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Abstract

In this work we review past articles that have mathematically studied cancer heterogeneity and the impact of this
heterogeneity on the structure of optimal therapy. We look at past works on modeling how heterogeneous tumors
respond to radiotherapy, and take a particularly close look at how the optimal radiotherapy schedule is modified by
the presence of heterogeneity. In addition, we review past works on the study of optimal chemotherapy when
dealing with heterogeneous tumors.
Reviewers: This article was reviewed by Thomas McDonald, David Axelrod, and Leonid Hanin.
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Background
In recent years there have been many exciting studies
that have observed the high levels of diversity present
within tumors, (e.g., [42, 74, 82]). In addition to this gen-
omic diversity it is possible for intra-tumor diversity to
show up through cell cycle asynchrony or variability in
microenviroment. This intra-tumor diversity has the po-
tential to alter the evolutionary trajectory of the tumor
cell population under therapy. An important question
this raises is how we design optimal treatment strategies
when dealing with heterogeneous populations. For ex-
ample, if we have multiple therapies available there
might be tumor subpopulations that respond better to
certain therapies. The question then becomes how we
optimally administer the various therapies. Addressing
this question requires the use of mathematical models to
understand the heterogeneity present, and in addition
the development of optimization techniques to treat het-
erogeneous tumors.
In this work, we review past literature that has studied

the question of optimal treatment of heterogeneous tu-
mors, as well as stochastic modeling of heterogeneous
tumors. The primary focus of the review is on the struc-
ture of optimal radiotherapy fractionation schedules
when incorporating intra-tumor heterogeneity. A reason
for focusing on the radiotherapy setting is that, in simple

models of radiotherapy there are well established results
for the structure of optimal radiotherapy schedules; see
e.g. Badri et al. [5]. Therefore, it is possible to investigate
the changes in the optimal schedule as a result of
incorporating tumor heterogeneity.
We also review past literature on stochastic modeling

and stochastic optimization for the treatment of hetero-
geneous tumors with chemotherapy or targeted therapy.
In this section we look at works that considered stochastic
models of heterogeneity in response to therapy, looking at
works on both stochastic optimization and stochastic
analysis.

Modeling and optimization in radiotherapy
In this section we will review previous works that stud-
ied mathematical modeling and optimization of radio-
therapy for heterogeneous tumor cell populations using
Linear-Quadratic (LQ) model and its various extensions
based on timing effects, cell cycle, hypoxia and cancer
stem cell.

Background on the linear-quadratic model
The LQ equation is widely used to describe the effects
of ionizing radiation on normal and neoplastic tissue
(For a review see [73]). The basic model states that the
fraction of cells that survives a radiation dose of d Gy is
given by exp ( − αd − βd2) where the radiosensitivity pa-
rameters, α and β, account for non-repairable lesions to
DNA and the lethal mis-repair events occurring in the
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repair process of DNA double strand breaks (DSB), re-
spectively [49, 71]. The initial model has been extended
to include the four ‘Rs’ of radiobiology, repopulation of
the tumor cells during the treatment period by surviving
tumor cells, reoxygenation of hypoxic cells, repair of
radiation-induced damage between fractions and redis-
tribution of cells in the cell cycle [96]. These four phe-
nomena are often extended by a fifth ‘R’, which is
intrinsic radiosensitivity, defined as the considerable
variability between different cell types [85]. These are
important determinants of local tumor control after
fractionated irradiation, and significantly change the
optimal fractionation schemes. In this section, we review
several studies that model tumor heterogeneity in radi-
ation fractionation problem and discuss how the con-
ventional optimal fractionation protocols change when
considering intra-tumor heterogeneity.
Despite a significant history of predicting doses re-

