collected from different surfaces were
observed to cluster in later dimensions (Fig. 2b).

Modelling geographic coordinates using microbiome data
To tackle the challenge of predicting sample source in gen-
eral, we first examined the training dataset of MetaSUB
paired-end shotgun data from 15 cities. The median per-
centage of unclassified reads for all CAMDA files was

Table 1 Counts of unique taxa identified using Boston pilot 16S amplicon and shotgun metagenomics datasets in at least one
samples. Percent overlaps from the shotgun perspective are reported in parentheses

Overall Taxa Counts

Technology (tool) Taxa species genus family order class phylum

Amplicon 16S Bacteria 143 328 173 83 52 18

Shotgun (Kraken2 + Bracken) All 1630 523 201 89 37 20

Bacteria Only 1516 500 186 81 33 16

Overlap 75 (5%) 197 (39%) 117 (63%) 46 (57%) 23 (70%) 12 (75%)

Shotgun (MetaPhlAn2) All 342 239 116 50 28 16

Bacteria Only 322 211 102 44 23 12

Overlap 61 (19%) 128 (61%) 84 (82%) 36 (82%) 17 (74%) 9 (75%)
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Fig. 1 Normalized and Log2-transformed abundance between Boston Pilot’s 16S and shotgun data at different taxonomic scales. The y-axes
represent the abundance from 16S amplicon data. a-d The x-axes represent the abundance extracted using Kraken2 and Bracken from shotgun
data (SG-KB). e-h The x-axes represent the abundance extracted using MetaPhlAn2 from shotgun data (SG-MP). Histograms on top and right-
hand panels show the distributions of shotgun data and 16S data, respectively. Correlations were reported using normalized but non-transformed
abundance, followed by the corresponding 95% confidence intervals [CI]
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44.92% (Table S1). Our analyses focused only on reads with
annotated taxa. Principal coordinate analysis at normalized
species abundance level with Bray-Curtis dissimilarity and
heatmap visualization showed clustering of samples from
Oceania, whereas other cities or continents overlapped one
another in the first two dimensions (Fig. 3). Density plots of
continents are reported in Figure S3. Better separation of
continents was observed with the later dimensions. In order
to predict locations of mystery samples from new origins,
we modeled geographic coordinates using multivariate re-
gression with Lasso regularization. We constructed a
Lasso-regularized regression model at each taxonomic scale
using the normalized abundance table of the corresponding
taxa scale as feature data. To first confirm the potential of
correctly predicting samples from a pre-trained city, we
evaluate model performance using nested 10-fold CV. The
model performance was the highest at the species level
compared to that of genus and family in the 10-fold CV set-
ting (Table 2). Scatterplots of true coordinates and the 10-
fold CV predictions from species regression model showed
a linear trend between predicted and true coordinates in
Fig. 4a and b (r2 = 0.9258 for latitude and 0.8988 for longi-
tude). In comparison, 10-fold nested CV performance of
the Lasso regularized species classification model achieved
a high accuracy level of 0.9457 (Fig. 4c).

The challenge in prediction of new sources without
previous samples
To evaluate the prediction performance on samples from
new origins, we conducted leave-1-city-out CV (Figure

S4). Different from the 10-fold CV setting, the model
performance was the highest at the genus level in the
L1CO setting (Table 2). We proceeded with the analysis
at the species level in the main manuscript, and attached
the final MSEs from genus models in Table S3 for refer-
ence. The r2 values of the species regression model were
0.6031 and 0.2161 for latitude and longitude respectively.
The L1CO MSE of the regression model is 8-fold the
MSE of the nested 10-fold CV, which highlights the
challenge in predicting new origins that have not been
included in the model training. When predicting sources
for the mystery data, the r2 values were 0.5188 and
0.5463 for latitude and longitude with the regression
model (Fig. 5a, b). Contrary to our expectation, predic-
tion performances on the mystery samples by species-
level Lasso-regularized regression and classification
models were comparable as indicated by MSE values
(Table 3; Table S2). On the other hand, interestingly, the
genus regression model had the best performance com-
pared to all species and genus models, consistent with
the L1CO assessment (Table S3). We also conducted
random forest classification, a nonlinear approach, for
comparison, but the classifier resulted in higher MSE
values on mystery samples compared to Lasso-
regularized models (Figure S5; Table S3). Overall, mys-
tery samples from Brisbane had the highest prediction
error in both Lasso-regularized models, despite having
other Oceania samples from New Zealand as training
data (Fig. 5d-g). The squared errors for samples from
Kiev were significantly lower in the regression model

