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Metaproteomics allows to decipher the structure and functionality of microbial communities. Despite its rapid
development, crucial steps such as the creation of standardized protein search databases and reliable protein
annotation remain challenging. To overcome those critical steps, we developed a new program named mpPies
(metaProteomics in environmental sciences). mPies allows the creation of protein databases derived from
assembled or unassembled metagenomes, and/or public repositories based on taxon IDs, gene or protein names.
For the first time, mPies facilitates the automatization of reliable taxonomic and functional consensus annotations at
the protein group level, minimizing the well-known protein inference issue, which is commonly encountered in
metaproteomics. mPies’” workflow is highly customizable with regards to input data, workflow steps, and parameter
adjustment. mPies is implemented in Python 3/Snakemake and freely available on GitHub: https//github.com/
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Implementation

Background

Metaproteomics is a valuable method to link the taxo-
nomic diversity and functions of microbial communities
[1]. However, the use of metaproteomics still faces
methodological challenges and lacks of standardisation
[2]. The creation of relevant protein search databases
and protein annotation remain hampered by the inher-
ent complexity of microbial communities [3].

Protein search databases can be created based on
reads or contigs derived from metagenomic and/or
metatranscriptomic data [4, 5]. Public repositories
such as Ensembl [6], NCBI [7] or UniProtKB [8] can
also be used as search databases but it is necessary to
apply relevant filters (e.g. based on the habitat or the
taxonomic composition) in order to decrease
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computation time and false discovery rate [4]. Until
now, no tool exists that either creates taxonomic or
functional subsets of public repositories or combines
different protein databases in order to optimize the
total number of identified proteins.

The so-called protein inference issue occurs when
the same peptide sequence is found in multiple pro-
teins, thus leading to inaccurate taxonomic and func-
tional interpretation [9]. To address this issue, protein
identification software tools such as ProteinPilot (Pro
Group algorithm) [10], Prophane [11] or MetaProteo-
meAnalyzer [12] perform automatic grouping of hom-
ologous protein sequences. Interpreting protein
groups can be challenging especially in complex mi-
crobial community where redundant proteins can be
found in a broad taxonomic range. A well-known
strategy to deal with homologous protein sequences is
to calculate the lowest common ancestor (LCA). For
instance, MEGAN performs taxonomic binning by
assigning sequences on the nodes of the NCBI tax-
onomy and calculates the LCA on the best alignment
hit [13]. However, another crucial challenge related to

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-019-0253-x&domain=pdf
http://orcid.org/0000-0001-7322-4433
https://github.com/johanneswerner/mPies/
https://github.com/johanneswerner/mPies/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:johannes.werner@io-warnemuende.de
mailto:sabine.matallanasurget@stir.ac.uk

Werner et al. Biology Direct (2019) 14:21

protein annotation still remains: protein sequences
annotation often relies on alignment programs auto-
matically retrieving the first hit only [14]. The reli-
ability of this approach is hampered by the existence
of taxonomic and functional discrepancies among the
top alignment results with very low e-values [5]. Here,
we present mPies, a new highly customizable program
that allows the creation of protein search databases
and performs post-search protein consensus annota-
tion, thus facilitating biological interpretation.

Workflow design

mPies provides multiple options for optimizing meta-
proteomic analysis within a standardized and automa-
tized workflow (Fig. 1). mPies is written in Python 3.6,
uses the workflow management system Snakemake [15]
and relies on Bioconda [16] to ensure reproducibility.
mPies can run in up to four different modes to create
databases (DBs) for protein search using amplicon/
metagenomic and/or public repositories data: (i) non-
assembled metagenome-derived DB, (ii) assembled
metagenome-derived DB, (iii) taxonomy-derived DB,
and (iv) functional-derived DB. After protein identifica-
tion, mPies can automatically compute sequence
alignment-based consensus annotation at protein group
level. By taking into account multiple alignment hits for
reliable taxonomic and functional inference, mPies
limits the protein inference issue and allows more rele-
vant biological interpretation of metaproteomes from
diverse environments.

Mode (i): Non-assembled metagenome-derived DB

In mode (i), mPies trims metagenomic raw reads (fastq
files) with Trimmomatic [17], and predicts partial genes
with FragGeneScan [18] which are built into the
protein DB.

Mode (ii): Assembled metagenome-derived DB

In mode (ii), trimmed metagenomic reads are assembled
either with MEGAHIT [19] or metaSPAdes [20]. The
genes are subsequently called with Prodigal [21]. The
utilization of Snakemake allows easy adjustment of the
assembly and gene calling parameters.

Mode (iii): Taxonomy-derived DB

In mode (iii), mPies extracts the taxonomic information
derived from the metagenomic raw data and downloads
the corresponding proteomes from UniProt. To do so,
mPies uses SingleM [22] to predict OTUs from the
metagenomic reads. Subsequently, a non-redundant list
of taxon IDs corresponding to the taxonomic diversity
of the observed habitat is generated. Finally, mPies re-
trieves all available proteomes for each taxon ID from
UniProt. It is noteworthy that the taxonomy-derived DB
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can be generated from 16S amplicon data or a user-
defined list.