sponse curves by the LQ model [13], there is a signifi-
cant amount of debate as to whether the LQ is
appropriate for measuring high dose per fraction effects
in stereotactic high-dose radiotherapy (e.g., see [53, 81]).
The application of the LQ model is thought to under-
estimate tumor control at high doses (larger than
10 Gy). Several models have been proposed for improv-
ing the prediction of high dose survival curves, e.g. see
the models developed by Hanin [51, 52] and Hanin and
Zaider [53] or the review by Brown et al. [15] which dis-
cusses the validity of LQ model to high dose irradiation
of tumors in detail. Since the LQ model is the most
widely used model for quantitative predictions of dose/
fractionation dependencies in radiotherapy and most
models for heterogeneous tumors have been developed
based on the same principal structure of the LQ model,
we will mainly focus on the LQ model and its extensions
in this study.
There are two widely used approaches for delivering

radiotherapy: fractionated and continuous radiation. As-
suming sufficiently large inter-fraction time, in fraction-
ated radiation, the damage induced in a cell by an acute
dose of radiation either causes cell death or complete re-
pair of the cell before the next exposure. Therefore this
model leads to memoryless kinetic that can be captured
using Markov processes. However this is not the case for
continuous irradiation where a longer biological memory
of the irradiated cells is stored. See the work of Hanin
et al. [57] and experimental studies cited therein for a
more detail discussion on how the processes of damage
repair/misrepair, cell proliferation and cycling can be
modeled by a non-Markovian model. The remainder of
this work will largely focus on models of fractionated
radiotherapy.
An important problem in radiotherapy is to find the

best total treatment size and division of total dose into

fractional doses that maximally reduces tumor size while
imposing the least amount of damage on surrounding
normal tissues (called organ-at-risks or OAR). This
problem can be cast as an optimization question and it
is commonly referred to as the ‘fractionation problem’.
A critical constraint to enforce when locating optimal
fractionated schedule is sufficiently low levels of normal
tissue toxicity. In order to properly model normal tissue
damage, two simultaneous constraints should be im-
posed: toxicity on early-responding tissue, such as skin
and health effects on the late-responding tissue, such as
neurons. Usually the concept of biologically equivalent
dose (BED), originally motivated by the LQ model, is im-
plemented in clinical practice to measure the biological
damage caused by a radiation fractionation scheme in a
specified structure. More specifically, the BED for a frac-
tionation regimen with N treatment fractions in which
radiation dose di is administered in fraction i (i = 1,.., N)
is given by

BED ¼
XN

i¼1
di 1þ di

α=β½ �
� �

where [α/β] is a tissue-specific radio-sensitivity param-
eter. The normal tissues toxicity constraints in radio-
therapy fractionation problem are mathematically
modeled by insisting that BED levels for various OAR
stay within prescribed levels [5] or keeping the total
number of functional proliferating normal cells more
than the required threshold [54]. These constraints can
be satisfied by keeping the total dose, fractional dose
or dose rate in continuous irradiation within some
acceptable levels.
Two possible solutions to the fractionation problem

are hyper-fractionated and hypo-fractionated schedules.
In hyper-fractionated schedules small fraction sizes are
delivered over a long period of time whereas in hypo-
fractionated schedules, large fraction sizes are adminis-
trated during a short period of radiation delivery. If we
maximize tumor control probability (TCP) at the con-
clusion of treatment, it has been observed that whether
hyper or hypo-fractionation is optimal depends on the
radio-sensitivity parameters of the normal and cancerous
tissue [5, 70, 92]. More specifically if tumor α/β ratio is
smaller than effective α/β ratio for all normal tissues (de-
fined as (αi/βi)/γi, where αi/βi and γi, denote the radio-
sensitivity parameter and sparing factor, respectively, in
ith OAR), then a single-dosage solution (hypo-fractionated
schedule) is optimal, whereas a multiple-dosage solution
with equal doses (uniform schedule) is optimal otherwise
(hyper-fractionated schedule) [5, 6].
These results are based on the assumption that irradi-

ated cell survival curves are explained by the LQ model,
therefore TCP is invariant under rearrangement of
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fractional doses. However considering more complicated
models [55] or different objectives such as minimizing
metastatic risk [7, 8] instead of maximizing TCP may re-
sult in the optimality of non-standard fractional sched-
ules. These schedules are formed using the front loading
principle: administering the maximum possible dose as
soon as possible. Moreover, as a result of these emerging
alternative models and objectives, other factors such as
the time point at which the performance criteria is eval-
uated may play an important role in the structure of
optimal schedules, e.g. see Zaider and Hanin [102] and
Badri et al. [7].

