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Abstract

Background: Much effort is underway to build and upgrade databases and tools related to occurrence, diversity, and
characterization of CRISPR-Cas systems. As microbial communities and their genome complements are unearthed, much
emphasis has been placed on details of individual strains and model systems within the CRISPR-Cas classification, and
that collection of information as a whole affords the opportunity to analyze CRISPR-Cas systems from a quantitative
perspective to gain insight into distribution of CRISPR array sizes across the different classes, types and subtypes. CRISPR
diversity, nomenclature, occurrence, and biological functions have generated a plethora of data that created a need to
understand the size and distribution of these various systems to appreciate their features and complexity.

Results: By utilizing a statistical framework and visual analytic techniques, we have been able to test several hypotheses
about CRISPR loci in bacterial class I systems. Quantitatively, though CRISPR loci can expand to hundreds of spacers, the
mean and median sizes are 40 and 25, respectively, reflecting rather modest acquisition and/or retention overall.
Histograms uncovered that CRISPR array size displayed a parametric distribution, which was confirmed by a goodness-of
fit test. Mapping the frequency of CRISPR loci on a standardized chromosome plot revealed that CRISPRs have a higher
probability of occurring at clustered locations along the positive or negative strand. Lastly, when multiple arrays occur in a
particular system, the size of a particular CRISPR array varies with its distance from the cas operon, reflecting acquisition
and expansion biases.

Conclusions: This study establishes that bacterial Class I CRISPR array size tends to follow a geometric distribution; these
CRISPRs are not randomly distributed along the chromosome; and the CRISPR array closest to the cas genes is typically
larger than loci in trans. Overall, we provide an analytical framework to understand the features and behavior of CRISPR-
Cas systems through a quantitative lens.

Reviewers: This article was reviewed by Eugene Koonin (NIH-NCBI) and Uri Gophna (Tel Aviv University).

Background
Clustered regularly interspaced short palindromic
repeats (CRISPRs) and associated sequences (cas) func-
tion as the adaptive immune system in bacteria and ar-
chaea, to protect against phages and fend off plasmids
[1]. Mechanistically, CRISPR-Cas systems provide DNA-
encoded [1], RNA-mediated [2], and DNA-targeting [3,
4] of invasive DNA. In the past decade, CRISPR-Cas sys-
tems have been subjected to extensive studies to under-
stand their features and characterize their functions [5].

As microbial communities and their genome comple-
ments are being determined across the globe, important
biological and genomic features get characterized
through in silico, in vitro, and in vivo analyses [6].
Though an increasing amount of bacterial genome data
is available in Genbank, the subset of organisms that
have been subjected to genome sequencing is unfortu-
nately not equally representative across the phylogenetic
tree, and displays a bias towards pathogenic species, jus-
tifiably. This well-documented bias can possibly influ-
ence survey-type studies, and may lead to conclusions
that may or not be applicable throughout the tree of life.
Much attention is currently dedicated to CRISPR-Cas
systems given their important functional role in adaptive
immunity, and their tremendous potential as genome
editing molecular machines [7, 8]. Actually, CRISPR-
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based genome editing technologies have been rapidly de-
mocratized and yielded thousands of manuscripts in the
last two years [9]. We are now at a point in time where
we can analyze these systems qualitatively and quantita-
tively. Recently, much progress has been made regarding
the classification and nomenclature of diverse CRISPR-
Cas systems. In particular, it has been determined that
these systems can be classified into two classes, based on
the types and sequences of cas genes associated with
CRISPR arrays [10]. Importantly, the genetic classification
is also corresponding to their biochemical modes of ac-
tion. Currently, Class I consists of Types I, III, and IV and
Class II encompasses Types II, V, and VI [10–16].
CRISPR-Cas systems are diverse, genetically and mechan-
istically [17], and the relative occurrence of various types
and subtypes is highly variable across phylogenetic groups
in bacteria and archaea, notwithstanding their common
origin [18, 19]. Nevertheless, there is only so much depth
established to date across types and subtypes, and it has
been repeatedly established that Class I systems are most
abundant and widespread [10]. The availability of a larger
dataset for Class I systems in general, and Type I systems
in particular, enables us to assess a larger sample, as com-
pared to Class 2 systems, which would be more prone to
sample bias given the still limited availability of genomes
that encode these loci. We thus elected to investigate the
features of Class I systems, focusing on the widespread
Type I and Type III CRISPR-Cas systems. Conveniently,
this is also the most diverse set of systems and subsystems
across CRISPR classes. Whereas Type II systems are argu-
ably the most popular in the literature [9], their relative
paucity compared to Type I systems limit the opportun-
ities to quantitatively carry out statistical analyses of inter-
est in this study. Furthermore, this is compounded by the
fact that the large majority of studies of Class 2 systems
are limited to the SpyCas9 (Streptococcus pyogenes) Type
II-A subtype [7]. Likewise, with regards to phylogenetic
sampling of the data, the bacterial kingdom is of special
interest because proportionally it has less incomplete or
ambiguous classification of its CRISPR-Cas systems and
there is also a much larger number of strains and genomes
to draw information from than the archaea kingdom,
which has been subjected to a more limited extent of se-
quencing and characterization, though archaeal genomes
tend to carry CRISPR-Cas systems more frequently [10].
For this study, much of the analyses performed are based
on a combination of hand curation and computation of
CRISPR array sizes and location/distribution to determine
the association between documented CRISPR arrays and
accompanying cas genes. Our primary objective was to
carry out statistical analyses to investigate the distribution
of Class I CRISPR arrays by size and genomic distri-
bution, and carry out comparative analyses between
types and subtypes.

