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Abstract

Background: Neuroblastoma is a heterogeneous disease with diverse clinical outcomes. Current risk group models
require improvement as patients within the same risk group can still show variable prognosis. Recently collected
genome-wide datasets provide opportunities to infer neuroblastoma subtypes in a more unified way. Within this
context, data integration is critical as different molecular characteristics can contain complementary signals. To this
end, we utilized the genomic datasets available for the SEQC cohort patients to develop supervised and unsupervised
models that can predict disease prognosis.

Results: Our supervised model trained on the SEQC cohort can accurately predict overall survival and event-free
survival profiles of patients in two independent cohorts. We also performed extensive experiments to assess the
prediction accuracy of high risk patients and patients without MYCN amplification. Our results from this part suggest
that clinical endpoints can be predicted accurately across multiple cohorts. To explore the data in an unsupervised
manner, we used an integrative clustering strategy named multi-view kernel k-means (MVKKM) that can effectively
integrate multiple high-dimensional datasets with varying weights. We observed that integrating different gene
expression datasets results in a better patient stratification compared to using these datasets individually. Also, our
identified subgroups provide a better Cox regression model fit compared to the existing risk group definitions.

Conclusion: Altogether, our results indicate that integration of multiple genomic characterizations enables the
discovery of subtypes that improve over existing definitions of risk groups. Effective prediction of survival times will
have a direct impact on choosing the right therapies for patients.

Reviewers: This article was reviewed by Susmita Datta, Wenzhong Xiao and Ziv Shkedy.
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Background
Neuroblastoma is the second most common solid tumor
in childhood. The disease can have a large variety of
clinical outcomes ranging from spontaneous regression
to relentless progression despite extensive therapies. As
such, accurate prediction of disease prognosis is criti-
cal to improve the choice of therapies. MYCN gene is
a well-established prognostic marker in neuroblastoma.
Chromosomal amplification of the MYCN locus occurs
in 25% of all neuroblastomas and is associated with poor
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prognosis [1]. However, patients without MYCN amplifi-
cation may also have a poor outcome. Apart from MYCN
amplification, a limited set of additional variables such as
age at diagnosis, stage of disease etc. are used to strat-
ify patients into distinct risk groups. Current risk group
definitions are problematic as patients within the same
risk group can still show variable prognosis. For instance,
some low- or intermediate-risk patients still die from the
disease whereas some high-risk patients show sponta-
neous regression. One promising direction is to utilize the
recently available genomic datasets to discover complex
molecular markers that can improve patient stratification.
Several studies have been recently published along this
line. For instance, Oberthuer et al proposed a classifier
that consists of 144 genes and showed its prognostic value
using two cohorts of size 77 and 440 [2, 3]. Asgharzadeh
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et al aimed to improve the stratification of metastatic neu-
roblastomas that lack MYCN gene amplification using a
classifier based on 55 genes [4]. Similarly, Vermeulen et al
inferred a gene set signature from 30 training samples, and
evaluated this signature with a test set of 313 samples and
a validation set of 236 additional tumours [5].
Recently, several methods have been developed to inte-

grate multiple genomic data for cancer subtype discovery
[6–9]. In neuroblastoma literature, however, a largemajor-
ity of the previous research have focused on one type
of gene expression data (e.g., microarray) to infer molec-
ular markers. Here, we utilized the diverse data types
provided by the Sequencing Quality Control Consortium
(SEQC) cohort (i.e., neuroblastoma challenge in Critical
Assessment of Massive Data Analysis (CAMDA) 2017) to
develop statistical models that can predict clinical out-
comes in neuroblastoma. Using a linear Support Vector
Machine (SVM, [10]), we were able to achieve a perfor-
mance that is very close to the best reported performance
in Zhang et al for the supervised learning problem [11].
We also trained this model on the whole SEQC cohort
and predicted overall survival (OS) and event-free survival
(EFS) variables in two independent cohorts. Our results
indicate that predicting OS and EFS is more challenging
for high risk (HR) patients. We observed that focusing
on only high risk patients during training improves the
prediction accuracy of HR patients. In the last part of
the study, we employed an unsupervised learning strategy
based on kernel k-means. We used MVKKM to inte-
grate multiple data types with the aim to identify sub-
groups that have significantly diverse survival profiles. We
observed that integrating all gene expression datasets (i.e.,
RNA-seq and microarray data) improves over using these
datasets individually. Also, integrating these data types
with learned weights is a better option than integrating
them uniformly. We also confirmed that the Cox regres-
sion model that uses our identified clusters as covariates
yields a better model compared to the regression model
with existing high risk / low risk (LR) labels. We repeated
these analyses for the subset of patients that have Array
Comparative Genomic Hybridization (aCGH) data, and
reached similar conclusions. Altogether, our results sug-
gest that utilizing genomic characterizations of tumors
improve over current definitions of risk groups.

Methods
Data
RNA-seq, microarray and aCGH datasets for the SEQC
cohort were downloaded from CAMDA website. Chen
Suo and her colleagues have identified a potential
mislabeling problem between normal and tumor sam-
ples when they compared the aCGH data against the
MYCN status derived from FISH experiments (per-
sonal communication). Based on this comparison, the

sign of the intensity values for 32 patients were
reversed. The list of these patient ids can be found
in Additional file 1. We used two versions of the
RNA-seq data: SEQC_NB_MAV_G_log2.txt downloaded
from CAMDAwebsite and GSE62564_SEQC_NB_RNA-
Seq_log2RPM.txt downloaded from GEO website
for entry GSE62564. The data for the Versteeg cohort
(GSE16476 [12]) were downloaded from R2 database
(http://r2.amc.nl), and the data for the TARGET cohort
were downloaded from the following link: https://
ocg.cancer.gov/programs/target/data-matrix. Note that
gene-level expression measurements were used for
all our experiments. We used the limma package
in R to perform differential expression analysis with
RNA-seq MAV data [13]. limma outputs adjusted p-
values that are corrected for multiple testing using the
Benjamini-Hochberg method [14]. seaborn.clustermap
function, (https://seaborn.pydata.org/generated/seaborn.
clustermap.html) in Python (single linkage, Euclidean dis-
tance, standard scale = 1) was used to generate the
heatmap.