A
AKL
BER
BOG

HAM
HGK
ILR

LON
MAR
NYC

OFA
PXO
SAO

SOF
STO
TOK

0 0.8

Bray-Curtis
Dissimilarity

Africa
Asia
Europe
NorthA
Oceania
SouthA

B
Dim 1 
 12 %

−
0.

4
0.

0
0.

2
−

0.
3

0.
0

0.
2

0.
4

−
0.

4
−

0.
1

0.
1

−0.4 0.0

Dim 2 
 6.1 %

−0.4 0.0 0.2

Dim 3 
 3.9 %

−0.3 0.0 0.2 0.4

Dim 4 
 3.4 %

AKL
BER
BOG

HAM
HGK
ILR

LON
MAR
NYC

OFA
PXO
SAO

SOF
STO
TOK

Africa
Asia
Europe
NorthA
Oceania
SouthA

Fig. 3 Relations between MetaSUB samples according to species abundance data. a Heatmap visualization of the Bray-Curtis dissimilarity matrix.
The column bar colors denote cities and the row bar colors denote continents. b The first four dimension of PCoA using Bray-Curtis dissimilarity

Chen and Tyler Biology Direct           (2020) 15:29 Page 6 of 12



than the classification model, indicating better perform-
ance by regression in these cases (one-sided Wilcoxon
test, Benjamini-Hochberg adjusted p = 0.0284). On the
other hand, predictions for Oslo, Paris and Santiago de
Chile samples were better by classification (p = 0.0000,
0.0150, 0.0056). Despite overall comparable MSE values
between the regression and classification models, we ob-
served better prediction for some cites using either
model.
As the classification model cannot accurately predict

new origins at the level of longitude and latitude, we
next evaluated the classification predictions in the con-
text of continents. In L1CO CV setting, all samples from
Auckland, Hamilton and Sofia were predicted to be on
the same continent, while the rest of cities varied (Figure
S4c). For mystery samples, all samples from Vienna,
Santiago de Chile and Oslo were predicted to be cities
within the same continent (Fig. 5c). Although Doha is
considered to be in Asia, it is geographically closer to
Marseille than to Hong Kong, and two of the three Doha
samples were predicted to be from Marseille. Con-
versely, Kiev is within Europe and closer to European
cities, but only one out of seven Kiev samples were pre-
dicted to be in Europe.

Using prediction ambiguity to evaluate if a sample is
from a new origin
Given the much lower prediction accuracy for samples
from new origins, we rationalized that there are benefits
to tag whether a new sample may be from a new origin in
real life application when using a classification approach.
We hypothesized that samples from new origins will have
higher prediction ambiguities, as defined by the Simpson’s
diversity index of a sample’s class probabilities. Specific-
ally, we investigated the prediction ambiguity from the
classification model on each leftout sample in both 10-
fold and L1CO CV settings. As expected, leftout samples
from new origins (in L1CO CV) have significantly higher
ambiguity compared to leftout samples from pre-trained
origins (in 10-fold CV; Wilcoxon test p-value = 6.4 ×
10 − 58; Fig. 6a). Based on Simpson’s values from both CV
settings, we built a Bayes classifier with kernel density esti-
mation on the Simpson’s values to classify whether a sam-
ple is from a new origin. The evaluation using leave-one-
out CV reported an accuracy of 0.88 (sensitivity = 0.83;
specificity = 0.92; Fig. 6b). Forty-six out of sixty mystery
samples were correctly predicted to be from new origins
using this binary classifier (sensitivity = 0.77; Fig. 6c). Oslo
had the most samples wrongly predicted to be from pre-
trained origins, whereas a subset of cities had one to two
wrong predictions. We note that Oslo samples were pre-
dicted to be from Stockholm, which is also in northern
Europe, and had low squared errors in the source classifi-
cation model (Fig. 5 c, f, g). Hence, our new-origin classifi-
cation model based on prediction ambiguity of the
sample-source classification model indicated its potential
to inform whether a mystery sample is from a new origin,
which can serve as a flag to complement the lower predic-
tion accuracy of samples from new origins.
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Fig. 4 Nested 10-fold cross validation predictions from Lasso-regularized regression and classification compared to true locations. Latitude (a) and
longitude (b) predictions from the multivariate regression model on species abundance data are plotted against the true geographic coordinates
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predictions would be exactly correct. c Predictions from the classification model are illustrated in comparison to true sources. Each entry shows
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Table 2 Nested 10-fold and leave-one-city-out cross validation
performance for geographic coordinate prediction using
multivariate regression with LASSO regularization