Results
Distribution of CRISPR Array size
Initially, descriptive statistics were performed to get a
sense of the distribution of CRISPR array size of Class I
CRISPR-Cas systems for bacterial chromosomes based
on the numbers of spacers in an array. Figure 1 displays
side-by-side boxplots while Table 1 outlines specific
values for quartiles along with mean values when it
comes to Class I, Type I, Type III, and subtypes I-B, I-C,
I-E, and I-F. There is a general trend that mean values
are between 30 and 54 spacers for this aggregated data,
with an overall mean of 40 and median of 25. We also
note that the median values range from 14 to 36 spacers,
suggesting that the outliers, especially the maximum
values, skewed our means to be larger, especially given
outliers for which the number of CRISPR spacers

Fig. 1 Array size across CRISPR-Cas types and subtypes. a Box plots of
the number of spacers in a CRISPR array by class, type and subtype. b
Boxplots of the number of spacers in a CRISPR array by class, type and
subtype in a log 10 scale
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reaches several hundreds. Our interest also turned to the
statistically significant differences that may exist between
Type I and Type III systems, as well as between the
major four subtypes within Type I systems. We first
tested the null hypothesis that there is not a difference
between the means for Type I and Type III CRISPR
array size. We immediately see from our descriptive sta-
tistics that Type I and Type III vary in sample size, so
we performed a 2-sample t-test with unequal variances,
as not to assume unequal variance. Our result showed a
p-value of 0.098, and hence we fail to reject our null hy-
pothesis and conclude that there indeed is no difference
when it comes to the mean array sizes of Type I and
Type III CRISPRs. Next, we decided to perform the
Kruskal-Wallis test, to test our null hypothesis that the
subtypes come from identical populations, without mak-
ing any assumptions about the underlying populations.
Our results indicated, with a p-value <0.001, that we reject
our null hypothesis and thus conclude that there are sta-
tistically significant differences between the four subtypes,
in that they do not come from identical populations.
A histogram was plotted for visual inspection of the

observed values for Class I CRISPR array size displayed
in Fig. 2. As mentioned before, the discrete values and
right skewed graphic presented us with the possibility
that array size followed either a geometric or Poisson
distribution. After carefully considering the two candi-
date distributions for CRISPR array size of CRISPR-Cas
systems in Class I bacterial chromosomes, it was found
that the geometric distribution was the better fit com-
pared to Poisson. The parameter estimates for geometric
and Poisson respectively were 0.025 and 38.277. Both
curves were plotted against the histogram and it was im-
mediately apparent that the geometric curve was better
suited. A histogram of the data with the fitted geometric
curve was plotted as seen in Fig. 2a and subsequently
broken up by type and subtype in Fig. 2b and c. Diag-
nostically, we conducted a K-S test and plotted a cumu-
lative curve for the observed data and candidate
distributions. We assessed two candidates, the Poisson
and the Geometric distributions. The null hypothesis for

the one-sample K-S test was that the sample data was
drawn from a theoretical geometric distribution. The
other null hypothesis was that the sample data was
drawn from a theoretical Poisson distribution. The
resulting p-value for the former null hypothesis was
0.048 and because the sample is so large with 811 obser-
vations, there is a lot of power to detect even some of
the smallest differences. A probability plot was created
that confirmed visually that the theoretical geometric
distribution had fitted well to the sample data as seen in
Fig. 3. Subsequently, this framework was used to also de-
termine whether the remaining subsets of Class I also

Table 1 Summary statistics of CRISPR array size based on
number of spacers in CRISPR-Cas Systems

Mean 1st Quart Median 3rd Quart Systems

Class 1 40 12 25 51 481 811

Type I 41 12 26 52 481 708

B 54 17 36 68 481 188

C 43 16 30 56 318 164

E 30 11 19 37 239 226

F 33 5 14 52 248 91

Type III 33 9 22 31 276 103

Fig. 2 Distribution of CRISPR locus size. a Histogram of the
distribution of Class I CRISPR locus size (number of spacers). b
Histogram showing CRISPR array size by type. c Histogram showing
CRISPR array distribution by select subtypes within Type I
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followed a geometric distribution. Overall, it was seen
that generally they exhibited a similar behavior to Class I
and they followed the geometric distribution as well.
The estimated parameter values and p-values for fitting
the geometric distribution to the sample data can be
found in Table 2.
Based on the statistical test performed and the investi-

gation of a visual representation of those tests, it was
concluded that CRISPR array sizes tend to follow a geo-
metric distribution.

Location of CRISPRs along chromosome
Initial examination of the polar plots showed that CRISPR
loci systems had a tendency to be not-randomly distrib-
uted on bacterial chromosomes. Indeed, there appeared to
be biases towards specific chromosomal locations.

