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Abstract

Background: Glioma is one of the most common malignant brain tumors and exhibits low resection rate and high
recurrence risk. Although a large number of glioma studies powered by high-throughput sequencing technologies
have led to massive multi-omics datasets, there lacks of comprehensive integration of glioma datasets for
uncovering candidate biomarker genes.

Results: In this study, we collected a large-scale assemble of multi-omics multi-cohort datasets from worldwide
public resources, involving a total of 16,939 samples across 19 independent studies. Through comprehensive
molecular profiling across different datasets, we revealed that PRKCG (Protein Kinase C Gamma), a brain-specific
gene detectable in cerebrospinal fluid, is closely associated with glioma. Specifically, it presents lower expression
and higher methylation in glioma samples compared with normal samples. PRKCG expression/methylation change
from high to low is indicative of glioma progression from low-grade to high-grade and high RNA expression is
suggestive of good survival. Importantly, PRKCG in combination with MGMT is effective to predict survival outcomes
in @ more precise manner.

Conclusions: PRKCG bears the great potential for glioma diagnosis, prognosis and therapy, and PRKCG-like genes
may represent a set of important genes associated with different molecular mechanisms in glioma tumorigenesis.
Our study indicates the importance of computational integrative multi-omics data analysis and represents a data-
driven scheme toward precision tumor subtyping and accurate personalized healthcare.
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Background and facilitates precise treatment, gliomas can be classified,

Glioma, one of the serious central nervous system (CNS)
tumors, represents ~ 80% of malignant brain tumors [1, 2]
and exhibits low resection rate and high recurrence risk
[3]. Since tumor classification benefits accurate diagnosis
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according to the histologic grading schemes, into LGG
(astrocytoma, oligodendroglioma and oligoastrocytoma)
and GBM (glioblastoma multiforme) [4]. Therefore, iden-
tification of reliable molecular biomarkers for precise clas-
sification of different-grade gliomas is crucial to aid tumor
diagnosis, establish appropriate therapies, recognize prog-
nostic outcome and predict therapeutic response [5].
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Powered by high-throughput sequencing technologies, a
set of molecular biomarkers have been discovered from
different omics levels to assist glioma diagnosis and treat-
ment [6, 7]. Among them, isocitrate dehydrogenase (/DH)
mutation and 1p/19q co-deletion (codel) are two most im-
portant genetic events for glioma grading [8—10]. Patients
with /DH mutation (IDH-mut) have longer survival than
those with IDH wild-type (IDH-WT) [11, 12]. And the 1p/
19q codel is a distinctive feature of oligodendroglioma [13,
14]. Furthermore, based on these two genetic alterations,
accumulated evidence suggested that gliomas can be di-
vided into three subtypes (IDH-mut & 1p/19q codel, IDH-
mut & 1p/19q non-codel, and IDH-WT & 1p/19q non-
codel), which are associated with diverse clinical outcomes
[15]. Accordingly, in 2016, the World Health Organization
(WHO), in light of both histology and significant genetic
events (mainly by IDH and 1p/19q), divided gliomas into
five categories [16, 17], including three LGGs (diffuse as-
trocytoma, /DH-mut & 1p/19q non-codel; oligodendrogli-
oma, IDH-mut & 1p/19q codel; diffuse astrocytoma, IDH-
WT & 1p/19q non-codel) and two GBMs (IDH-mut;
IDH-WT). Meanwhile, molecular markers at the tran-
scriptome level have also been identified [18-21]; for ex-
ample, an overexpression of epidermal growth factor
receptor variant III (EGFRvIII) has been reported to asso-
ciate with malignant progression of GBM [22-24]. In
addition, epigenetic modifications are also implicated in
glioma [25-29]. One classical biomarker is O6-
methylguanine-DNA-methyltransferase (MGMT) [30];
patients with methylated MGMT promoter have better
clinical outcomes and are more sensitive to the alkylating
chemotherapy than those without methylated MGMT
promoter [31-33].