Intra-tumor heterogeneity
The uncertainties in radiotherapy treatment can be cate-
gorized into two groups: inter-patient variability and
intra-tumor heterogeneity. Inter-patient variability stems
from heterogeneity in patient-specific variables such as
the sensitivity of their normal tissues and tumor to radi-
ation (α/β ratio), the growth rate of their tumor or the
healing kinetics of normal tissues. Several studies ad-
dressed these uncertainties using different techniques.
Badri et al. [6] proposed a stochastic optimization for-
mulation to incorporate inter-patient variability in tumor
and normal tissue radiosensitivity parameters (α and β)
and sparing factor of the OAR into the scheduling
optimization problem. Hanin and Zaider [54] developed
a mechanistic approach that models post-irradiation
normal tissue toxicity when considering inter-patient
variation of kinetic parameters. On the other hand, to
improve the efficacy of radiation therapy, it is necessary
to study the role of intra-tumor heterogeneity, since it
significantly changes the tumor response curves [34, 58].
The range of cell sensitivity comes from inherent genetic
and epigenetic differences among the tumor cells and
from temporal variations arising from the asynchronous
cell cycle phases and variable micro environmental con-
ditions during therapy. The focus of the present work is
to review studies that model intra-tumor heterogeneity
and present where possible novel optimization problems
that arise from these models.
In [56], Hanin et al. studied the role of radiosensitivity

variation amongst cancer cells on optimal radiotherapy
fractionation schemes. They used a new criterion devel-
oped by Rachev and Yakovlev that considers the differ-
ence between weighted survival probabilities for normal
and neoplastic cells, where tumor cell radiosensitivity is
considered as a random variable with a known distribu-
tion function [76]. For several special cases, the exact
solution of optimal fractionation is obtained and an
iterative approximation methodology is designed when it
is not possible to compute the exact optimal fraction-
ation schedule.

Several studies have suggested that intra-tumor het-
erogeneity accounts for variability observed in radiobio-
logical parameters and TCP versus dose [58]. Zagars et
al. categorized the cells existing in a tumor into three
main subclasses: the radio-sensitive cells which are con-
trollable with radiotherapy, the radio-resistant cells that
are not susceptible to damage from therapeutic radi-
ation, and the stochastic fraction, which includes those
cells with tumor control probability between 1 and 99 %
[101]. The population TCP over total delivered dose
curve, so-called TCP/D, can be modeled as a weighted
summation of individual TCP/D curves, where the
weights are estimated based on the relative frequency of
the different types of tumor cells in the population. It
was observed (see Fig. 1) that intra-tumor heterogeneity
flattens the tumor dose–response curves [90, 101].