Mode (iv): Functional-derived DB

Mode (iv) is a variation of mode (iii) which allows to
create DBs that target specific functional processes (e.g.
carbon fixation or sulphur cycle) instead of downloading
entire proteomes for taxonomic ranks. For that purpose,
mPies requires a list of gene or protein names as input
and downloads all the corresponding protein sequences
from UniProt. Taxonomic restriction can be defined
(e.g. Proteobacteria-related sequences only) for highly
specific DB creation.

Post-processing

If more than one mode was selected for protein DB gen-
eration, all proteins are merged into one combined pro-
tein search DB. Duplicated protein sequences (default:
sequence similarity 100%) are removed with CD-HIT
[23]. All protein headers are hashed (default: MD5) to
obtain uniform headers and to reduce the file size for
the final protein search database in order to keep the
memory requirements of downstream analysis low.

Protein annotation

mPies facilitates taxonomic and functional consensus
annotation at protein level. After protein identification,
each protein is aligned with Diamond [24] against
NCBI-nr [7] for the taxonomic annotation. For the func-
tional prediction, proteins are aligned against UniProt
(Swiss-Prot or TrEMBL) [8] and COG [25]. The align-
ment hits (default: retained aligned sequences = 20, bit-
score >80) are automatically retrieved for consensus
taxonomic and functional annotation, for which the de-
tailed strategies are provided below.

The taxonomic consensus annotation uses the align-
ment hits against NCBI-nr and applies the LCA algo-
rithm to retrieve a taxonomic annotation for each
protein group (protein grouping comprises the assign-
ment of multiple peptides to the same protein and is fa-
cilitated by proteomics software) as described by Huson
et al. [13]. For the functional consensus, the alignment
hits against UniProt and/or COG are used to extract the
most frequent functional annotation per protein group
within their systematic recommended names. This is the
first time that a metaproteomics tool includes this crit-
ical step, as previously only the first alignment hit was
kept. In order to ensure the most accurate annotation, a
minimum of 20 best alignment hits should be kept for
consensus annotation. Nevertheless, this parameter is
customizable and and this number could be modified.
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Fig. 1 Workflow of mPies

Conclusions

The field of metaproteomics has rapidly expanded in
recent years and has led to valuable insights in the under-
standing of microbial community structure and function-
ing. In order to cope with metaproteomic limitations, new
tools development and workflow standardization are of
urgent needs. With regards to the diversity of the tech-
nical approaches found in the literature which are

responsible for methodological inconsistencies and inter-
pretation biases across metaproteomic studies, we devel-
oped the open-source program mPies. It proposes a
standardized and reproducible workflow that allows cus-
tomized protein search DB creation and reliable taxo-
nomic and functional protein annotations. mPies
facilitates biological interpretation of metaproteomics data
and allows unravelling microbial community complexity.
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Reviewer’s comments

Wilson Wen Bin Goh PhD, School of Biological Sciences,
Nanyang Technological University

Reviewer summary

Metaproteomics is a growing area. Although its sister
discipline, metagenomics is relatively more mature,
metaproteomics is expected to be harder due to the in-
direct means of assaying peptide information based on
the MS. There is a lack of tools for performing metapro-
teomics analysis. And so, I think the author’s pipelines
adds a useful resource. The manuscript is well-written,
and to the point, I have no points to add regarding
grammar and spell proofing.

Authors response: We thank Dr. Wilson Wen Bin Goh
for his overall very positive review.

Reviewer recommendations to authors

The manuscript runs a bit on the short. While I appre-
ciate the conciseness, I think to get more people inter-
ested, inclusion of a case study on application, or
possible generic user-routes to get people jumping in
and tinkering would be great. I particularly like the idea
of integrating functional consensus information auto-
matically with a protein group. I think this helps to es-
tablish the coherence of a protein group. For example, in
the case of OpenMS, some examples of workflows
https://www.openms.de/workflows/, help readers under-
stand the usefulness of the pipelines, and how to inte-
grate it with their needs. As Biology Direct is not a
bioinformatics journal per se, this addition would help
the readership.

Authors response: We would like to thank the Reviewer
for this comment. We agree with the Reviewer’s suggestion
and improved the visualization of the overall metapro-
teomics worfkow using mPies from data generation to
biological interpretation (Fig. 1). We also provided copy-
paste usage examples, with test-data, on the GitHub
repository to get people started quickly, thus maximizing
the use of mPies by the widest community.

Minor issues

Looking at the protein annotation figure, is the max of
20 a fixed number? Can this be changed? As for most
frequent protein name, is it based on SwissProt ID or
the gene symbol?

Authors response: The value for maximum target
sequences is adaptable, as are most parameters in the
Snakemake workflow. Based on our experience on several
(not-yet-published) in-house datasets, 20 is significantly
more robust than lower values (tested: 10, 20, 50, 100);
higher values do not capture significantly more functions.
Depending on the studied environment and available ref-
erence data, a higher value for consensus annotations
might be useful, although we recommend to never use a
value lower than 20 to limit the influence of outliers and
false positives.
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The most frequent protein name is not a gene ID but
the “recommended” UniProt protein name, which we
use for consensus calculation.

We adapted the respective sentences in the revised
manuscript.

Availability and requirements
Project name: mPies

Project homepage: https://github.com/johanneswer-
ner/mPies/

Operating system: Linux

Programming language: Python 3.6

Other requirements: Snakemake, bioconda

License: GNU GPL v3.0

Any restrictions to use by non-academics: none.
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