Nowadays, there is an increasing number of high-
throughput studies for better understanding of glioma
tumorigenesis [34—38], resulting in massive multi-omics
datasets generated from different projects and laboratories
throughout the world. However, there lacks of compre-
hensive integration of glioma datasets for computationally
identifying and characterizing candidate biomarkers. To
this end, we collected a large-scale assemble of multi-
omics multi-cohort datasets from worldwide public re-
sources and detected candidate biomarker genes through
comprehensive integrative molecular profiling on multiple
independent datasets. We revealed that PRKCG, a gene
specifically expressed in brain and detectable in cerebro-
spinal fluid (CSF), is closely associated with glioma, indica-
tive of a potential biomarker for glioma diagnosis,
prognosis and treatment prediction.

Materials and methods

Data collection

In this study, we collected a comprehensive assemble of
multi-omics datasets (including genomics, transcriptomics,
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DNA methylomics and proteomics) from The Cancer Gen-
ome Atlas (TCGA, https://portalgdc.cancer.gov/) [35],
Genotype-Tissue Expression Portal (GTEx, https://gtexpor-
tal.org/home/) [39], Gene Expression Omnibus (GEO,
https://www.ncbinlm.nih.gov/geo), Ivy Glioblastoma Atlas
Project (Ivy GAP, http://glioblastoma.alleninstitute.org) [40]
and Chinese Glioma Genome Atlas (CGGA, http://www.
cgga.org.cn) [41, 42]. Particularly, discovery datasets were
derived from TCGA, GTEx and large cohort studies in
GEO (GSE83710, GSE16011 and GSE36278 for protein,
expression and methylation, respectively). As a result, a
total of five discovery datasets and 14 validation datasets
were obtained. For convenience, each dataset collected in
this study is assigned a unique accession number with the
format: [D/V][i]-[TCGA/GTEx/GEO/CGGA/Ivy GAP]-
[E/V/P/M], where D/V in the first bracket represents the
dataset for discovery or validation, i in the second bracket
indicates the dataset number, the third bracket shows the
data source (as mentioned above), and the last bracket in-
dicates the data type, namely, E for RNA expression, V for
CNV, P for protein expression and M for DNA methyla-
tion, respectively. The detailed information about all
collected datasets was tabulated in Table 1.

Identification of brain-specific genes

To identify brain-specific genes, we used the RNA-Seq
dataset from GTEx (2016-01-15; v7) [39], which contains
11,688 samples across 53 tissue sites of 714 donors.
Considering that several tissues have multiple different
sites, gene expression levels were averaged over sites that
are from the same tissue. To reduce background noise,
genes with maximal expression levels smaller than 10
TPM (Transcripts Per Million) were removed. Finally,
we obtained a total of 15,176 gene expression profiles
across 30 tissues (Additional file 1: Table S1).

Based on the expression levels across 30 tissues, we
calculated the tissue specificity index t [56] for each
gene to identify tissue-specific genes. 1 is valued between
0 and 1, where 0 represents housekeeping genes that are
consistently expressed in different tissues, and 1 indi-
cates tissue-specific genes that are exclusively expressed
in only one tissue [56]. In this study, brain-specific genes
were defined as those genes that are maximally
expressed in the brain with t>0.9. As a consequence, a
list of the top 100 brain-specific genes ranked by the t
index were obtained for further analysis (Additional file
1: Table S2).

Sample classification

To comprehensively study the potential of PRKCG in
glioma diagnosis, we compared the molecular profiles
between normal and glioma samples, between LGG and
GBM samples, between primary GBM (pGBM) and re-
current GBM (rGBM) samples, and between glioma
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Table 1 Summary of multi-omics multi-cohort glioma datasets
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Category Accession number Source Omics type # Samples # Population country/race Reference

Discovery D1-GTEx-E GTEX Expression (RNA-Seq) 11,688 mostly white [39]
D2-GSE83710-P GSE83710 Protein 133 Japan [43]
D3-GSE16011-E GSE16011 Expression (Microarray) 284 Netherlands [44]
D4-TCGA-V TCGA CNV 1018 mostly white [35]
D4-TCGA-E TCGA Expression (RNA-Seq) 607 mostly white [35]
D4-TCGA-M TCGA Methylation (27 K+ 450K) 862 mostly white [35]
D4-TCGA-M (TMZ treatment) TCGA Methylation (27 K+ 450 K) 228 mostly white [35]
D5-GSE36278-M GSE36278 Methylation (450K) 142 Germany [45]