Supervised learning
We used the Support Vector Classification (SVC, http://
scikit-learn.org/stable/modules/generated/sklearn.svm.
SVC.html) function available in Python’s scikit-learn
library for training SVM models . Feature selection
is performed with the sklearn.feature_selection.Select-
KBest method, (http://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.SelectKBest.html)
that uses ANOVA F-values to rank the features.
The only parameter that needs to be tuned is the C
parameter that determines the cost of misclassifica-
tion. Models with lower values of C allow for more
errors and learn a large margin whereas models with
higher values of C aim to classify all examples correctly
and learn a small margin. We considered the values
{106, 105, 104, 103, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 1000} for
the C parameter and chose the one with the best accuracy
within a nested cross-validation framework. As clinical
endpoints (i.e., OS, EFS) have an unbalanced distribution
in neuroblastoma cohorts, we further checked whether
using class-specific weights improves the performance.
Namely, we set the class-weight parameter to balanced
so that the C parameter of each class is multiplied with
a weight value that is inversely proportional to the cor-
responding class frequency in the input data. Nested
cross-validation was used to decide between setting this
parameter to balanced or to none.

Unsupervised learning
Multi-view clustering methods aim to integrate the com-
plementary information present in different views as this
could enable the investigation of a complex system from
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different angles and levels. Within the cancer subtyping
problem, the hypothesis is that combining different
molecular characteristics of the same disease should give
more comprehensive insights about the disease than
considering a single characteristic type. MVKKM is an
example of these approaches [15] that is closely related
to unsupervised multiple kernel k-means [16]. Multiple
kernel learning is concerned with using multiple ker-
nels for the same data type whereas multi-view learning
focuses on integrating different data types or views. In
this approach, each view is transformed using a kernel
function. Multiple kernels obtained from different views
are then combined together with weights to derive the
composite kernel (K̃):

K̃ =
V∑

v=1
wp
vK (v) (1)

where v is the view index, K (v) is the kernel matrix for
view v, wv indicates the weight of the kernel for view v and
p is an exponent to control sparsity and needs to be fixed
a priori. Assuming that p >= 1, the greater the p value,
the less sparse the view weights become. This formulation
can be easily extended to the case where there are mul-
tiple kernels calculated from the same view. The method
iterates through two steps. In the first step, the individual
kernels have to be combined to derive the composite ker-
nel as explained above. In the second step, kernel k-means
is applied on the composite kernel to infer the clustering
assignment.
We used the code provided by Tzortzis et al [15]

with the Radial Basis Function (RBF) kernel. RBF ker-
nel between two samples x and y can be calculated as
K(x, y) = exp(−γ ||x − y||2). To avoid selecting a spe-
cific γ parameter, we used six different γ parameters (i.e.
{2−14, 2−15, 2−16, 2−17, 2−18, 2−19}) for each view. Among
the set of values {1.5, 2, 2.5}, 1.5 was chosen as optimal
for the sparsity parameter p based on mean silhouette
score [17]. Silhouette score for sample i is calculated as
(bi − ai)/max(ai, bi) where ai is the average distance of
sample i to all other samples in sample i’s cluster and bi
is the average distance of sample i to all the samples in
the closest cluster that i is not a part of. Lastly, silhou-
ette scores of all data points are averaged to determine
the mean silhouette coefficient. The number of clusters
was determined by aggregating three measures: mean sil-
houette score, DUNN index [18] and connectivity [19].
A weighted rank aggregation method named RankAggreg
[20] was used to combine the rankings obtained by these
three metrics. We ran MVKKM multiple times with ran-
dom initialization due to the local optima problem in
k-means. The most frequent k value among the multiple
runs was identified as the number of clusters.

Predictive performance of supervised and unsupervised
models
We used the survival package in R to perform Kaplan-
Meier analysis. Because more than 80% of the SEQC data
is right-censored, we applied the Cox proportional haz-
ards regression analysis with Firth’s correction (hereafter
named Coxphf) using the R package [21]. To compare
between different Cox models, Bayesian Information Cri-
terion (BIC) is calculated with the formula −2loglik +
mln(n) where loglik is the log likelihood of the regression
model, n is the number of samples and m is the number
of parameters [22]. As an additional evaluation strategy,
accelerated failure time models (AFT) was used. An itera-
tive imputation procedure [23] was applied to handle right
censoring. Root mean squared error adjusted for censor-
ing (rmse, [24]) and Harrell’s c-index [25] were used as
performance metrics. Harrell’s c-index calculates the fre-
quency of concordant pairs where a pair of patients is
called concordant if the patient with the higher risk pre-
diction experiences the event before the other patient.
Harrell’s c-index ranges between 0 and 1 and higher val-
ues correspond tomore accurate predictionmodels. More
details of the AFT model and the evaluation procedure
can be found in [26]. The reported values are average of
running 10-fold cross validation ten times.

Results and discussion
Validation of the SEQCmodel on independent cohorts
Table 1 shows statistics about the patients and the data
types of the three cohorts that we worked with. We first
performed supervised learning using SVM within the
SEQC dataset. The mean cross-validation accuracy of the
models that predict OS (i.e., occurrence of death from dis-
ease) and EFS (i.e., occurrence of progression, relapse or
death) labels is close to the best accuracy reported for the
same dataset [11] (for OS: our accuracy: 0.83 vs best accu-
racy: 0.85 and for EFS: our accuracy: 0.78 vs best accuracy:
0.78). In addition to the linear kernel, we also tried the
RBF kernel for the SVM model; however, this resulted
in no improvement in prediction accuracy. Besides, we
tried gradient boosting and random forest models with

Table 1 Patients and the data types for the cohorts: SEQC,
Versteeg, TARGET

SEQC Versteeg TARGET

# of patients 498 88 247

HR=1/HR=0 175/323 36/52 217/30

OS=1/OS=0 105/393 30/58 140/107

EFS=1/EFS=0 183/315 34/54 156/91

MYCN amp. / not amp. 92/401 16/72 68/175

Note that our HR definition is based on Children’s Oncology Group. The number of
total patients do not add up to 498 for MYCN amplification label as there is missing
data
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no increase in performance. Altogether, these results sug-
gest that the signal present in the SEQC cohort can be
sufficiently captured by linear models.