Timing and 4R’s effects on tumor heterogeneity
The fraction of surviving cells after a dose of radiation
not only depends on dose and tumor radio-sensitivity
parameters, but also it typically depends on the time-
course of dose delivery [88]. Timing affects cell killing
due to several reasons such as DNA repair and misre-
pair, tumor repopulation, redistribution and reoxygena-
tion [48, 49]. The basic LQ model typically assumes that
tumor radio-sensitivity parameters (α and β) and re-
population are constant over the time course of radio-
therapy. This implies the failure of the simple version of
the LQ equation exp ( − αd − βd2) to capture the dynam-
ics of reoxygenation and repopulation throughout the
course of treatment. Mathematical models for ionizing
radiation therapy, applied to multicellular populations
whose cells have time-dependent radio sensitivity have
been studied widely [17, 60]. However in some cases
such as heterogeneity associated with cell sensitivity and
proliferation rate when fractionated irradiation with suf-
ficiently many fractions or protracted continuous radi-
ation is implemented, it is possible to only consider the
homogeneous subpopulations of the most resistant and/
or fastest growing cells. This is due to the fact that usu-
ally slowly growing tumor cells and sensitive subpopula-
tions die out after commencement of therapy, and
therefore it is sufficient to design the therapy to target
the fast growing tumor cells and resistant population. As
an example see the mathematical model developed by
[54] to model the number of proliferating as well as
non-proliferating normal cells as a function of time post
treatment when incorporating the selection of the fastest
growing subpopulation to capture the tissue damage at
the conclusion of therapy and of the subsequent healing
kinetics.
Hlatky et al. [60] studied the variable response of

tumor cells to therapeutic treatment in ionizing radi-
ation by modeling the resensitization process; which
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includes redistribution and reoxygenation. The resensiti-
zation process states that after the dose is delivered, a
large fraction of damage occurs among the radiosensitive
cells, resulting in decreased average radiosensitivity.
However these changes are reversible; and the remaining
subpopulation are driven into more radiosensitive states
as time passes [14, 60]. Considering a smooth function
for absolute number of cell that have sensitivity α at
time t, i.e. n(α, t), we can write the equation explaining
the fluctuating diversity of a population with fixed size
using a Kolmogorov forward equation as (see [60] for
more details)

∂n α; tð Þ
∂t

¼ − αD
:

−
1
2
κu2

� �
n

þ k
∂
∂α

α−α0ð Þnþ σ2
∂n
∂α

� �
ð1Þ

where D
:
is the dose rate, u denotes the average number

of DSB per cell, 1
2 κ u2 shows the average rate at which

binary misreapirs removes DSB by lethal rearrange-
ments, k displays the rate at which cells change their ra-
diation sensitivity, and α0 and σ2 represent the mean and
variance of random variable α, respectively. Note that in
the case of a homogeneous tumor, σ = 0, Eq. (1) becomes
the deterministic model developed by Sachs et al. in [80]
which adds the enzymatic modification of the immediate
damage through a Markov process to the basic LQ
model. Considering tumor population in the long term,
it was shown that the solution to the Eq. (1) gives the
surprising simple result of

N ∞ð Þ ¼ N 0ð Þ exp −α0 Dþ 1
2
σ2G kTð Þ−βG λTð Þ

� �
D2

� �

ð2Þ
where N(t) shows the total population at time t, D is
total radiation dose delivered for period (0,T), and G is
the Lea-Catcheside function [60]. Equation (2) can be
considered as the elementary LQ model with α being
replaced by its average α0, and β being replaced by its
modified value. Results of their analysis support the hy-
pothesis that the therapeutic paradigm of low dose rate
or fractionated radiation can help conquer radioresis-
tance in hypoxic tumors [91, 97]. This is due to the fact
that a large fractionation interval (parameter T in (2)) al-
lows the tumor population to complete the reoxygena-
tion process and thereby the tumor population radio-
resistance due to oxygenation status will be minimized.
This phenomenon is supported by a smaller coefficient
for D2 in Eq. (2). One year later, Brenner et al. developed
a parsimonious model to include the resensitization
effect into the LQ model. In the extended model, desig-
nated LQR, survival is written as a function of dose d as

exp −αd− β−
1
2
σ2

� �
d2

� �
ð3Þ

where the term 1
2 σ

2d2 refers to cellular diversity, and is
given by the uncertainty about the cell kill by one-track
action of radiation, i.e. parameter α [14]. The cell sur-
vival values based on Brenner et al. model (Eq. (3)) are
plotted in Fig. 2 for values of σ2 = 0, 0.01 and 0.09 for
cell population without, low and high diversity,

Fig. 1 Relationship between TCP and number of 2.0 Gy fractions for different tumor population variabilities based on the model developed by
Zagras et al. [101]. The fraction of surviving cells is assumed to be normally distributed. The standard deviation of the normal distribution
measures the homogeneity of tumor cells
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respectively. By comparison of cellular diversity effect
for tumors with different values of α

β ; we observe a more

significant effect for tumors with large values of α
β , e.g.