LASSO EMP lambda
1se

df MSE
10-
fold

MSE

L1CO

MetaSUB Shotgun species 1.9582 118 686 5303

genus 1.5713 97 843 4671

family 1.3495 86 1470 5650
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Inclusion of training data with different experimental
protocols impacts model performance
Due to protocol differences in sequence lengths and sin-
gle versus paired-end sequencing, we excluded the train-
ing data from the 16th city, SAC, provided by CAMDA
in the main analyses above. To evaluate the effect of
mixing data from different experimental protocols, we
also examined the model performance with the inclusion

of the SAC along with 15 other cities as training data
(Table 3 and Figure S6). The heatmap and dimension re-
duction figure analogous to Fig. 3 are presented in Fig-
ures S6A-C. The MSEs of regression and classification
models on the mystery samples increased 5.9- and 2.7-
folds compared to models trained on 15 cities, respect-
ively. Overall, the regression predictions resulted in a
longitudinal shift away from the diagonal (Figure S6d).
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Fig. 5 Source prediction of mystery samples from new cities using the species models. Latitude (a) and longitude (b) predictions from the
multivariate regression model on species abundance data are plotted against the true geographic coordinates on the x-axis. Each data point
represents a sample. The dashed line shows where predictions would be exactly correct. c Predictions from the classification model are illustrated
in comparison to true sources. Each entry shows the number of samples predicted to be the corresponding city (row) and originally from the
corresponding reference (column). Cities within the same continent with respect to reference are boxed in blue. Squared errors for latitude and
longitude from the regression (d, e) and classification (f, g) are shown in boxplots for each city

Table 3 Prediction performance of species models on mystery (new) cities in the test dataset

Lasso-regularized Paired & single end Latitude MSE Longitude MSE M of total SE

Regression No 1037.63 2629.85 3667.48

Classification No 1143.58 2339.42 3483.00

Regression Yes 1329.48 20,238.83 21,568.31

Classification Yes 1468.31 7847.46 9315.76
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Notably, the longitudinal squared errors of Oslo samples
increased substantially after incorporating SAC data for
training in the classification model, while the squared er-
rors increased for multiple cities in the regression model
(Figure S6g and h). Specifically, the classification model
predicted Oslo samples to be in Sacramento exclusively,
and data from Oslo were all single-ended as Sacramento
data (Figure S6f). These results indicated the impact of
incorporating datasets with very different sequencing
protocols.

Discussion
Here we utilized MetaSUB and Boston Urban datasets
provided by the CAMDA organizers to extract know-
ledge and elucidate factors that impacted the predic-
tion of sample sources. Through the comparison
between 16S amplicon and shotgun metagenomic se-
quencing data on the same Boston samples, we
highlighted differences in detection sensitivity and
normalized abundance between sequencing technolo-
gies as well as analytical tools and databases used. On
predicting sample sources with MetaSUB data, we
demonstrated the importance of using 10-fold CV to
evaluate prediction performance on samples from pre-
trained origins, and using leave-1-city-out CV to
evaluate prediction performance on samples from new
origins. The substantially higher prediction errors of
the L1CO CV highlighted that predicting samples
from new cities is much more challenging than sam-
ples from pre-trained cities. Our comparison of
Lasso-regularized classification and regression ap-
proaches reported comparable MSE levels on mystery
samples, and showed the benefits of either approach
for predicting trained and new origins. As an exten-
sion of the source classification model, our use of

prediction ambiguity based on the Simpson’s index
allowed flagging of samples from a new origin. Lastly,
we demonstrated reduced model performance when
incorporating a dataset from a different experimental
protocol as training data, highlighting the impact of
heterogeneous experimental protocol.
Consistent with previous work comparing between