Predicting outcome in Versteeg cohort
We used our model trained on the SEQC dataset to
predict OS and EFS profiles of patients in an indepen-
dent cohort that is called Versteeg dataset hereafter. This
dataset includes the gene expression measurements and
clinical data for 88 patients. Table 2 summarizes our
results on the Versteeg data where we used Area Under
the receiver operating characteristic curve (AUROC)
and balanced accuracy as performance metrics. Several
interesting observations can be derived from these results.
First, when we compare the results of predicting OS and
EFS labels, we observe that we predict OSmore accurately
than EFS in All → All and HR → HR contexts. Sur-
prisingly, EFS prediction is more accurate when we focus
only on patients with no MYCN amplification. Here we
should note that some of the models listed in Table 2 use
gene expression data derived from different platforms (e.g.
RNA-seq or microarray). As such, we checked whether
these observations still hold if we restrict the comparison
to models that use gene expression data from the same
platform (Additional file 4). The optimal models identified
for OS and EFS prediction in All → All and HR → HR
contexts use gene expression data from the same plat-
form whereas this is not the case for MYCN_NA →
MYCN_NA context. ForMYCN_NA → MYCN_NA con-
text, if we compare models that are derived from the same
platform only, we still observe that EFS prediction has
better performance than OS prediction.
We investigated whether using only HR patients for

training improves the prediction performance of OS and
EFS of HR patients. Indeed, this is the case for OS pre-
diction as balanced accuracy increases from 0.71 to 0.79.

However, the same effect is not seen in predicting EFS. To
confirm that the differences in accuracy between All →
All andHR → HR contexts are indeed due to the different
training datasets used, we repeated the comparison with
models that use gene expression data from the same plat-
form. When RNA-seq based gene expression data is used,
models that are learned from only HR patients perform
better than models that are learned from all patients in
predicting OS of HR patients. However, we do not observe
the same improvement for microarray based models. We
also checked whether accounting for unbalanced class
labels improves the performance. Turning on the balanced
option for class weights gives a better model in terms
of training set performance except for EFS prediction in
All → All model. This could be due to the fact that the
EFS label is less unbalanced than the OS label in the SEQC
cohort.
Figure 1 shows the ROC curves for predicting OS and

EFS profiles. These curves reveal that we can predict OS
with a high accuracy (i.e., AUROC: 0.96 and balanced
accuracy: 0.89). We compared this performance with two
different studies that aimed to predict OS on the same
data. The first study is by Totaro et al that focused on
the IL6 gene and used its expression to classify patients
into two groups [27] which results in a balanced accu-
racy of 0.65. The second study is from Versteeg group that
aimed to predict neuroblastoma outcome irrespective of
MYCN amplification [28]. To this end, they identified 157
genes as downstream targets of MYCN. They also used
the Versteeg cohort data itself to confirm that the expres-
sion profile of these genes correlate with MYCN mRNA
levels. Using these 157 genes, they were able to predict
OS in Versteeg cohort with a balanced accuracy of 0.84.
Figure 2 This result indicates that our model which is
trained entirely on another cohort (i.e., SEQC) performs
remarkably well on predicting OS in Versteeg cohort.

Table 2 Predicting OS and EFS in Versteeg cohort using models trained from SEQC cohort

OS EFS

Training → Test Type AUROC Balanced Accuracy Type AUROC Balanced

Accuracy

All → All Microarray C=0.001 Balanced 0.961 0.899 Microarray C=0.001 0.922 0.858

All→ All

(only HR patients) 0.847 0.717 0.897 0.751

HR→ HR RNA-seq (RPM) C=1000 Balanced 0.783 0.793 RNA-seq (MAV) C=1000 Balanced 0.736 0.613

MYCN_NA

→MYCN_NA RNA-seq (MAV) C=1000 Balanced 0.869 0.710 Microarray C=0.0001 Balanced 0.885 0.815

The first column displays the details about the training and test sets. All → All indicates that we used the whole SEQC data for training and the whole Versteeg data for
testing. All → All with only HR patients corresponds to the same model as All → All; however, here the performance metrics are only calculated for HR patients. In the third
row, we used only the HR patients within the SEQC data for training and similarly we tested only on HR patients within the Versteeg data. In the last row, we only consider the
patients with no MYCN amplification for training and testing sets. The Type column indicates the details of the chosen model. For gene expression, microarray data and two
versions of the RNA-seq data were used. As such, this entry shows the type of the gene expression data used for the best trained model. The same entry also includes the C
parameter of the SVM model and the type of the class weights (balanced or uniform)
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A B

Fig. 1 ROC curves for predicting clinical outcomes in Versteeg cohort a OS b EFS

Predicting outcome in TARGET cohort
We repeated the experiments that we performed with
Versteeg cohort for the TARGET cohort. (Figure 3 and
Table 3). One important aspect of the TARGET cohort
is the high fraction of HR patients. We should note that
the models that we trained from SEQC cohort are differ-
ent between Tables 2 and 3 as the genes common between
SEQC and Versteeg cohorts are different than the genes
that are common between SEQC and TARGET cohorts.
As a first observation, we see that the accuracy of predict-
ing OS and EFS is lower compared to our results on the
Versteeg cohort. This is likely due to the different com-
position of HR and LR patients between the SEQC and
TARGET cohorts. The accuracy of predicting both OS
and EFS of HR patients increases when training is per-
formed only with HR patients (comparing rows 2 and 3
in the table). This result is likely due to the high frac-
tion of HR patients in TARGET cohort. When we restrict
the comparison to models that use the same type of gene
expression data, models derived from RNA-seq data pre-
dict both OS and EFS of HR patients more accurately
when the training was performed with HR patients only
(Additional file 4). Unlike our results on Versteeg cohort,
predicting EFS is more accurate than predicting OS in

terms of balanced accuracy. The optimal models identi-
fied for OS and EFS prediction in All → All context
use gene expression data from the same platform whereas
this is not the case for HR → HR and MYCN_NA →
MYCN_NA contexts. For these two contexts, balanced
accuracy of predicting EFS is higher than that of predict-
ing OS even when we compare models that are derived
from the same platform (Additional file 4).