10 for prostate cancer (Fig. 2b), compared to tumors
with a small value of α

β , e.g. 3 for head and neck cancer

(Fig. 2a).
Optimization of radiotherapy treatment within the

Hlatky model which includes time dependence of sub-
lethal damage repair has been studied by Yang and Xing
in [99]. It has been observed that incorporating these ef-
fects into the LQ model may give rise to optimal non-
uniform fractionation schedules where fractional doses
at the beginning and end of each irradiated week be-
come significantly greater than others. Furthermore it
was observed that the hyper-fractionation schedule gives
an insignificant advantage over hypo-fractionation or a
standard regimen.

Cell cycle
Another reason that radiotherapy cell killing depends on
timing, not just total dose, is the process of the mitotic
cycle. Tumor cells respond differently to radiation in dif-
ferent cell phases of the cell cycle [11], e.g. cells within

the G0-phase of the cell cycle, quiescent cells, possess a
lower level of radio-sensitivity than proliferating cells
that are in the G1, S, G2, M-phases [23, 73]. Therefore
for tumors with asynchronous cells, increasing radiation
delivery time,T, increases tumor radiosensitivity. This
makes sense because at first the radiation kills the cells
in more sensitive phases, and then radioresistant cells,
e.g. those are in G0-phase, have time to reach more sen-
sitive phases. Also due to cell arrest in the most sensitive
phases of cell cycle, protracted radiation promotes
synchronization. Chen et al. studied the effect of cell
cycle redistribution on the population resensitization
when ignoring the quadratic misrepair of radiation dam-
age, β [17]. They used a Mc-Kendrick-von Foerster
equation adjusted for the first track radiation cell kill to
model the age dependent cell dynamics as

∂n a; tð Þ
∂t

¼ −
∂n a; tð Þ

∂a
−D

:

α að Þn a; tð Þ−g að Þn a; tð Þ ð4Þ

where n(a, t)da shows the density number of cells in the
age range (a, a + da) at time t and α(a) shows the tumor
radiosensitivity at age a. They observed that the tumor
population resensitization effect occurs as the duration

Fig. 2 Cell survival curves illustrating the effect of tumor heterogeneity on surviving fraction of cells after a single dose of radiation based on Eq.
(3) a) This plot is shown for α = 0.3 and β = 0.1 b) This plot is shown for α = 0.3 and β = 0.03
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T of irradiation is increased from essentially zero times
to short, and sufficiently small finite times. They con-
cluded that population resensitization is proportional to

T2 and exp −α að ÞDð Þ Ddα
da

� �2
and the resensitization hap-

pens when T is small and the cell population is in a
stable age-distribution phase before irradiation, which in
this case happens regardless of how the radiation cell
kill, function α(a), depends on age. Hahnfeldt and Hlatky
generalized the model proposed by Chen et al. beyond
constant-dose-rate irradiation and small T in more expli-
cit terms [48]. They have used the same equation de-
scribed in (4) and have shown mathematically that
variation with the time of resensitisation due to redistri-
bution is not monotonic but damped oscillatory. They
found that spreading a dose of d Gy over a longer period
of time in any way is more desirable and results in
higher TCP than delivering an acute dose of equal mag-
nitude. They proved that this result continues to apply
regardless of age-dependent sensitivity and mitosis rate
functions chosen.
In [23], Dawson and Hillen have considered extensions