Generally, it was immediately apparent that certain areas
of the chromosome tend to have larger concentrations of
where CRISPRs occur versus other areas when standardiz-
ing the relative location of these systems. When looking at
Class I overall, there is a large number of occurrences of
CRISPRs beginning at the region between 200 and 240 de-
grees on the negative strand in the polar plot on the right
of Fig. 4 and to a lesser degree, more occurrences between
60 and 120 degrees on the positive strand of the polar
plots as seen on the left in Fig. 4. As the plots are further
subdivided into the types and subtypes for the positive
and negative strands, overall certain areas continue to be
more pronounced. A formal test was conducted to deter-
mine whether the distribution of CRISPR arrays follows a
uniform distribution, in which CRISPRs are just as likely
to occur in relatively the same frequency anywhere along
the chromosome. The null hypothesis would be that the
CRISPRs followed a uniform distribution and a low p-
value rejects this hypothesis. These results are displayed in
Table 2. K-S tests performed generally exhibited low p-
values particularly when over 200 observations were
present for the test. This is a reminder that in such ana-
lyses, it is important to encompass enough data points as
to reach a power threshold enabling such statistical ana-
lyses, which we were solely able to achieve for Class I sys-
tems. Some of the smaller subsets such as subtype I-F and
Type III had larger p-values, but with too few observations
to conduct this test. Overall, it was concluded that based
on the results of the statistical tests and polar plots that
CRISPRs do not generally begin randomly along the
chromosome but instead have certain concentrated peaks
(see Additional files 1 and 2). Mechanistically, we specu-
late that this may be correlated to genome-wide processes
that could play critical roles in the expansion and main-
tenance of CRISPR arrays, as well as biochemical pro-
cesses involved in the new spacer acquisition step during
CRISPR immunization, such as chi sites, chromosomal
replication, and DNA repair processes [20]. For instance,
it is possible that selective pressure may incentivize the
minimization of delays in replication of the leading strand,
and select for the absence of collisions and stereo-physical
hindrance between the replication machinery and the Cas
proteins at the boundaries of CRISPR arrays. This may be
most applicable to the leader end of CRISPR arrays, where
integration occurs and transcription of pre-crRNAs and
processing of crRNAs is initiated, and the highest. Fur-
thermore, there are likely two structural challenges inher-
ent to CRISPR loci and CRISPR repeats, since the former
contains heavily repeated stretches of DNA (by nature),
and the latter is partially palindromic. These repeats and
secondary structure therefore pose structural challenges
that may be further compounded by multiple interactions
with various Cas proteins involved in array maintenance,
replication, and expansion. Thus, it is possible that biases

Fig. 3 Fitting CRISPR array size distribution. Cumulative curve as a
visual representation of the K-S test, showing that the geometric
curve is a better fit than the competing alternative, the
Poisson curve

Table 2 Geometric Parameter Estimates and P-Value Results of
Statistical Goodness of Fit Tests

Maximum Likelihood
Estimates: Geometric
Parameter

Geometric
Distr. For
Array Size

CRISPR
Locus:
Uniform
(+)

CRISPR
Locus:
Uniform
(−)

Class I 0.025 0.048 0.000 0.000

Type I 0.025 0.238 0.000 0.000

B 0.019 0.821 0.002 0.000

C 0.023 0.143 0.115 0.014

E 0.034 0.153 0.000 0.000

F 0.030 0.001 0.495 0.754

Type III 0.031 0.029 0.906 0.000
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in location and orientation of CRISPR loci may reflect
selection for the minimization of structural and pro-
cessing disruptions.

Analysis of the correlation between CRISPR array size and
the number of loci in a chromosome (or proportion of
largest CRISPRs associated with CRISPR-Cas systems and
number of CRISPRs in a genome)
In our data set, it was found that 82% of bacterial Class I
CRISPR-Cas systems had only one set of cas genes as show
in Fig. 5a. We next investigated patterns that may occur
when multiple arrays occur in one chromosome. After iso-
lating all systems that had only one set of cas genes, the
rank correlation statistic was calculated for Class I and the
two major types for the relationship between the number
of spacers in the CRISPR array that is closest to the cas

genes and the number of arrays in the genome. Spearman’s
rho can result in values along the spectrum between −1
and 1 where higher values indicates a stronger association
between the two variables. Class I had a value of −0.85,
Type I had a value of −0.79, and Type III had a value of
−0.75. These values showed a strong association in the
manner that as you increased the number of CRISPRs
present in a genome that had only one CRISPR-Cas system,
the CRISPR closest to the set of cas genes was less likely to
be the largest CRISPR in the genome. A visual representa-
tion for Class I can be seen in Fig. 5b.
Therefore, it was concluded that CRISPRs tend to be

larger when they are in closer proximity to a set of cas
genes but as you increase the number of CRISPRs on a
chromosome, then the probability of the largest
CRISPRs being associated with those cas genes tends to

Fig. 4 Genomic distribution of CRIPSR loci on chromosomes. Polar plot of the distribution of Class I CRISPR-Cas systems on the positive (left) and
negative (right) strands of chromosomes

Fig. 5 CRISPR locus occurrence and position relative to cas operons. a Histogram representing the frequency of genomes carrying the specified
number of CRISPR loci. Histograms representing the relationship of the proportion of CRISPR arrays that are adjacent to the cas operon. b
Number of CRISPR arrays encoded on a given chromosome. c Location of the CRISPR arrays relative to the cas operon
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decrease for chromosomes with a single set of cas genes.
Mechanistically, we hypothesize that this enables the
host to control the expansion of one given locus, which
would be advantageous transcriptionally, by having the
ability to both initiate transcription from multiple loca-
tions, and also limit the size of primary CRISPR
transcripts.