Comparison of the selected features across different
models
We investigated the 1000 selected features across the dif-
ferent models that we trained. First, we compared the OS
and the EFS models that we used to predict Versteeg and
TARGET cohorts. The number of genes that are common
betweenOS and EFSmodels is 796 forVersteeg cohort and
793 for TARGET cohort. On the other hand, the overlap
between the OSmodels trained with all patients and those
trained with HR patients is only 88 for the Versteeg cohort
and 86 for TARGET cohort. We observe similar numbers
for the EFSmodels: 51 forVersteeg cohort and 31 for TAR-
GET cohort. The overlap between the OS models trained
with all patients and those trained with patients with no
MYCN amplification is much higher: 384 for Versteeg

A B C

Fig. 2 Comparison of the survival profiles of different methods that predict OS in Versteeg cohort a Our prediction, log-rank test p-value: 3.6e-12
b Prediction made in Totaro et al, 2013 [27], log-rank test p-value: 0.007, c Prediction made in Valentjin et al, 2012 [28], log-rank test p-value: 7e-12
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A B

Fig. 3 ROC curves for predicting clinical outcomes in TARGET cohort a OS b EFS

cohort and 418 forTARGET cohort. The overlaps are even
higher for EFS prediction: 783 for Versteeg cohort and 788
for TARGET cohort. These results are expected as the
patients with no MYCN amplification form a larger sub-
set of all patients when compared to HR patients. Finally,
we also compared models trained with different cohorts.
The OS model trained from SEQC cohort and the model
trained from Versteeg cohort share 374 genes suggest-
ing that the gene signature associated with OS is highly
overlapping across cohorts. We observed a similar over-
lap (i.e., 278) for the TARGET cohort. The OS models
trained only with HR patients showed a lower overlap size:
70 between SEQC and Versteeg cohorts and 81 between
SEQC and TARGET cohorts. The smaller size of the HR
training datasets is likely to be associated with these small
overlaps.

Predicting outcome in SEQC cohort
The experiments were performed in the opposite direc-
tion where we trained models using the Versteeg or TAR-
GET cohorts and tested on the SEQC cohort. The linear
SVM model trained on the Versteeg cohort predicts OS
in SEQC cohort with a balanced accuracy of 0.80 and an
AUROC of 0.86. This analysis reveals that even a small
number of patients (i.e., Versteeg cohort: 88 patients) is

satisfactory to learn a gene signature that can predict OS
in a much larger cohort (i.e., SEQC cohort: 498 patients).
Predicting EFS resulted in a similar accuracy (balanced
accuracy: 0.75 and AUROC: 0.81). We repeated the same
experiments whereTARGET cohort is used as the training
set. As expected, the predictive accuracy was lower com-
pared to training on the Versteeg cohort (OS: bal. accuracy
is 0.77 and AUROC is 0.86 and EFS: bal. accuracy is 0.69
and AUROC is 0.7). Though, we see the opposite pattern
when we try to predict the outcome of HR patients using
only HR patients as the training data. Namely, TARGET-
trained models (OS: bal. accuracy is 0.59 and AUROC is
0.73) achieve a better predictive accuracy than Versteeg-
trained models (OS: bal. accuracy is 0.58 and AUROC is
0.61). This is likely related to the much larger set of HR-
only training data in TARGET cohort (TARGET : 217 vs
Versteeg: 36).

Unsupervised learning approaches for patient stratification
In addition to supervised learning approaches to pre-
dict OS and EFS in SEQC and other cohorts, we also
investigated integrative clustering approaches to identify
neuroblastoma subtypes in an unsupervised manner. To
this end, MVKKMmethod was utilized which can cluster
samples by integrating multiple data types. In MVKKM

Table 3 Predicting OS and EFS in TARGET cohort using models trained from SEQC cohort

OS EFS

Training→Test Type AUROC Balanced Accuracy Type AUROC Balanced

Accuracy

All→All Microarray C=0.001 Balanced 0.703 0.592 Microarray C=0.0001 Balanced 0.666 0.594

All→All

(only HR patients) 0.595 0.566 0.522 0.524

HR→HR RNA-seq (RPM) C=1000 Balanced 0.611 0.579 Microarray C=0.0001 Balanced 0.570 0.612

MYCN_NA

→ MYCN_NA RNA-seq (RPM) C=1000 Balanced 0.803 0.575 Microarray C=0.0001 Balanced 0.715 0.632

Column descriptions are same as Table 2
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method, each data type is considered as a view, and mul-
tiple kernels can be used to represent each view. Because
the relevance of the different views (or even the relevance
of the different kernels in the same view) to the clustering
task can vary, MVKKM learns a weight distribution across
the kernels. This weight distribution enables the contribu-
tion of different kernels in varying degrees. Also, cluster-
ing the samples in the kernel space provides flexibility in
applying non-linear feature transformations.
First, we applied MVKKM to all the patients to inte-

grate different types of gene expression data. We used
six RBF kernels with different gamma parameters for
each view (See Methods). Table 4 compares the clus-
ters obtained by using different datasets: (i) RNA-seq
(MAV);(ii) RNA-seq (RPM); (iii) RNA-seq data (MAV and
RPM); (iv) microarray data only ;(v) RNA-seq data and the
microarray data (three views).We also included results for
integration of RNA-seq and microarray datasets with uni-
form weights rather than MVKKM-learned weights. In all
cases, the number of clusters was chosen as 2 based on
mean silhouette score. To compare different patient strat-
ification models, we used Coxphf and AFT models. We
included the identified clusters, age and stage information
as covariates in Coxphf and AFT regression models. For
Coxphf, the log-likelihood of the model is used to calcu-
late the BIC values. For AFT models, rmse and Harrell’s
c-index are used for model evaluation. We observe that
integrating the three types of gene expression data is bet-
ter than using these datasets individually. These results
also reveal that the integration of these datasets with
MVKKM gives a better model than combining the kernels
uniformly. When we sum the MVKKM-learned weights
across the six kernels for RNA-seq (MAV), RNA-seq-
(RPM) andmicroarray views, we obtain 0.31, 0.34 and 0.35
respectively. These weights indicate that RNA-seq-RPM
and microarray datasets are more relevant for clustering
neuroblastoma patients.
Figure 4a shows the Kaplan-Meier analysis of obtained

clusters when both RNA-seq and microarray datasets are
used. The log-rank test p-value equals to 3.9e-20 confirms

that the patients in the two clusters show distinct prog-
nosis. We also investigated the fraction of LR and HR
patients in our obtained clusters (Fig. 4b). A larger pro-
portion of cluster 1 patients are LR patients; however, HR
patients still exist. The opposite trend is seen among clus-
ter 2 patients. These distributions suggest that the current
risk groups can be improved further with integrative clus-
tering approaches. Another result that strongly supports
this is the fact that our identified clusters give a much
lower BIC and higher c-index compared to the existing
HR / LR groups (1193 vs 1228).
We investigated the genes that are differentially

expressed between the two clusters with limma method.
The top 500 genes with the smallest adjusted p-values are
listed in Additional file 2. Many of these genes have been
previously found to be associated with neuroblastoma.
The references are listed in the last column of the table.
The top 50 genes are also plotted with heatmap (Addi-
tional file 3: Figure S1).We observe that these top 50 genes
are expressed at higher levels in group 2 (High Risk).
We repeated the same analysis with a subset of patients