Validation V1-GSE4290-E GSE4290 Expression (Microarray) 180 USA [46]
V2-GSE50161-E GSE50161 Expression (Microarray) 47 USA [47]
V3-GSE59612-E GSE59612 Expression (RNA-Seq) 92 USA [48]
V4-GSE111260-E GSE111260 Expression (Microarray) 70 Norway -
V/5-GSE2223-E GSE2223 Expression (Microarray) 54 USA [49, 50]
V6-lvy GAP-E Ivy GAP Expression (RNA-Seq) 122 unknown [40]
V7-CGGA-E CGGA Expression (Microarray) 301 China [42,51]
V8-GSE50923-M GSE50923 Methylation (27 K) 78 USA [52]
V9-GSE61160-M GSE61160 Methylation (450 K) 51 Spain [53]
V10-CGGA-M CGGA Methylation (27 K) 159 China [54]
V11-TCGA-M TCGA Methylation (WGBS) 6 white -
V12-CGGA-E CGGA Expression (RNA-Seq) 310 China [41]
V13-CGGA-E CGGA Expression (RNA-Seq) 667 China -
V14-GSE60274-M GSE60274 Methylation (450 K) 68 Switzerland [55]

CGGA Chinese Glioma Genome Atlas, http://www.cgga.org.cn

GEO Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/

GTEx Genotype-Tissue Expression, https://www.gtexportal.org

TCGA The Cancer Genome Atlas, https://portal.gdc.cancer.gov

Ivy GAP Ivy Glioblastoma Atlas Project, http://glioblastoma.alleninstitute.org

samples with different anatomic features. We collected
122 GBM samples from the Ivy GAP database [40] and
grouped them according to their anatomic regions,
namely, leading edge (LE, the ratio of tumor/normal cells
is about 1-3/100), infiltrating tumor (IT, the ratio of
tumor/normal cells is about 10-20/100), cellular tumor
(CT, the ratio of tumor/normal cells is about 100/1 to
500/1), pseudo-palisading cells around necrosis (PAN, the
narrow boundary of cells along the dead tissue), and
microvascular proliferation (MVP, two or more blood ves-
sels sharing a common vessel wall of endothelial).

We investigated the prognostic role of PRKCG by div-
iding samples into subgroups based on PRKCG’s expres-
sion level within all glioma samples and also within LGG
and GBM samples, respectively. When exploring the
predictive role of PRKCG, we obtained DNA methyla-
tion status (methylated and unmethylated) directly from
the original study [35], which was defined based on the
beta value cutoff 0.3.

Identification of PRKCG-like genes

Genes that satisfy the following criteria were regarded as
PRKCG-like genes: (1) Higher methylation level of at
least one CpG site (promoter region) in glioma samples
than normal samples; (2) Higher DNA methylation level
in LGG samples than GBM samples; (3) Higher expres-
sion level in LGG samples than GBM samples; and (4)
Lower expression level in glioma samples than normal
samples. As a result, we obtained a total of 542 PRKCG-
like genes, which were further divided into two groups
according to their correlations between gene expression
and methylation, namely, 114 genes with negative correl-
ation and 297 genes with positive correlation.

Statistical analysis

All statistical analyses were performed using R version
3.3.2. The Wilcoxon test was used for the analysis of the
difference in gene expression/methylation between
tumor and normal samples, and between different
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glioma subtypes. The statistical significance levels were
coded by ns (not significant) p > 0.05, * p<0.05, ** p<
0.01 and *** p<0.001. We performed the survival ana-
lysis using the Kaplan-Meier method and estimated the
statistical difference using the log-rank test.