16S versus pair-end shotgun data [4–7], we reported
variation in normalized abundance results between taxo-
nomic classification tools and databases in addition to
sequencing technologies using the Boston data. Our re-
sults further showed higher variation between technolo-
gies for taxa with lower abundance, and demonstrated
that zero inflation in abundance is dependent on both
experimental and analytical approaches. The zero infla-
tion in 16S data compared to shotgun data by Kraken2
and Bracken is potentially due to high conservation of
16 s rRNA gene making finer taxonomic levels more dif-
ficult to identify [35]. Amplification biases attributed to
use of the 16S marker gene have been previously de-
scribed, and may have also contributed to variability be-
tween methods [36, 37]. Importantly, differential
multiplexing in combination with other variation in se-
quencing methodologies employed by shotgun and 16S
amplicon analysis can be another source of variation. On
the other hand, the zero inflation observed in shotgun
data by MetaPhlAn2 and its lower detection sensitivity is
likely due to differences in the reference database used.
To our knowledge, the default database used for the pro-
vided MetaPhlAn2 data was geared towards gut mi-
crobes, which may have resulted in information loss for
the urban microbiome. Using the MetaSUB data, we
demonstrated that heterogeneous experimental proto-
cols used for sample collection and sequencing between
cities can have a substantial influence on the prediction

Fig. 6 Ambiguity in classification prediction probabilities informs whether a sample is from a new origin. a The distributions of Simpson index on
the class prediction probabilities of each sample based on 10-fold (red) and leave-one-city-out (blue) cross validation settings, which indicate the
diversity pattern for samples from pre-trained or new origins, respectively. b The receiver operating characteristics curve of the Bayes classification
model on predicting new-origin status using the Simpson index values computed through a leave-one-out design. c Prediction of new-origin
status on mystery samples from new cities
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performance of new sources. The inclusion of single-end
data from Sacramento as training data drastically re-
duced the performance of the model prediction on mys-
tery samples. Short sequence reads are more challenging
to taxonomically assign to a group, given the reduced
amount of information available in each read. Alterna-
tive normalization and/or filtering approaches can be
further evaluated and refined to account for the hetero-
geneity before downstream analyses [32, 33].
As reported in the 2018 CAMDA challenge [12, 15–

17], our 10-fold CV results showed a strong potential to
predict the source of samples from pre-trained origins
using shotgun metagenomic data. We further demon-
strated that the L1CO results highlighted the difficulty
of predicting new origins without prior training samples,
and confirmed L1CO to be a more realistic evaluation
on the source prediction of mystery samples. The pre-
diction performances between the regression and classi-
fication approaches were comparable with subsets of
cities consistently predicted more accurately by either
approach. While we presented species models in the
main text, the genus regression model had the best pre-
diction performance consistently in both L1CO CV and
mystery samples. This may indicate that there is noise in
the species data that the regression model is sensitive to,
and that different modelling approaches may work better
with data from different taxonomic ranks. Overall, the
regression approach is limited by its assumption of lin-
earity to coordinates, increased sensitivity to outlying co-
ordinates, and the difficulty in interpreting feature
importance along geographic coordinates. The classifica-
tion approach can elucidate signatures in trained cities,
but can only predict new origins to the closest cities at
best. This limitation is addressed by our prediction am-
biguity analysis to inform whether the sample is from a
new origin, and may gradually be alleviated as samples
from more origins are collected and pre-trained.
Here we used only normalized microbial taxonomic