to the TCP model developed by Zaider and Minerbo
[103] to include the quiescent states and cell cycle dy-
namics. The model is based on a birth-death process
and generalizes the Zaider and Minerbo TCP formula,
aiming to include cell cycle effects according to the idea
that assumes the cell populations split into two compart-
ments which represent an active phase (G1, S, G2, M)
and a quiescent phase(G0). If the clonogenic cells do not
enter a G0 phase, which is modeled with considering the
transition between both compartments during radiother-
apy, then the model equally applies for a splitting into S,
G2,M and G1 phases. The key assumption is that
actively proliferating cancer cells are much more suscep-
tible to radiation damage than quiescent cells. The basic
model states that the expected number of cells in acti-
ve,NA, and quiescent compartments, NQ, satisfy a system
of differential equations as

∂NA

∂t
¼ −μNA þ νNQ−λA tð ÞNA−hA tð ÞNA;

∂NQ

∂t
¼ 2μNA−νNQ−λQ tð ÞNQ−hQ tð ÞNQ ð5Þ

where μ is the rate of active cell division, ν describes the
transition from quiescent compartment into the cell
cycle, λ(t) shows the death rate of different types of cells
at time t and h(t) explains the radiation induced death
rate in different compartments. Note that since active
cells are more radiosensitive, we havehA(t) > hQ(t). The
original model of Dawson and Hillen have been taken
and extended to describe more complex systems or
models with more compartments [25, 32, 59, 68]. Ana-
lysis of Dawson and Hillen active-quiescent radiation
model and its comparison to LQ model confirms that a

larger α/β ratio relates to a fast cell cycle and indicates
the presence of a significant quiescent compartment,
while a smaller ratio is associated with a slow cell cycle
[23]. These comparisons were performed under the LQ
model assumptions which allowed the authors to con-
struct a relationship between proliferation and transition
rates, μ and ν in Eq. (5), respectively, in their model with
α and β parameters in the LQ model. Therefore we can
conclude that for the tumor population with a substan-
tial quiescent compartment, which indicates a large
value for α/β ratio, hyper-fractionated schedules provide
a better TCP than the hypo-fractionated schedules (see
[70] or Badri et al. [5]). These types of analysis are in-
deed the future direction of the cell cycle modeling in
TCP, i.e. the inclusion of cell cycle and diversity of the
cellular radiosensitivity of a tumor in optimization of
radiation dosing schedules.

Hypoxia
Hypoxia plays a significant role in the reduced response
to radiation [45, 78]. Specifically, a cell in the tumor may
experience changes in radiosensitivity due to a change in
the tumor microenvironment, e.g., a decrease in oxygen
levels to a hypoxic state. As a tumor shrinks and a sig-
nificant proportion of cells are killed, the radius of the
tumor cord shrinks; diffusion-limited hypoxia decreases
and necrotic or hypoxic regions become smaller and
may finally disappear. Consequently there is no nutri-
tional deprivation leading to cell death. Therefore the
net repopulation rate increases as the tumor shrinks
[40]. This idea has been utilized to incorporate the
volume-dependent sensitivity and repopulation effect in
the LQ model [12, 16, 79, 94]. Several experiments pro-
vide evidence that indicates that radio-sensitivity and
growth rate in tumor spheroids decrease as the distance
from the nutrient supply increases [21, 87, 89]. Hence a
simple way to model this phenomena is assuming that
tumor cell sensitivity to radiation, α andβ, and the tumor
net repopulation rate,γ, depend upon the cell radial dis-
tance, r, from the center of the tumor, and on the
current tumor radius, R [94]. Then if we assume all of
these parameters take on a fixed well-oxygenated level at
the tumor surface (i.e. α = α0, β = β0 and γ = γ0 at r = R)
and decrease linearly as r decreases, we can compute the
radio-sensitivity parameters and tumor growth rate as a
function of r ∊ [0, R] for R < r0 as (see Fig. 3 and [94] for
more details)