Results and discussion
PRKCG is a brain-specific gene and detectable in
cerebrospinal fluid
Tissue-specific genes are believed to be crucial for
identifying potential biomarkers with high specificity
[57-61]. To identify candidate genes with brain speci-
ficity, we integrated expression data from GTEx (D1-
GTEx-E) [39], explored all genes’ expression profiles
and their tissue specificity, and identified a list of top
100 brain-specific genes (Additional file 1: Table S2).
To achieve the detectability in the periphery, we as-
sembled a total of 1126 CSF-detectable proteins from
GEO (D2-GSE83710-P) [43], due to the critical sig-
nificance of CSF as a feasible means to detect genes
expressed in human CNS [62, 63]. After integrating
brain-specific genes with CSF proteins, we revealed
that there are five brain-specific proteins that can be
detected in CSF (Fig. 1 and Additional file 2: Fig. S1),
in terms of fluorescence intensity from high to low,
namely, PRKCG (protein kinase C gamma), BCAN
(brevican), OPCML (opioid binding protein/cell adhe-
sion molecule like), GFAP (glial fibrillary acidic pro-
tein) and CAMK2A (calcium/calmodulin dependent
protein kinase II alpha), which are diversely expressed
in different brain regions (Additional file 3: Fig. S2).
Specifically, BCAN, a member of the lectican family
of chondroitin sulfate proteoglycans, is highly
expressed in glioma and may promote cell motility of
brain tumor cells [64, 65]. In addition, the fusion
event between BCAN and NTRK1 (BCAN-NTRKI) is
a potential glioma driver and therapeutic target [66].
OPCML encodes a member of the IgLON subfamily
in the immunoglobulin proteins and is down-
regulated in gliomas and other brain tumors [67, 68].
GFAP, encoding one of the major intermediate fila-
ment proteins of mature astrocytes [69], can be used
to assess the differentiation state of astrocytoma [70].
CAMK2A is a calcium calmodulin-dependent protein
kinase and reduced expression of CAMK2A is associ-
ated with better survival in GBM [71, 72].
Remarkably, PRKCG, a member of protein kinase C
(PKC) family located in 19q, exhibits higher fluores-
cence intensity than the other four genes (Fig. 1 and
Additional file 2: Fig. S1). The expression profile of
PRKCG across multiple brain developmental stages
reveals that its expression is extremely lower in the
prenatal stages, but dramatically increases in the in-
fancy stages and is stabilized in the latter stages
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according to GenTree (Additional file 4: Fig. S3) [73].
Previous studies have documented that unlike other
PKC family members that are expressed in many tis-
sues aside from brain, PRKCG is brain-specifically
expressed [74] and that mutations in PRKCG are as-
sociated with spinocerebellar ataxia [75, 76]. Addition-
ally, it has been reported that PKC signaling pathways
contribute to the aggressive behavior of glioma cells
[77] and atypical PKC isozymes are fundamental regu-
lators of tumorigenesis [78]. To our knowledge, sev-
eral genes in 19q are closely associated with glioma
(e.g, TTYHI(tweety family member 1), UBE2S (ubi-
quitin conjugating enzyme E2 S) [79, 80]). However,
the potential role of PRKCG in glioma remains un-
known, and therefore, comprehensive molecular
characterization of PRKCG across multi-omics glioma
datasets is highly desirable.

PRKCG is significantly differentially expressed among
normal, LGG and GBM samples

We first investigated the expression pattern of PRKCG
among normal, LGG and GBM samples by using mul-
tiple discovery and validation datasets. We found that
PRKCG expression is significantly reduced in gliomas by
contrast to normal samples (Fig. 2a-f; p-value <0.01,
Wilcoxon test). Furthermore, we discovered that PRKCG
shows significantly different expression profiles among
different anatomic regions (Fig. 2g; p-value <0.01, Wil-
coxon test). Strikingly, PRKCG expression is highest in
LE (the outermost boundary of the tumor), decreased in
IT (the intermediate zone between the LE and the
serious CT regions), and lowest in the serious regions
(CT, PAN and MVP) (see details in Materials and
Methods). Consistently, comparison between different-
grade gliomas showed that PRKCG expression is signifi-
cantly lower in GBM samples than LGG samples (Fig.
2h-j; p-value <0.01, Wilcoxon test). We further investi-
gated its expression across pan-cancer samples. Al-
though it has been documented that PRKCG is up-
regulated in colon cancer [81], the up-regulation in
colon cancer is extremely lower by comparison with gli-
oma (LGG and GBM) (Additional file 5: Fig. S4). Taken
together, these results presumably suggest that PRKCG
is closely associated with glioma and its reduced expres-
sion is coupled with glioma progression (Fig. 2),
highlighting its possible potential for glioma diagnosis.