(i.e., 145 patients) that have aCGH data. Similar to what
we observed in our experiments with all patients, com-
bining the RNA-seq and the microarray datasets gives the
best model (Table 5). Indeed, this is the only model where
the discovered stratification is associated with a signifi-
cantWald-test p-value (i.e., 0.004). Interestingly, including
aCGH data to this model resulted in no improvement.
On the other hand, if we focus only on patients with
no MYCN amplification (121 patients), including aCGH
on top of gene expression datasets results in a slight
improvement compared to using gene expression datasets
only (BIC: 219 vs 220). For 145 patients, the MVKKM-
learned weights for RNA-seq (MAV), RNA-seq (RPM)
and microarray datasets were 0.30, 0.34 and 0.36 respec-
tively. Figure 5a shows the survival plot of identified
clusters. Here, we observe an intermediate risk group in
addition to high risk and low risk groups. Indeed, the frac-
tion of literature-defined LR patients increase as we go
from our own high risk group to low risk group.

Table 4 Comparison of the clusters obtained with different data types from all patients

Model Coxphf AFT

Data k HR (confidence interval) Wald-test p-value BIC rmse c-index

RNA-seq (MAV) 2 0.21 (0.11-0.40) 4.2e-07 1206 20.6 0.882

RNA-seq (RPM) 2 3.34 (1.82-6.50) 5.2e-05 1215 21.2 0.882

RNA-seq datasets 2 3.46 (1.89-6.70) 2.5e-05 1214 22.4 0.883

Microarray 2 0.26 (0.15-0.42) 5.8e-09 1197 32.0 0.870

All datasets 2 0.16 (0.07-0.30) 8.3e-10 1193 19.0 0.887

All datasets (uniform) 2 0.15 (0.07-0.31) 4.4e-09 1197 19.9 0.886

High Risk / Low Risk 2 0.45 (0.20-0.96) 8.5e-07 1228 10.3 0.885



Baali et al. Biology Direct  (2018) 13:20 Page 8 of 14

A B

Fig. 4 Analysis of the clusters obtained with both RNA-seq and microarray datasets a Kaplan-Meier analysis (log-rank test p-value: 3.9e-20)
b Distribution of low risk and high risk patients in identified clusters

Discussion
The availability of genome-wide datasets for cancer
patients have increased rapidly in recent years. Methods
that can effectively integrate these datasets can improve
our understanding of cancer development and progres-
sion. To this end, we used supervised and unsupervised
learning strategies to predict patient survival in neurob-
lastoma. Our supervised model can accurately predict
overall survival and event-free survival profiles of neurob-
lastoma patients in independent cohorts. We evaluated
models that are trained from RNA-seq or array-based
gene expression data. Our experiments indicate that the
differences in platforms of gene expression data between
training and test cohorts may not be critical as RNA-
seq-derived models are found to perform better than
microarray-derived models for many of the prediction
tasks where the test cohort contains array-based gene
expression data. We observed that the prognosis of HR
patients is harder to predict. One strategy to improve the
prediction performance of HR patients is to focus on only
HR patients in the training set.
To infer neuroblastoma subgroups by integrating differ-

ent genomic characterizations of the patients, we utilized
the MVKKM method. MVKKM has a number of advan-
tages over other simpler clustering approaches. Namely,
it uses an intermediate integration strategy that per-
forms data integration and clustering steps concurrently.

Besides, multiple data types can be combined with differ-
ent weights enabling flexible and robust data integration.
Finally a major advantage of MVKKM is the use of ker-
nel k-means that enables nonlinear transformations to the
feature space. We ran MVKKM on two sets of patients:
(i) all patients; (ii) subset of patients with aCGH data
and compared the different models that use distinct sets
of data types with Cox proportional hazards regression
results. Application of Firth’s correction to Cox regression
was critical as we obtained completely different results
without this correction (data not shown). Based on most
of the evaluation criteria calculated from Cox regression
and AFT models, combining all the available gene expres-
sion datasets resulted in the best model both for all the
patients and for the subset of patients. For all patients, we
discovered two clusters that have significantly distinct sur-
vival profiles. In parallel with the observed variability of
prognosis within LR and HR patients, our identified clus-
ters contain a mixture of LR and HR patients. For subset
of patients with aCGH data, we discovered three clusters
that correspond to low risk, intermediate risk and high
risk groups.We observed that the proportion of literature-
defined HR patients increases as the risk level of the group
increases. Interestingly, addition of aCGH data on top
of the gene expression datasets resulted in no improve-
ment for this group of patients. This could be due to the
high noise level of the aCGH data. The clusters that we

Table 5 Comparison of the clusters obtained with different data types from a subset of patients with aCGH data

Model Coxphf AFT

Data k HR (confidence interval) Wald-test p-value BIC rmse c-index

aCGH 2 0.66 (0.32-1.35) 0.26 356 19.3 0.854

RNA-seq datasets + microarray 3 2.55 (1.32-5.10) 0.004 352 17.4 0.870

RNA-seq datasets + microarray (uniform) 2 0.80 (0.33-1.91) 0.61 357 19.1 0.857

RNA-seq datasets + microarray + aCGH 2 0.61 (0.29-1.26) 0.18 355 17.9 0.854
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A B

Fig. 5 Analysis of the clusters obtained with both RNA-seq and microarray datasets a Kaplan-Meier analysis (log-rank test p-value: 1e-10)
b Distribution of low risk and high risk patients in identified clusters

identified in both patient groups indicates that the cur-
rent stratification of patients to high risk and low risk
groups can be improved via the integrated use of genomic
datasets.
The performance of both supervised and unsupervised

learning models can be further improved as genomic
data becomes available for larger cohorts. Also, addi-
tional types of genomic data such as DNA methylation,
protein expression or microRNA expression can provide
opportunities to understand this complex disease from
different angles and to pave the way toward improved
choice of therapies. Indeed, a recent study discovered that
the disruption of the let-7 microRNA family is an impor-
tant mechanism in understanding cancer pathogenesis for
neuroblastoma [29].