α r;Rð Þ ¼ α0−
α0
r0

R−rð Þ; β r;Rð Þ

¼ β0−
β0
r0

R−rð Þ; γ r;Rð Þ ¼ γ0−
γ0
r0

R−rð Þ ð6Þ

and for r ∊ (R − r0, R] and R > r0 as
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α r;Rð Þ ¼ α0
r0

r−Rþ r0ð Þ; β r;Rð Þ ¼ β0
r0

r−Rþ r0ð Þ;

γ r;Rð Þ ¼ γ0 −
γ0
r0

r−Rþ r0ð Þ
ð7Þ

As discussed by the authors, the linearity assumptions
in Eqs. (6) and (7) may not be compatible with the phys-
ics of oxygen diffusion and were chosen for their parsi-
mony and computational feasibility. The actual situation
in vitro and in vivo is significantly more complex, e.g.
the oxygen enhancement ratio depends on the fraction
size [49], therefore a more complicated model is re-
quired to explain the tumor radiosensitivity as a function
of radial location. Also Eqs. (6) and (7) are based on the
assumptions that the net rate of spontaneous cell death
decreases as the tumor shrinks, which is applicable for
most types of tumors (e.g., well-differentiated squamous
cell cancers) and is consistent with experimental results
[87, 89].
If we show the tumor radius and number of tumor

cells at time t by Rt and nt, respectively, and we assume
the density of cells per unit volume in the spherical
tumor to be θ, then we have nt ¼ 4

3 θπ R3
t . Using LQ for-

mulation adjusted for exponential tumor growth [49],
the expected change in number of tumor cells after a
dose of size d is (see [94] for more details)

n
:

t ¼ nt γ Rtð Þ−α Rtð Þdt−2
ffiffiffiffiffiffiffiffiffiffiffi
β Rtð Þ

p
dt

Z t

0

ffiffiffiffiffiffiffiffiffiffiffi
β Rtð Þ

p
dse

−μ t−sð Þds

2
4

3
5

ð8Þ
where μ is tumor repair rate. Substituting Eqs. (6) and
(7) and using equation nt ¼ 4θπ R2

t R
:

t , we can write Eq.
(8) in terms of Ṙt and Rt and forms the basis of the

optimal control problem. Wein et al. proposes a dy-
namic programming approach to numerically solve this
problem. The resulting optimal protocols suggest a non-
standard time varying schedules with irregular time in-
tervals between fractions, administering larger fractions
before longer breaks, such as afternoon sessions or
Fridays, and shorter fractions before shorter breaks, such
as morning sessions [94]. Wein et al. proposed two main
reasons for this phenomenon. First the large fractions
make up for tumor repopulation during overnight or
weekend breaks. Second the tumor size is smaller at the
end of the week, i.e. Fridays, and smaller tumors are more
sensitive to radiation. They also observed that as the
tumor shrinks during therapy, it is optimal to increase the
doses on Friday afternoons. Based on their model, as the
tumor shrinks, α(R)/β(R) becomes smaller which leads to
the optimality of hypo-fractionated schedules.

Cancer stem cell
The existence of cellular heterogeneity in solid tumors
may originate from a number of sources, including hyp-
oxia, cell cycle asynchrony, infiltration of normal cells,
vascular structures and stroma into the tumor and the
hierarchical structure of the cell populations from which
cancers arise. The cancer stem cell (CSC) model of
tumorigenesis has received significant attention in recent
years. CSC refers to a subset of tumor cells that has the
ability to self-renew and generate differentiated progeny
which make up the bulk of a tumor [77]. Existence of
CSCs has been identified in different cancers such as
acute myeloid leukemia [26] breast cancer [1] and brain
tumors [84]. The definition of CSC implies that an anti-
cancer therapy can control a tumor, i.e. permanent local
tumor control, only if all CSCs are eradicated. Therefore it
is possible that removal of CSCs is the crucial determinant
in curing cancer and eradicating tumor cells [10].