PRKCG expression is highly sensitive to survival

PRKCG expression change from high to low is indicative
of progression from normal to glioma and from LGG to
GBM (Fig. 2), implying that PRKCG expression is signifi-
cantly associated with glioma progression. Importantly,
we observed that PRKCG expression is significantly asso-
ciated with survival rate, which is testified by multiple
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independent datasets (Fig. 3). Specifically, higher expres- tends to have longer overall survival in both LGG and
sion of PRKCG is indicative of longer overall survival in ~ GBM samples (Fig. 3c-f). Obviously, PRKCG expression
all glioma samples (Fig. 3a-b; p-value <0.01, log-rank has the potential capability to differentiate samples with
test). When separating LGG samples from GBM sam-  diverse survival states, which would be of critical signifi-
ples, it is consistently observed that higher expression, cance for accurate glioma subtyping, better therapeutic
albeit not statistically significant in all examined datasets,  decisions and precision healthcare.
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PRKCG is significantly differentially methylated among
normal, LGG and GBM samples

Since PRKCG harbors two CpG sites (namely,
€g26626089 and cg04518808) that are located in the
promoter region and covered in both HumanMethyla-
tion27 (27 K) and HumanMethylation450 (450 K) Bead-
Chip datasets, we then systematically investigated DNA
methylation profiles of these two sites among normal,

LGG and GBM samples. Apparently, the two sites show
hypermethylation in GBM patients compared with nor-
mal samples (Fig. 4), which is more significant for
€g26626089 (Fig. 4a and c¢; p-value <0.01, Wilcoxon
test). Furthermore, we examined the variation of methy-
lation level by using whole-genome bisulfite sequencing
data of six GBM samples from TCGA and one normal
sample from UCSC (2017 version; http://genome.ucsc.
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edu, last accessed on 12 May 2019). Consistently, most
GBM patients show higher methylation levels than nor-
mal samples (Additional file 6: Fig. S5). In addition,

considering different-grade gliomas, both sites present
much lower methylation levels in GBM samples than
LGG samples (Fig. 4e-h; p-value <0.01, Wilcoxon test).
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Fig. 4 DNA methylation profiles across normal, LGG and GBM samples. PRKCG methylation profiles were compared between GBM and normal
samples (panels a to d), and between LGG and GBM samples (panels e to h). All these datasets can be publicly accessible at ftp://download.big.
ac.cn/glioma_data/. The Wilcoxon tests were used and their statistical significance levels were coded by: ns p > 0.05, * p < 0.05, ** p < 0.01 and

#0001

We further investigated its methylation in pGBM and
rGBM and obtained contradictory results in different pop-
ulations; PRKCG methylation shows no significant differ-
ence in the Chinese population (V10-CGGA-M)
(Additional file 7: Fig. S6A-B; p-value >0.05, Wilcoxon
test) but significantly difference in the Switzerland popula-
tion (V14-GSE60274-M) [55] (Additional file 7: Fig. S6C-
D; p-value <0.05, Wilcoxon test). This is most likely
caused by the population genetic difference and/or the
small sample size (both datasets have <5 rGBM samples).

Collectively, PRKCG is significantly differentially
expressed/methylated among normal, LGG and GBM
samples. Compared with normal samples, PRKCG
presents lower expression and higher methylation in
glioma samples. With tumor malignancy, PRKCG
methylation and expression are both on the decrease
(discussed below).

Combined methylation signatures of PRKCG and MGMT
are more effective in treatment prediction

It is known that MGMT encodes a DNA-repair protein
and hypermethylation of MGMT is associated with di-
minished DNA-repair activity, accordingly allowing the
alkylating drug temozolomide (TMZ) to have greater ef-
fect in GBM treatment [82, 83]. In our study, we ob-
tained consistent results that patients with methylated
MGMT are more sensitive to TMZ treatment than those
with unmethylated MGMT (Fig. 5a; p-value <0.01, log-
rank test).