Conclusion
Our study demonstrates that supervised learning mod-
els built from genomic datasets are suitable for clini-
cal endpoint prediction in independent cohorts. Also,
unsupervised integration of multiple genomic datasets
with MVKKM reveals neuroblastoma subtypes with dis-
tinct survival profiles. Both supervised and unsuper-
vised approaches can contribute to improved treatment
stratification of neuroblastoma patients. Altogether, these
results indicate that the use of multi-dimensional genomic
datasets has the potential to improve current cancer risk
models.

Reviewers’ comments
Reviewer’s report 1: Susmita Datta, University of Florida,
Gainesville, USA
In this manuscript authors demonstrate that supervised
learning models built from multiple genomic datasets are
suitable for clinical endpoint prediction. Also, they use a
form of Multi-view kernel k-means (MVKKM) algorithm
to identify subtypes of Neuroblastoma which has dis-
tinct survival profiles. Both supervised and unsupervised

approaches can contribute to improved treatment stratifi-
cation of neuroblastoma patients. It is an interesting idea
in include both supervised and unsupervised methods for
the survival prediction. I have some major concerns:
Reviewer comment: Authors have used mean silhou-

ette co-efficient to choose the number of clusters. Please
note that there are many other indices to determine the
quality of clusters such as Dunn-index and connectivity.
One may be able to use them as well to determine the
number of clusters. So a holistic way will be to use many
such evaluation measures and rank them using methods
such as Pihur et al., Bioinformatics, 2007 paper.
Author’s response: We thank the reviewer for this sug-

gestion. In addition to mean silhouette index, we now
calculate the DUNN-index and connectivity for each value
of k. Other measures mentioned in Pihur et al were either
meaningful only in the context of gene expression data; or
they required substantial additional code for implemen-
tation. We used RankAggreg method proposed by Pihur
et al to combine the resulting rankings. The number of
clusters chosen by the aggregation of these three methods
remained the same in our experiments. As such, we did not
update the results. However, we are glad that the aggrega-
tion method could improve the choice of number of clusters
for future studies that focus on cancer subtyping.
Reviewer comment: The wonder whether the assump-

tions of Cox proportional hazards model will work here or
not. I do think Accelerated failure timemodel with penalty
for high dimensional data would work better. So please
comment why that wasn’t used.
Author’s response: We think there is misunderstanding

about how we run the Coxph model. We do not input high
dimensional data (i.e., gene expression, aCGH etc) directly
to the Coxphmodel. We first learn clusters from the kernel-
transformed data and input these clustering assignments
to the model together with age and tumor stage. How-
ever, what is critical is that we do account for the large
proportion of censored samples with Firth correction. One
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advantage of using the Coxph model is that we can eas-
ily compare the hazard ratios that we obtained with those
from literature. Nevertheless, we have also tried Acceler-
ated failure time model where right censoring is handled
by imputation as in Dr. Datta’s recent paper (Grimes et al.
Biology Direct, 2018, 13:11). We now add adjusted root
mean squared error (rmse) and Harrell’s c-index measures
to Tables 4 and 5. We do not report low-predicted sur-
vival (LPS) classification of patients as with the cutoffs
t = 2 and t = 5, we routinely got an error from survd-
iff function regarding the existence of only a single group.
We think rmse and Harrell’s c-index are representative of
model performance.
In summary, even though the ranking of the mod-

els have changed in some cases, our main conclusions
remained the same based on the results of the AFTmodel.
Also, during these experiments, we discovered a bug

that leads to reading HR/LR labels incorrectly. As such,
Figs. 4b, and 5b and the last row of Table 4 are updated
accordingly.
Reviewer comment: How do you choose p related to

sparsity in composite kernel?
Author’s response: We thank the reviewer for this com-

ment as we realized that we forget to include the choice of
p in the “Methods” section. Our choice of p parameter is
based on the following assumptions and prior results:

• In this manuscript, we integrate datasets that are
highly correlated (i.e., RNA-seq datasets normalized
with two different procedures, or RNA-seq and
microarray datasets). However, these datasets could
still contain complementary information and have to
potential to improve clustering when combined. As
described in the manuscript, in MVKKMmodel, p=1
corresponds to the selection of only one view (i.e.,
dataset) and large values of p (e.g. p >= 4)
correspond to the case where views contribute
uniformly to the composite kernel. We think that p
values that lead to non-uniform weights would work
best for our context.

• In Tzortzis et al (ref 18), the authors have used
MVKKM for several datasets and their results
indicate that the choice of p within the range of
{1.5-2.5} give the optimal results. Even though the
datasets they used are of different context, we still
think that the results are informative.

• We tried the values 1.5, 2 and 2.5 based on the
discussion above. p = 1.5 was chosen according to
mean silhouette coefficient. We now mention this in
“Unsupervised learning” section.