Discussion
CRISPR-Cas data genesis has reached a point where statis-
tical analyses can be performed to examine these intri-
guing loci and investigate quantitative behaviors of
CRISPR arrays with regards to size and distribution, for
Class I systems in bacterial genomes. Recent efforts in
CRISPR-Cas systems classification, in combination with
the availability of CRISPR and cas databases are affording
new opportunities to gain insight into these systems. In
particular, we can now examine the number of spacers in
CRISPR arrays in Class I systems, and also between the
major types (Type I and Type III) and even between well-
represented subtypes (I-B, I-C, I-E, and I-F). Previous re-
search focused on knowledge of individual strains but
now the collective gives rise to the ability to examine
CRISPR-Cas systems from a quantitative perspective.
It is important to note that these results were derived

from a sample dataset. CRISPR-Cas systems are not ubi-
quitous in nature, and occur in approximately 46% of se-
quenced microbial genomes, and 90% of available
archaeal genomes. Importantly, there are notable biases
in the genomic information available to date, as it is not
an even sampling of natural microbial diversity, and it
also heavily represents pathogenic bacteria. In some in-
stances, it also over-represented and redundantly en-
compasses multiple isolates and strains of select
pathogenic species. Thus, these numbers may not reflect
the actual natural distribution patterns of CRISPR-Cas
systems, which explains the discrepancy observed be-
tween the aforementioned frequencies of occurrence in
sequences genomes vs. recently determined metagen-
omes [6]. Furthermore, when bacteria carry CRISPR-
Cas, they typically only include one system and mostly
one array. Future studies should investigate whether our
findings also apply to Class 2 CRISPR-Cas systems as
more data becomes available. This will also afford the
opportunity to compare and contrast these two classes.
Though Class 2 systems may be currently under-
represented, and may actually occur at low frequencies,
metagenomics surveys underway, and sampling expedi-
tions aimed at finding new microbial diversity may en-
compass new Class 2 systems, especially given the desire
to find new single effector nucleases. Furthermore, it will
be intriguing to see what happens in organisms in which
multiple CRISPR-Cas systems from both classes and
multiple Types occur (i.e. cases such as Streptococcus

thermophilus). Of course, as novel genomes become
available, and novel CRISPR-Cas systems get identified
and characterized, new features may come into play
(such as the universality, or not, of cas1 genes, and other
markers and signature proteins). Furthermore, more
questions may arise as the structure and function of
CRISPR-Cas systems continue to be determined.
Also, once more data is available for archaea, it will be

intriguing to investigate these peculiar systems, which
tends to both be larger, and encompass multiple split
loci within one chromosome.
It is also important to note that there is miscon-

ception or even misperception regarding the ease
with which CRISPR-Cas systems are identified, cate-
gorized, and annotated. Indeed, there is a need to
develop novel bioinformatics pipelines to streamline
these processes, and optimize each of these steps
dynamically as the classification evolves. Regardless,
there is always a need for manual curation of the data
currently available, to ensure these peculiar and idiosyn-
cratic systems are properly annotated and categorized,
which is increasingly challenging given their diversity and
the few features they share in common. As always, data
integrity is just an integral component as the quantitative
and statistical analyses performed on the data itself.
Overall, our findings lay a foundation for quantitative ana-
lyses of CRISPR-Cas systems, and open new avenues of in-
vestigating of these fantastic and valuable molecular
machines.

Conclusions
A statistical framework and visual analytics were utilized
to examine CRISPR array sizes based on the number of
spacers in a locus. Results showed that generally, array
size follows a geometric distribution pattern after per-
forming a goodness of fit test using the K-S test. Further-
more, we found that the starting position of CRISPRS
does not occur uniformly along a chromosome. Lastly,
we observed that when it comes to class and type, the
CRISPR locus flanking the cas genes on a chromosome
tended to be largest until you start increasing the num-
ber of CRISPRs in the genome based on the values cal-
culated from Spearman’s rho. Essentially, we found a
strong association between CRISPR size and distance
from a set of cas genes in genomes where only one set
of cas genes was present.

Methods
To manage, filter, and merge data sets necessary for
analysis, R software [21] was the primary resource.
Additionally, it provided tools within its packages to
perform statistical analyses and support a visual
framework of the results as well.
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Data integration
After importing the cas data set from the 2015 CRIPSR-
Cas classification revision study [10] using the readxl
package [22], it was systematically explored with the
help of the plyr package [23] along with the base pack-
age functions to identify and subset the cas1 genes.
Based on the structure of this data set, alongside each
cas1 gene, a specific system type and subtype was listed
to identify the classification of the consecutive rows of
cas genes for a given system. It is important to note that
some genomes are listed more than once which means
some have more than one system. Indeed, multiple
CRISPR-Cas systems occur in genomes, across classes,
types and subtypes. Consequently, our final data set con-
tains strictly Class I systems and even more specifically,
Type I and Type III systems. We excluded the uncharac-
terized and rarely occurring Type IV systems, and did
not investigate arrays that were not associated with
cas1 markers.
The other data set imported was made up of CRISPR

arrays identified and currently contained in an online
database created by Grissa, Vergnaud and Pourcel [24]
and is publicly available at http://crispr.i2bc.paris-
saclay.fr/crispr/. We specifically focused on data from
811 complete bacterial genomes available in the July
2016 release, that carried a CRISPR locus, excluding
those identified as “questionable structures”, with exclu-
sion of loci identified on plasmids (as to solely focus on
chromosomal features). This data was merged with the
cas data [10] based on Accession ID to identify which
CRISPRs are associated with which cas genes as well as
take into account inactive CRISPR-Cas systems in the
analysis. The last step was to segregate the CRISPR-Cas
systems based on whether they were on the positive or
negative strand of a chromosome as part of another ana-
lysis based on the location of CRISPR arrays. For
CRISPR-Cas analyses, base pair distances between the
cas genes and multiple CRISPR arrays were calculated
and the CRISPR with the least distance from the as
genes was chosen. We operated under the assumption
that each set of cas genes was associated with one
CRISPR. The final data set contained CRISPR-Cas ge-
nomes of Type I and Type III systems of Class I systems
and were located entirely on bacterial chromosomes.
Throughout the process, GenBank hosted by NCBI

was referenced repeatedly for verification of and details
specific to mentioned organisms [25] and this informa-
tion is publicly available at http://www.ncbi.nlm.nih.gov/
genbank/. Curating the data for accuracy was a part of
the process before any and all analyses were performed.