Considering that a single molecular biomarker might
be lack of sufficient prediction power and thus fail to de-
termine the clinical therapeutic efficacy due to tumor
heterogeneity [84], we sought to examine the predictive
potential of PRKCG for TMZ using 228 GBM samples
with matched DNA methylation and clinical data. We
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Fig. 5 Combined DNA methylation signatures of MGMT and PRKCG for treatment prediction. a Kaplan-Meier survival curves for GBM patients with
TMZ treatment based on MGMT methylation. b Kaplan-Meier survival curves for GBM patients with TMZ treatment based on PRKCG (cg26626089)
methylation. ¢ Kaplan-Meier survival curves for GBM patients with TMZ treatment based on MGMT and PRKCG combined methylation signatures
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discovered that among the two CpG sites of PRKCG
(cg26626089 and cg04518808), cg26626089 is able to
classify patients into two groups with distinct survival
advantages, as patients with methylated cg26626089
have significantly longer survival than those with
unmethylated cg26626089 (Fig. 5b and Additional file 8:
Fig. S7A). By combining PRKCG (cg26626089) with
MGMT, intriguingly, GBM patients receiving TMZ
treatment can be classified into four groups that exhibit
significantly different survivals (Fig. 5¢ and Additional
file 8: Fig. S7B; p-value <0.01, log-rank test). The four
groups, namely, MGMT-unmethylated + PRKCG-
unmethylated, MGMT-unmethylated + PRKCG-methyl-
ated, MGMT-methylated + PRKCG-unmethylated, and
MGMT-methylated + PRKCG-methylated, present grad-
ually improved longer survivals, as their 20-month OS
rates are 0.18, 0.29, 0.39 and 0.51 (Fig. 5c), respectively,
implying that the combined methylation signatures of
PRKCG and MGMT might guide more accurate GBM
stratification and achieve better personalized therapeutic
decisions. Noticeably, elevated MGMT expression is as-
sociated with TMZ resistance [33]. Similarly, we consist-
ently detected that the both-methylated group with
better survival shows significantly lower expression of
MGMT (Additional file 8: Fig. S7C).

Multi-omics molecular profiles of PRKCG

Based on multi-omics profiles of PRKCG, we explored
the relationship between PRKCG and classical molecular
features/glioma grades. First, PRKCG is located on the
chromosome 19q13.42, unifying previous findings that
1p/19q codel is closely associated with glioma. Consist-
ently, PRKCG CNV is closely associated with 19q status
(Additional file 9: Fig. S8A and Additional file 10: Fig.
S9). Second, PRKCG methylation (cg26626089) is associ-
ated with IDH status, agreeing well with the finding that
IDH-mut is an initiating event that remodels the glioma
methylome, resulting in extensive DNA hypermethyla-
tion [12, 85] and thus most likely indicating that PRKCG
methylation is a passenger of IDH-mut status. As LGG
samples are always associated with IDH-mut and GBM
samples are associated with IDH-WT, it is not difficult
to understand why the methylation level of PRKCG is
significantly lower in GBM than in LGG (Fig. 4e-h). At
the same time, such higher expression level and higher
methylation level lead to the suspicion whether PRKCG
expression in glioma is positively regulated by its DNA
methylation or is attributable to its CNV.

As expected, when considering CNV loss and gain
separately, PRKCG CNYV is positively correlated with its
expression, as observed in the CNV loss and gain
groups, respectively (Additional file 9: Fig. S8B-C; p-
value <0.01, Spearman correlation = 0.26/0.32). How-
ever, such positive correlation is absent when ignoring
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the difference of CNV status (Additional file 9: Fig.
S8D). According to the dosage effect theory [86], the
CNV loss group should not express more PRKCG than
the CNV gain group. This implies that there is probably
another factor rather than CNV to dominantly regulate
PRKCG expression in glioma. Although it contradicts
the commonly accepted negative association between
gene expression and promoter CpG methylation, a
large-scale pan-cancer analysis has also revealed a posi-
tive correlation between promoter CpG methylation and
gene expression [87]. Consistently, we did observe sig-
nificant positive correlations between PRKCG expression
and CpG methylation within the promoter region (Add-
itional file 9: Fig. S8E-F). This positive regulation of CpG
methylation is quite strong, which significantly improves
PRKCG expression in LGG samples; even these samples
exhibit obvious CNV loss (Additional file 9: Fig. S8A).
Thus, it is presumably suggested that PRKCG is most
likely regulated in different ways by DNA methylation,
which negatively regulates PRKCG expression from nor-
mal to tumor but positively regulates the expression
within tumor. However, gene expression regulation is a
more complicated process involving multiple factors aside
from DNA methylation and CNV and more efforts on
comprehensive and in-depth molecular characterization
of glioma are highly needed to elucidate glioma
pathogenesis.