Reviewer comment:What is the range of p?
Author’s response: p has to be greater than or equal to

1. We state this in the second paragraph of “Unsupervised
learning” section.

Reviewer’s report 2: Wenzhong Xiao, Massachusetts
General Hospital, Cambridge, USA
In this manuscript, Baali etc. described their work com-
paring gene prediction models across multiple indepen-
dent datasets of neuroblastoma and using genomic data
integration modeling to study cell signaling mechanisms
of high-risk neuroblastoma and to predict disease out-
comes.
The paper touched upon a number of observations and

issues that this reviewer thinks are important to the inte-
gration of multiple genomic data sets. However, more
clarity is needed in the paper: while a reader can follow
the methods and results described in the paper, some of
the statements appear to be weak and confusing, and it is
hard to draw conclusions.
Reviewer comment: A technical issue often came up

in integration of multiple datasets is between data from
arrays and data from RNA-seq. Tables 2 and 3 listed
some of the results of comparing gene prediction mod-
els derived from the SEQC dataset on two independent
test datasets for two endpoints and four settings. However,
the results listed were sometimes models from arrays and
sometimes from RNA-seq, making it hard for the readers
to understand these results and the statements in the text
comparing the results. For example, on Page 5 line 20–
25, “Focusing only on HR patients in training improves
the accuracy of predicting OS in HR patients since bal-
anced accuracy increases from 0.71 to 0.79. However, we
do not see the same effect for predicting EFS, as the accu-
racy decreases if we train only with HR patients.” And on
Page 5 line 60–62, “The prediction accuracy of the HR
patients increases when training is performed only with
HR patients (comparison of rows 2 and 3 in the table).”
Clarification is needed since models compared here were
derived from data of different platforms.
Author’s response:We thank the reviewer for raising this

important point. We checked whether our observations still
hold when we compared the models that use data from the
same platform. The balanced accuracy and AUROCs of all
the models are now listed in Additional file 4.
We changed the result section accordingly. In partic-

ular, in section “Predicting outcome in Versteeg cohort”
section we added the following text:
Here we should note that some of the models listed

in Table 2 use gene expression data derived from differ-
ent platforms (e.g. RNA-seq or microarray). As such, we
checked whether these observations still hold if we restrict
the comparison to models that use gene expression data
from the same platform (Additional file 4). The optimal
models identified for OS and EFS prediction in All →
All and HR → HR contexts use gene expression data
from the same platform whereas this is not the case for
MYCN_NA → MYCN_NA context. For MYCN_NA →
MYCN_NA context, if we comparemodels that are derived
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from the same platform only, we still observe that EFS
prediction has better performance than OS prediction.
and
To confirm that the differences in accuracy between

All → All and HR → HR contexts are indeed due to the
different training datasets used, we repeated the compar-
ison with models that use gene expression data from the
same platform.When RNA-seq based gene expression data
is used, models that are learned from only HR patients per-
form better than models that are learned from all patients
in predicting OS of HR patients. However, we do not observe
the same improvement for microarray based models.
Similarly, in section “Predicting outcome in TARGET

cohort” section, we added the following sentence:
When we restrict the comparison to models that use the

same type of gene expression data, models derived from
RNA-seq data predict both OS and EFS of HR patients
more accurately when the training was performed with
HR patients only (Additional file 4). Unlike our results on
Versteeg cohort, predicting EFS is more accurate than pre-
dicting OS in terms of balanced accuracy. The optimal
models identified for OS and EFS prediction in All →
All context use gene expression data from the same plat-
form whereas this is not the case for HR → HR and
MYCN_NA → MYCN_NA contexts. For these two con-
texts, balanced accuracy of predicting EFS is higher than
that of predicting OS even when we compare models that
are derived from the same platform (Additional file 4).
Note that the comment below is about the training set

performance of the same model with and without the
balanced option – for a particular context and predic-
tion type (OS or EFS). As such it does not require us to
compare models of the same gene expression platform.
Turning on the balanced option for class weights gives a

better model in terms of training set performance except for
EFS prediction in All → All model. This could be due to
the fact that the EFS label is less unbalanced than the OS
label in the SEQC cohort.
Reviewer comment: On Page 6 line 7–11, the author

stated that “we see that the microarray-based models are
preferred over RNA-seq. This could be due to the fact that
the microarray platform is used to measure gene expres-
sion in the TARGET cohort”; is this true for the Versteeg
cohort as well, since it used microarrays as well? Would
the models from arrays show the best performance in gen-
eral? It would help if the authors can either discuss the test
results of the models derived from each platform, or show
these results as supplemental information.
Author’s response: We thank the reviewer for this com-

ment. Indeed, we have realized that the same observation
does not hold for the Versteeg cohort where gene expression
data is also array-based. As such, we have now removed
those sentences from the “Results and discussion” section
and instead included the following sentences to Discussion.

Our experiments indicate that the differences in plat-
forms of gene expression data between training and test
cohorts may not be critical as RNA-seq-derived models are
found to perform better than microarray-derived models
for many of the prediction tasks where the test cohort
contains array-based gene expression data.
Reviewer comment: As shown in Table 3, the perfor-

mance of the predictive models was dramatically lower
in the TARGET cohort. The authors mentioned that the
TARGET cohort had a high fraction of HR patients, sug-
gesting that the prediction of outcomes of HR patients is
much more difficult. This should be emphasized in the
text and begs the question on the performance of pre-
dicting the outcomes of these HR patients when applying
MVKKM on the data.
Author’s response: In addition to the “Results and dis-

cussion” section, we also mention the difficulty of predicting
the outcomes of HR patients in the first paragraph of the
“Discussion” section.
We could not understand the second part of this com-

ment as we have not applied MVKKM on TARGET
cohort. Since MVKKM is an unsupervised approach that
outputs clustering information of patients, it is unclear to us
how it could be used to predict patient outcomes directly.
Reviewer comment: Besides, on Page 2 line 55–58,

“Chen Suo and her colleagues have identified a poten-
tial mislabeling of 32 neuroblastoma patients in aCGH
data (personal communication). As such, we updated the
aCGH data accordingly.” The authors then stated that the
aCGH data did not improve the results of prediction. Can
the authors reference the information or include details
of the corrections they made so readers can potential
reproduce the results?
Author’s response: We now included a Additional file 2

(Additional file 2) that lists the ids of 32 patients and
explained the correction in more detail in text as follows:
Chen Suo and her colleagues have identified a potential

mislabeling problem between normal and tumor samples
when they compared the aCGH data against the MYCN
status derived from FISH experiments (personal communi-
cation). Based on this comparison, the sign of the intensity
values for 32 patients were reversed. Ids of these patients
are listed in Additional file 2.
Reviewer comment: Figure 3 does not seem to be ref-

erenced in the text. 2. In the PDF file of the manuscript,
there are a number of warnings (page 2 - 21) Author’s
response: Fig. 3 is now referenced in the beginning of the
section.