Statistical Framework & Visual Analytics
A set of statistical and visual tools were implemented
to answer each of the research questions with an

emphasis on various packages in R. Major analyses
were done on Class I genomes as well as Type I,
Type III, and the following major subtypes of Type I:
B, C, E, and F. We explicitly selected a discrete dis-
tribution to understand the behavior of the size of
CRISPR arrays because they have a tendency to add
spacers one at a time, and remove them often times
in small blocks of 2–5 units, though this has only
been shown in a select few systems. The repeat-
spacer unit within CRISPR arrays is a core feature of
these loci, and constitute a countable positive integer
unit which is mathematically discrete.

CRISPR Array size distribution of CRISPR-Cas systems
To investigate the distribution of CRISPR array size of
active CRISPRs that belong to CRISPR-Cas systems, can-
didate distributions were fitted to the observed data of a
histogram [26]. Poisson and geometric distributions
were initially considered because both were discrete and
right-skewed [27], which was consistent with the plotted
histogram of CRISPR array size from the data set. The
main difference between the geometric and Poisson dis-
tributions is that the geometric distribution is known to
count the number of trials needed to get one success
while Poisson counts the number of occurrences of rare
events in a fixed interval of time where the number of
trials is unknown [27].
Maximum likelihood estimation method [28] was used

to determine the parameter estimates for the single-
parameter candidate distributions and it is displayed in
the following as the likelihood of the parameter given as
a function of the joint density for parameter θ for n ob-
servations of x [27]:

lik θð Þ ¼ f x1; ; x2;…; ; xnjθð Þ ð1Þ

Using this information, the likelihood can also be
rewritten in more detail as the following for ith observa-
tion in n sample size [27]:

l′ θð Þ ¼ ∂l
∂θ

ðXn

i
ln f Xijθð Þ½ �Þ ð2Þ

It is not sufficient to only fit a distribution because
it may not turn out to be a proper fit to explain the
quantitative behavior of array size. Nonparametric
goodness-of-fit was the next step for comparing the
data against the proposed distribution [29]. Gener-
ally, the Kolmogorov-Smirnov (K-S) test statistic has
the following form where F(x) is the cumulative
function for the data set and theoretical distribution
to test the null hypothesis that the data does follow
the specified theoretical distribution:
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D ¼ sup F0 xð Þ−Fdata xð Þj j ð3Þ

With the use of a modified discrete K-S test [29], the
test can be properly applied to compare the candidate
distributions with the observed array size. Furthermore,
these results can also be displayed by means of a plot of
the relative cumulative curves overlaid in one graphic
for visual inspection of fit.
A powerful graphical tool for assessing the fit of data

to a theoretical distribution is a probability plot [27]. De-
pending on sample size, it can be difficult to give a fair
significance level at which to consider a p-value to be
statistically significant and hence to combat the problem,
this qualitative approach is essential. Probability plots
depend on values called order statistics shown here with
jth observation and n total observations [27]:

E X jð Þ
� � ¼ j

nþ 1
ð4Þ

It was hypothesized that the data may follow a geo-
metric distribution by performing a Kolmorgorov-
Smirnov test once the parameters are estimated for the
proposed distributions.
Subsequently, additional histograms were created

using reshape2 and ggplot2 R packages that showed the
differentiation between Type I and II as well as the dif-
ferent subtypes within Type I when it came to visually
examining their behavior for how closely they followed
the geometric distribution [30, 31].

Distribution of CRISPRs along chromosome of CRISPR-Cas
systems
In determining if CRISPRs of CRISPR-Cas systems are
non-randomly distributed along the chromosome, it was
necessary to plot the positive and negative strands in
addition to conducting a statistical analysis. Because
CRISPRs can theoretically begin anywhere on a chromo-
some and different genomes can have different chromo-
some sizes due to different numbers of total base pairs,
standardization became a way to compare genomes
within and between system types and subtypes:

Location ¼ Locus Start
Chromosome Size

� �
� 360 ð5Þ

Polar plots were the initial diagnostic tool for plot-
ting CRISPRs along a chromosome [32]. Essentially,
the circular version of a histogram not only plotted
where a CRISPR is found but also often it occurred
at that location because the standardization rounded
to the nearest integer.

Essentially, we wanted to see if the CRISPRs are just as
likely to occur anywhere along a chromosome. A K-S
test was performed and a probability plot was created to
assess whether the observed CRISPR data was uniformly
distributed along a chromosome.
It was hypothesized that the starting location of

CRISPR arrays of CRISPR-Cas systems followed a
uniform distribution.