PRKCG-like genes may present heterogeneous roles in
glioma tumorigenesis

To better understand the regulation pattern of PRKCG, we
further identified a total of 542 PRKCG-like genes that pos-
sess expression and DNA methylation patterns similar with
PRKCG (see Materials and Methods) and investigated
whether these genes present heterogeneous roles in glioma
tumorigenesis (Fig. 6a-b and Additional file 1: Table S3). No-
ticeably, some of these PRKCG-like genes have already been
reported to be closely related with glioma [88—92]. For in-
stance, AKAP6 (A-kinase anchoring protein 6) polymor-
phisms are associated with glioma susceptibility and
prognosis [91]; Phosphorylated SATBI (SATB homeobox 1)
contributes to the invasive and proliferative of GBM cells
and is associated with glioma prognosis [88]; Higher expres-
sion of CDKI7 (cyclin dependent kinase 17) is indicative of
longer overall survival [89]; PTPRM (protein tyrosine phos-
phatase receptor type M) expression is significantly reduced
in GBM by contrast to LGG and higher expression is indica-
tive of longer overall survival [90]; and CHDS (chromodo-
main helicase DNA binding protein 5) might act as a tumor
suppressor and its lower expression is associated with poor
prognosis in glioma [92]. Among these PRKCG-like genes,
we revealed that 114 genes show negative correlations be-
tween methylation level and expression level, whereas 297
genes present positive correlations (Additional file 1: Table
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S3). We further performed gene set enrichment analysis for
these two groups’ genes. We found that the negatively-
correlated genes are primarily enriched in the MAPK and
cGMP-PKG signaling pathways, which are essential for
tumor cell proliferation and differentiation [93, 94]. On the
contrary, the positively-correlated genes are significantly in-
volved in pathways relevant to cancer, inflammation and
nerve synapse (Fig. 6¢). Thus, PRKCG-like genes, presumably
present heterogeneous roles in glioma tumorigenesis with
complex molecular mechanisms that need further extensive
explorations both bioinformatically and experimentally.

Conclusion

The rapid advancement of sequencing technologies en-
ables large amounts of glioma data generated from dif-
ferent projects and studies throughout the world.
Therefore, it has become crucially significant on how to
make full use of these valuable data for computational
identification and characterization of glioma candidate
biomarkers. In this study, we, for the first time, assem-
bled the most comprehensive collection of public glioma
datasets with multi-omics data types and different popu-
lations/countries. Through comprehensive molecular
profiling, we identified that PRKCG, a brain-specific

gene detectable in CSF, is a potential biomarker for gli-
oma diagnosis, prognosis and treatment prediction. Spe-
cifically, it presents lower expression and higher
methylation in glioma samples than normal samples.
PRKCG expression/methylation change from high to low
is indicative of glioma progression from low-grade to
high-grade and high RNA expression is suggestive of
good survival. Importantly, PRKCG in combination with
MGMT is more effective to yield precise survival out-
comes after TMZ chemotherapy. In harmony with clas-
sical biomarkers, PRKCG as well as PRKCG-like genes
may play important and heterogeneous roles in glioma
tumorigenesis. In the era of big data, our findings high-
light the importance of computational integrative multi-
omics profiling and represent a data-driven scheme to-
ward precision tumor subtyping, accurate therapeutic
decisions and better personalized healthcare.
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and WHO grade. (B) Correlation between PRKCG expression and CNV
Loss. (€) Correlation between PRKCG expression and CNV Gain. (D) Correl-
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tween PRKCG expression and DNA methylation of the CpG site
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