abundance from shotgun metagenomic data as the fea-
tures to predict the sample source. Other covariates,
such as micro-environment, seasons and city transporta-
tion connections [9, 38, 39] have been reported to im-
pact bacterial abundance, and can be taken into account
if the metadata were available. Moreover, given the ad-
vantage of shotgun data, further investigations of other
types of features [40, 41] can be extended from our ap-
proach. These include using biologically-driven features
such as functional pathways and antimicrobial resistance
profiles [11, 17] and data-driven features such as counts
of k-mers and genomic bins without annotation require-
ments [40, 42, 43], as alternative input variables. Such
information can be incorporated into multifaceted ana-
lyses for sample source prediction through comparison
of models with different feature types or integration of

multi-layered feature sets. One key observation is the
high proportion of unclassified sequences across many
of the samples included in this analysis. Importantly, the
continual updates in databases with incorporation of
newly identified taxa will ultimately enhance the capacity
to delineate signals between sources, whereas annotation
independent information extraction such as k-mer
counts may avoid missing out on unannotated taxa that
differ in abundance between cities.

Conclusions
In this work, we have highlighted the impact of sequen-
cing approaches, taxonomic annotation tools, databases
and heterogeneous protocols on result interpretation
and model performance. We demonstrate the practical
purpose of performance evaluation using 10-fold and
leave-one-city-out cross validation for predicting pre-
trained and new origins, respectively. The proposed
Lasso-regularized multivariate regression provided a
novel and alternative approach to source prediction with
comparable performance to the classification approach.
Due to the demonstrated challenge in predicting new or-
igins without any metadata, we further provided a strat-
egy to flag whether a sample is from a new origin for
real life applications using the ambiguity of classification
prediction. Overall, our work informs future metage-
nomics studies on the potential and challenges for
source prediction using machine learning methods.
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Additional file 1: Figure S1. The world map labeled with training
origins and mystery new origins. Mystery cities were labeled as question
marks.

Additional file 2: Figure S2. Read count threshold evaluation using the
Boston SG-KB and 16S data. Evaluation based on Boston-SG-KB data was
conducted at varying minimum read count thresholds as colored in the
legend. Each threshold is represented as a line in all figures. (A) Plot of
feature/taxa counts in the y-axis versus sample counts in the x-axis satis-
fying the corresponding read count threshold. (B-D) The Pearson Correl-
ation Coefficients between Boston-SG-KB data and Boston 16S data at
varying taxa levels given that the corresponding read count threshold is
satisfied in at least 1(B), 2(C), and 5(D) samples.

Additional file 3: Figure S3. Distribution of projected axes by
continents. Density plots of samples organized in continent categories in
the first four dimensions of the PCoA from Fig. 3b.

Additional file 4: Figure S4. Leave-one-city-out cross validation predic-
tions from Lasso-regularized regression and classification compared to
true locations. Latitude (A) and longitude (B) predictions from the multi-
variate regression model on species abundance data are plotted against
the true geographic coordinates on the x-axis. Each data point represents
a sample from the corresponding city, as indicated in the legend. The
dashed line shows where predictions would be exactly correct. (C) Predic-
tions from the classification model are illustrated in comparison to true
sources. Each entry shows the number of samples predicted to be the
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(column). As classification models can only assign new samples to pre-
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trained sources, diagonal counts are zero. Cities within the same contin-
ent are boxed in blue.

Additional file 5: Figure S5. Out-of-bag and mystery sample prediction
performance using random forest classification algorithm. (A) Model per-
formance as assessed from out-of-bag prediction. (B) Source prediction of
mystery samples versus the reference. Cities within the same continent
with respect to reference are boxed in blue. Squared errors for latitude
(C) and longitude (D) are shown in boxplots for each city.

Additional file 6: Figure S6. Inclusion of training data from a
heterogeneous sequencing protocol affects model performance. This
figure is analogous to Figs. 3, S3 and 5, with the distinction of including
single-end data from Sacramento into training. Figures (A-C) provide glo-
bal visualizations of the samples using Bray-Curtis dissimilarity matrix. Lati-
tude (D) and longitude (E) predictions from the multivariate regression
model on species abundance data are plotted against the true geo-
graphic coordinates on the x-axis. Each data point represents a sample.
The dashed line shows where predictions would be exactly correct. (F)
Predictions from the classification model are illustrated in comparison to
true sources. Each entry shows the number of samples predicted to be
the corresponding city (row) and originally from the corresponding
source (column). Cities within the same continent with respect to refer-
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