Relationship of the size of an CRISPR, its distance from
cas genes, and the number of CRISPRs in a chromosome
Because both an active and inactive CRISPR has a repeat
spacer array, we can examine the relationship between the
size of a CRISPR regardless of whether it is associated with a
CRISPR-Cas system and its distance from a set of cas genes.
A histogram can plot the number of CRISPR-Cas sys-

tems against the number of genomes so that we can sub-
set the data set where the largest number of genomes
occur for a specific number of CRISPR-Cas systems in a
genome. A secondary histogram can display an aggrega-
tion of the former histogram to show the number of
CRISPRs in a genome against the number of total
genomes and the number of genomes where the CRISPR
associated with the CRISPR-Cas system is the largest. Fur-
thermore, we can find the correlation between the propor-
tion of genomes where the largest CRISPR is the CRISPR
associated with the CRISPR-Cas system and the number
of CRISPRs in a genome. Using a special case of the Pear-
son correlation, we can determine the Spearman rank co-
efficient or Spearman rho coefficient to measure how
strong of a correlation exists between the ranked versions
of those two variables. This non-parametric method is also
resistant to outliers which can be helpful in our case when
a small number of genomes have a fairly large number of
CRISPRs compared to the large majority of other ge-
nomes. The calculation of rho is determined by N ranks
where Di is the difference between the ranks of our two
variables of interest for each ith case [33]:

rs ¼ 1−
6
P

iD
2
i

N N2−1
� � ð6Þ

Spearman’s rho can be easily calculated with the
use of software, in this case R provides the cor.test
function as part of their stats package [21].
It was hypothesized that CRISPR arrays of CRISPR-

Cas systems tend to be larger than CRISPRs further
away from the cas genes on the same chromosome when
there is a single set of cas genes on the chromosome.

Reviewer comments
Reviewer’s report 1: Eugene Koonin (NIH, NCBI)
Toms and Barrangou report bulk statistics on CRISPR
arrays for class I CRISPR-Cas systems. Although the
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paper as such does not report genuine biological in-
sights, these are useful data, and as the authors point
out at the end of the Abstract, it is a step towards creat-
ing an analytical framework for quantitative analysis of
CRISPR arrays. Thus, overall, this is useful work. How-
ever, I do have certain concerns regarding the methods,
conclusions and presentation that are detailed below.
Authors’ response: We thank the reviewer for their as-

sessment of our work, and value ascribed to creating an
analytical framework for quantitative analysis of CRISPR
arrays. Indeed, there is a gap in quantitative analyses of
CRISPR-Cas systems across a range of systems, since most
studies have focused on select genus-species combinations,
or particular CRISPR-Cas subtypes. We note the raised
issues about methods, conclusions and presentations and
have made edits, corrections, and additions as outlined
below.

Recommendations
My principal concern is quite technical. Clearly, any sta-
tistics over large collections of genomes can be signifi-
cantly biased, to the point of being meaningless, by the
effects of non-independence in the data. Because all
genomes are connected by a tree, whereas genome
sequencing so far had been strongly non-random, with
numerous strains sequenced for only a few species and
many species for only a few genera, this is a serious con-
cern in microbial genomics.
Authors’ response: We agree with the reviewer that in-

deed, there is a well-documented bias in how genome se-
quencing in microbes has been selectively focused on a
subset of (mostly pathogenic) species, and has yielded
bias sampling across the phylogenetic tree. We now ac-
knowledge, disclose and mention this in our introduction
section (see new text inserted lines 47–48). “Though an
increasing amount of bacterial genome data is available
in Genbank, the subset of organisms that have been sub-
jected to genome sequencing is unfortunately not equally
representative across the phylogenetic tree, and displays
a bias towards pathogenic species, justifiably. This well-
documented bias can possibly influence survey-type stud-
ies, and may lead to conclusions that may or not be ap-
plicable throughout the tree of life”.
Granted, CRISPR-cas loci are highly variable, even be-

tween closely related isolates, so the problem in this case
could be less severe than in others. Still, I think it is im-
portant for this kind of analysis to be clear about the
way non-independence between genomes was taken into
account or why it is unimportant if it was not. The sig-
nificance and even validity of all results could be affected
by this source of bias.
Authors’ response: Again, we agree with the reviewer.

Though statistical analyses typically hinge on independ-
ence between observations, or in this case, available

complete genome sequences, it is important to note that
we now acknowledge the absence of strict independence
in our dataset. Importantly, we did not account for this
non-random bias in our analyses, but this is why we lim-
ited our study to Type I systems, and focused specifically
on select subtypes that encompass a larger and more di-
verse sample size. We discuss this in an added section
inserted line 61 in the revised text. Notably, the relatively
shallow dataset available for class 2 would preclude us
from overcoming this bias. The following text was added:
“The availability of a larger dataset for Class I systems
in general, and Type I systems in particular, enables us
to assess a larger sample, as compared to Class 2 sys-
tems, which would be more prone to sample bias given
the still limited availability of genomes that encode these
loci. We thus elected to investigate the features of Class I
systems, focusing on the widespread Type I and Type III
CRISPR-Cas systems. Conveniently, this is also the most
diverse set of systems and subsystems across CRISPR
classes.”
Along the same lines but more with respect to presen-

tation: I think the data, i.e. the genomes that were ana-
lyzed (or not analyzed) have to be described explicitly.
Authors’ response: We now provide details in the