Reviewer’s report 3: Ziv Shkedy, Hasselt University,
Belgium
Reviewer comment: The paper describe supervise and
unsupervised methods for the development of multi-
source signature for High risk /Low risk survival patients.
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It is an applied paper which presents an analysis for dif-
ferent datasets. The paper is interesting but poorly writ-
ten and a strong language editing is needed in order to
transform the current text to a level of a scientific publica-
tion (which is not, to my opinion, the level of the current
version of the manuscript). I listed below few examples
(there are much more) .
Author’s response: We thank the reviewer for detailed

suggestions on language usage. We made the necessary
changes for all the items listed below. Detailed replies
are available below. Additionally, we revised several other
parts of the manuscript to improve clarity. We hope that
our revised manuscript reads better.
Reviewer comment: Page 2, line 28: “Using a linear

SVM” should be “Using a linear Support vector machine
(SVM, ref )”. See for example, line 37.
Author’s response: We have fixed this now and inserted

the reference for SVMs.
Reviewer comment: Page 2, line 55 “.....CGH datasets

for the SEQC cohort”. You should use the same font for
SEQC, see for example page 4 lines 38, 48 etc. Author’s
response:We have fixed the font and used the full name for
the SEQC acronym.
Reviewer comment: Page 3, line 25: “the SVC function

available”, SVC mentioned for the first time, use the full
name and give reference.
Author’s response:We have spelled out the full name for

SVC and inserted its reference.
Reviewer comment: Page 3, line 35: "the C parameter"

it is not clear what the C parameter is.
Author’s response: We have now inserted a description

for the C parameter.
Reviewer comment: Page 3, line 47 “Multi-view ker-

nel k-means (MVKKM)”, you do not need to use the ?full
name since it was already mentioned in the abstract and
in page 2, line 47.
Author’s response: This has been corrected.
Reviewer comment: Page 3, line 60-page 4 line 5: All

parameters of equation (1) should be in ONE sentence
with “,” between the parameters.
Author’s response: The parameters are now explained in

a single sentence.
Reviewer comment: Page 4, line 23: add space before

“where”.
Author’s response: This has been corrected.
Reviewer comment: Page 4, lie 52: the title of the

subsection should not be numbered 0.0.1.
Author’s response: We have removed the numbering

before the subsection title.
Reviewer comment: Page 4 line 57-page 5 line 8: this

text should be a part of the caption of Table 2 and not a
part of main text.
Author’s response:We have moved the model definitions

to the caption of Table 2.

Reviewer comment: Page 5, line 43: “We also plot
the survival profiles of these different approaches in
Fig. 2” should be: “Fig. 2 shows the survival profiles
the different approaches indicates that the model that is
trained entirely on another cohort (i.e., SEQC) performs
remarkably well on predicting OS in Versteeg cohort.”
Author’s response: This is now fixed. Thank you.
Reviewer comment: Page 6, line 43: “We also per-

formed the experiments .....” should be “The experiments
was performed in the opposite...”. In general try to reduce
the number of times that you write “We also plot.....”, “we
also compared...” , “ we also investigated...”, etc.
Author’s response:We have edited the entire manuscript

based on this comment and reduced the number of sen-
tences that start with we.
Reviewer comment: Page 7, line 29: “silhouette score”

is mentioned for the first time, it is not clear what is it, add
a ref.
Author’s response: Silhouette score is already defined in

page 4, we have now included a reference for it.
Reviewer comment:Page 7, line 48: “The log-rank test

p-value of this analysis confirms that the patients in the
two clusters show distinct prognosis (i.e., 3.9e-20).” should
be “The log-rank test p-value is equals to XXXX con-
firms that the patients in the two clusters show distinct
prognosis.”
Author’s response: This has been corrected.
Reviewer comment:Page 7, line 60 “adjusted p-values”

is mentioned for the first time. Based on which methods
the p values are calculated?
Author’s response: We have defined adjusted p-values

in Methods and included the multiple-testing correction
method.
Reviewer comment: Page 7, line 61, give a reference to

the limma method.
Author’s response: The reference for the limma method

is already provided in the “Methods” section.
Reviewer comment: Page 9, line 36: Abbreviation

should be excluded. Give the Abbreviation for each
method in the text in the first time that it is mentioned.
For example, see page 2, line 27 for MVKKM.
Author’s response: Abbreviation section is inserted due

to the journal instructions.
Reviewer comment: Page 13, Tables 1, 2, 3: delete

form the captions “This table shows details about the..”,
This table summarizes the..”. “ This table summarizes the”
and instead give titles. For example: in Table 1, use you
can “Patients and the data types for the cohorts: SEQC,
Versteeg, TARGET. Note that...”
Author’s response: We have now rephrased the table

captions to include titles.
Some of the other changes we made are listed below:
• We have converted numeral representations to

words to express the numbers below 10.
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• The captions for Tables 4 and 5 are revised to
emphasize the difference in datasets.

• We have converted a number of sentences in the
“Methods” section to passive voice to limit the
number of sentences that start with “we”.

• The full names for SVM and MVKKM are removed
in the “Results and discussion” section as it is already
introduced in Introduction.

• All occurrences of the word Versteeg and SEQC are
now italicized.

• The abbreviation HR is introduced after the first use
of High Risk.

Additional files

Additional file 1: List of patients for which aCGH data is corrected. This
text file contains the list of 32 patients for which aCGH data intensities are
reversed. (TXT 191 b)

Additional file 2: Differential Expression Results. This spreadsheet
contains the results of limma analysis on RNA-seq-MAV data. The data for
the top 500 genes with smallest adjusted p-values are included. The
columns indicate gene ID, log fold change, average expression of the gene,
t-statistic, p-value, adjusted p-value, B-statistic and a column that indicates
whether this gene has been found to be associated with neuroblastoma in
literature. (XLS 110 kb)

Additional file 3: Figure S1. Heatmap of differentially expressed genes.
The heatmap plots the expression (RNA-seq-MAV) of the top 50 genes with
smallest adjusted p-values for the two clusters. (PDF 669 kb)

Additional file 4: Performance metrics of models for predicting OS and
EFS in Versteeg and Target cohorts. This spreadsheet lists the performance
metrics of models trained from SEQC cohort. Models that use different
types of gene expression data (i.e., microarray, RNA-seq (MAV), RNA-seq
(RPM)) are listed individually. (XLSX 40 kb)
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