“data integration” sub-section within the methods section
(new text inserted line 256: “We specifically focused on
data from 811 complete bacterial genomes available in
the July 2016 release, that carried a CRISPR locus, ex-
cluding those identified as “questionable structures”, with
exclusion of loci identified on plasmids (as to solely focus
on chromosomal features.)”), and state that we used all
complete bacterial genomes (N = 811) that were avail-
able at the CRISPRdb website (for which the url is
inserted into the text) and specify the date (July1st 2016)
at which the dataset was used. We now explain how we
focused our efforts on analyzing the genomes in which a
CRISPR locus had been putatively identified, excluding
those categorized as “questionable structures”, with exclu-
sion of CRISPR loci identified on plasmids (we solely in-
cluded chromosomal features). Furthermore, we cross-
referenced these with the curated cas gene dataset fea-
tured in the Makarova et al., 2015 [10] milestone refer-
ence, which importantly ascribed class, type and subtype,
enabling us to confidently investigate a validated subset.
If the reviewer and editor think this would be valuable to
the readership, we could certainly provide a document
with the genome information and details to post as sup-
plementary material.
Turning now to the results of this work, I can accept

that geometric distribution is a better fit for the distribu-
tion of array lengths than Poisson distribution. It is not
entirely clear for me why a discrete distribution was
chosen in the first place (‘visual’ impression of the data
is hardly a strong argument). Then, I have to admit that
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I am not sure I can make any conclusions from the
observation that the geometric distribution wins over
Poisson. The authors do not offer any insightful ideas on
this, and I am afraid that would be difficult to do. Gener-
ally, I believe that such a straightforward comparison is
not a particularly informative way to analyze distribu-
tions of CRISPR array lengths (or any other genomic
features). It would be much more satisfying to examine
different mathematical models of array growth (different
variants of birth-and-death models, I think) and then fit
different functions. In that manner, we might have some
biological insights. The way the results are presented in
the paper, we do not.
Authors’ response: Indeed, the data and results clearly

support the conclusion that a geometric distribution is a
better fit than Poisson. In regards to the data, we now
state that “we explicitly selected a discrete distribution to
understand the behavior of the size of CRISPR array be-
cause they have a tendency to add spacers one at a time,
and remove them often times in small blocks of 2-5 units,
though this has only been shown in a select few systems.
The repeat-spacer unit within CRISPR arrays is a core
feature of these loci, and constitute a countable positive
integer unit which is mathematically discrete.” We
inserted text to that effect in the “statistical frameworks
and visual analytics section”, lines 275–279.
The apparent non-randomness of the CRISPR loci dis-

tribution on the chromosomes is a potentially interesting
observation. Again, however, the authors offer no bio-
logical interpretation. Any speculation at all?
Authors’ response: We wholeheartedly agree with the

reviewer that this is perhaps the most novel, interesting
and unexpected finding in our study. Interestingly, we
had to repeat this analysis a few times to ensure the ver-
acity of this observation. This was also brought up by the
other reviewer and we now include a dedicated para-
graph in the discussion section to speculate as to why this
pattern may occur, and prompt the readership to investi-
gate this phenomenon. Recent studies about CRISPR spa-
cer integration processes and interplay between genomic
features and CRISPR loci (replication forks, chi sites and
more) are now discussed. (see lines 157–167).
There are pertinent questions that (I think) could have

been easily addressed in this work, but currently are not.
Why analyze Class 1 only? I think quantitative compari-
son with Class 2 would be interesting. If there is a good
reason not to do it, better to explain.
Authors’ response: We agree with the reviewer that an

all-encompassing Class 1 and Class 2 analysis would
have been desirable in terms of thoroughness and com-
pleteness, especially given the current level of interest in
Class 2 systems, with the intriguing opportunity to com-
pare and contrast findings between these two main clas-
ses, but there were two challenges that precluded us from

doing so: firstly, the shallow and even more biased sam-
pling of Class 2 types, which precluded us from reaching
high enough numbers to have the statistical power
needed; secondly, the lack of curated Class 2 systems
available at that time. We discussed the advantage of
studying Class I systems (see comment above), and add-
itionally, we also expanded this section of the discussion
prompting future studies to do so. See text lines 206–211:
“Future studies should investigate whether our findings
also apply to Class 2 CRISPR-Cas systems as more data
becomes available. This will also afford the opportunity
to compare and contrast these two classes. Though Class
2 systems may be currently under-represented, and may
actually occur at low frequencies, metagenomics surveys
underway, and sampling expeditions aimed at finding
new microbial diversity may encompass new Class 2 sys-
tems, especially given the desire to find new single effector
nucleases.”
Similarly, are the differences in array lengths and dis-

tributions between types and subtypes significant? From
the numbers in Table 1, it looks like some could be. If
so, it would useful to assess statistically and then, per-
haps, consider the biological underpinnings.
Authors’ response: We thank the reviewer for their sug-

gestion. We thus carried out additional statistical ana-
lyses to investigate this and now report that indeed some
of these differences are statistically significant. This is
discussed in the results section, lines 90–100, where we
tested difference between both main types and main sub-
types within Type I. We now state: “Our interest also
turned to the statistically significant differences that may
exist between Type I and Type III systems, as well as be-
tween the major four subtypes within Type I systems. We
first tested the null hypothesis that there is not a differ-
ence between the means for Type I and Type III CRISPR
array size. We immediately see from our descriptive sta-
tistics that Type I and Type III vary in sample size, so we
performed a 2-sample t-test with unequal variances, as
not to assume unequal variance. Our result showed a p-
value of 0.098, and hence we fail to reject our null hy-
pothesis and conclude that there indeed is no difference
when it comes to the mean array sizes of Type I and Type
III CRISPRs. Next, we decided to perform the Kruskal-
Wallis test, to test our null hypothesis that the subtypes
come from identical populations, without making any as-
sumptions about the underlying populations. Our results
indicated, with a p-value < 0.001, that we reject our null
hypothesis and thus conclude that there are statistically
significant differences between the four subtypes, in that
they do not come from identical populations.”

Reviewer’s report 2: Uri Gophna (Tel Aviv University)
This interesting and timely survey of Class I CRISPR
systems, reveals several interesting new properties of
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these systems including biased genomic locations, and a
tendency for systems with multiple arrays to have more
spacers at the remote arrays than in the cas-proximal array.
"the geometric distribution was the better fit compared

to Poisson. The parameter estimates for geometric and
Poisson respectively were 0.02546984 and 38.27681.
Both curves were plotted against the histogram and it
was immediately apparent that the geometric curve was
better suited." - this needs to be re-written providing R
or R-squared values for the distributions and minimizing
the digits after the decimal point to 3 or 4, throughout
the paper.
Authors’ response: Typically, R-squared values get in-

cluded when comparing fitted models on training and test
datasets. In our case, we are solely assessing one variable
(rather than multiple variables) to determine which of two
types of distributions best fits to (rather than models) the
observed data. Thus, rather than include R-squared
values, we performed statistical tests to compare the fit of
each distribution, and report parameter estimates accord-
ingly. Specifically, we performed a goodness of fit test to
compare and contrast the ability of either distribution type
to match the observation. We also wanted to mention that
we appreciate input about minimizing digits after a deci-
mal point and thus revised our values throughout the
manuscript, with a maximum of 3 digits. See for instance
new numbers line 117 and Table 2.
"Diagnostically, it was necessary to conduct a K-S test

as well as plot a cumulative curve for the observed data
and candidate distributions. The null hypothesis for the
test was that the sample data was drawn from the theor-
etical geometric distribution since we conducted a one-
sample K-S test" - these sentences need to be rewritten.
Authors’ response: We thank the reviewer for their

clarity suggestions and altered the text to: “Diagnostic-
ally, we conducted a K-S test and plotted a cumulative
curve for the observed data and candidate distributions.
We assessed two candidates, the Poisson and the Geo-
metric distributions. The null hypothesis for the one-
sample K-S test was that the sample data was drawn
from a theoretical geometric distribution. The other null
hypothesis was that the sample data was drawn from a
theoretical Poisson distribution. The resulting p-value for
the former null hypothesis was 0.048 and because the
sample is so large with 811 observations, there is a lot of
power to detect even some of the smallest differences.” See
lines 120–125.
“Mechanistically, we speculate that this may be corre-

lated to genome-wide processes that could play critical
roles in the expansion and maintenance of CRISPR arrays,
as well as biochemical processes involved in the new spa-
cer acquisition step during CRISPR immunization, such as
chi sites, chromosomal replication and DNA repair pro-
cesses [20].” Since the authors are speculating about

mechanisms, one expects more concrete and detailed hy-
potheses here - for example selective pressures that
minimize delays in replication of the leading strand/colli-
sions when spacers are inserted, or the potential difficul-
ties in replicating the CRISPR locus error-free despite
multiple repeats and secondary structure that can have an
effect when DNA is in single-stranded form and hence
cause CRISPRs to have specific strand biases. Chi sites are
important, but many genomes that contain Class I
CRISPRs do not have Chi sites or homologs of RecBCD.
Authors’ response: We thank the reviewer for their

insightful suggestion and added a new paragraph to that
section accordingly, to speculate on processes involved,
lines 157–167. “For instance, it is possible that selective
pressure may incentivize the minimization of delays in
replication of the leading strand, and select for the ab-
sence of collisions and stereo-physical hindrance between
the replication machinery and the Cas proteins at the
boundaries of CRISPR arrays. This may be most appli-
cable to the leader end of CRISPR arrays, where integra-
tion occurs and transcription of pre-crRNAs and process-
ing of crRNAs is initiated, and the highest. Furthermore,
there are likely two structural challenges inherent to
CRISPR loci and CRISPR repeats, since the former con-
tains heavily repeated stretches of DNA (by nature), and
the latter is partially palindromic. These repeats and sec-
ondary structure therefore pose structural challenges that
may be further compounded by multiple interactions
with various Cas proteins involved in array maintenance,
replication, and expansion. Thus, it is possible that
biases in location and orientation of CRISPR loci may re-
flect selection for the minimization of structural and pro-
cessing disruptions”.

Minor issues
"for Class I and the two major types for the relationship
between the size of the CRISPR closest to the cas genes
and the number of CRISPRs in a genome" - this could
be more clearly stated.
as "... the number of spacers in the CRISPR array that

is closest to the cas genes and the number of arrays in
the genome)".
Authors’ response: This suggestion was accordingly

inserted into the manuscript, lines 175–176.
“and even between enriched subtypes” - should be

“well-represented subtypes”.
Authors’ response: This correction was made in the

text line 195.

Additional files

Additional file 1: Goodness of fit. Probability plots confirming that
overall, class I bacterial chromosome CRISPR arrays tend to follow a
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geometric distribution. A simulated data set is shown for comparison.
(PNG 32 kb)

Additional file 2: CRISPR array occurrence on chromosomes. Polar plots
displaying frequency of CRISPRs along a chromosome based on
standardization of the location of those arrays differentiated on type and
subtype for both positive (blue) and negative orientation (red). (PNG 191 kb)
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CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats;
Cas: CRISPR associated; CRISPR-Cas: Clustered Regularly Interspaced Short
Palindromic Repeats - CRISPR associated
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