Fig. 3 Tumor geometry in the mathematical model by [94]. Tumor cells are insensitive to radiation at hypoxic core and die at rate γN per day
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The concept of CSCs has profound clinical implica-
tions. In particular, CSCs in solid tumors are more re-
sistant to anti-cancer treatments, such as radiotherapy
[9, 50, 75, 98]. Mathematical modeling that integrates
this complexity has been used to analyze and predict the
evolutionary dynamics of heterogeneous tumor popula-
tions caused by the hierarchical natures of the cell popu-
lations. A dual-compartment linear-quadratic model
(DLQ) is usually implemented to study tumor hierarch-
ical intrinsic heterogeneity [67, 93]. DLQ assumes there
exist two cell populations in a solid tumor, CSCs and
differentiated cancer cells (DCC), where CSCs form the
minor subpopulation of a solid tumor. CSCs are able to
produce more CSCs as well as DCCs and are described
as the more radio-resistant subpopulation (have lower
values of α and β). The radiation response model is con-
structed as

S dð Þ ¼ F � exp −αsd−βsd
2� �þ 1−Fð Þ

� exp −αdd−βdd
2� � ð9Þ

where S(d) represents the fraction of surviving cells after
delivering an acute dose of radiation, F represents the
fraction of CSCs out of all cells, and (αs, βs) and (αd, βd)
show the radiosensitivity parameters in CSC and DCC,
respectively. The interplay between CSCs and DCCs can
be modeled by using the ODE introduced in Hillen et al.
[59] as (10)

∂Ns

∂t
¼ 2p−1ð Þμsk N tð Þð ÞNs tð Þ

∂Nd

∂t
¼ 2 1−pð Þμsk N tð Þð ÞNs tð Þ þ μdk N tð Þð ÞNd tð Þ−avNd tð Þ

ð10Þ
where Ns(t) and Nd(t) are the volume fractions of CSCs
and DCCs, respectively. The function N(t) is the total
volume of tumor normalized between 0 and 1 which is
equal to Ns(t) +Nd(t), p is the probability of symmetric
CSC division, and μs, μdand av define the CSC growth,
DCC growth and DCC apoptosis rate, respectively.
k(N(t)) is a constraint defined as max {1 −N(t)σ, 0} for a
σ ≥ 1 and keeps the total volume fraction less than 1. In
[4], Bachman and Hillen used the ODE Eqs. in (10) and
showed that the differentiation therapy proposed by
Youssefpour et al. [100], which is defined as the combin-
ation of radiotherapy and chemotherapy where the che-
motherapeutic agent pushes CSCs into the differentiation
stage, can have large beneficial effects in head and neck
cancer, brain cancers and breast cancer for the patient
increasing treatment success and reducing side effects.
Leder et al. developed a model to study the reversible

phenotypic interconversions between the CSCs and the
DCCs in glioblastomas (GBM), i.e. radiation may induce
DCCs to dedifferentiate into CSCs [67]. They assumed

that the increased radiosensitivity of DSCs to be
expressed in relation to the CSCs radioresistance,
measured by the parameter ρ (0, 1], i.e. αs = ραd and
βs = ρβd. This simplifying assumption enabled the authors
to characterize the sensitivity of CSCs to radiation by a
single parameter, ρ. The model is described in Fig. 4. The
model stipulates that t hours after the previous dose of ra-
diation, the fraction of DCCs capable of reversion to CSCs

is given by γ tð Þ ¼ γ0e
− t−a0ð Þ2=a21 (note that γ(t) = γ0 for the

first dose of radiation), for some constants γ0, a0 and a1
and the fraction of surviving cells can be computed based
on the LQ model. They predicted several optimal radi-
ation strategies that substantially enhanced survival in ex-
perimental studies using a mouse model of glioblastoma.
The resulting optimized schedules recommend a non-
uniform schedule delivering larger fractions at the begin-
ning and toward the end of the therapy. In a follow up
work, Badri et al. used the Leder model to consider
fractionated schedules that have optimal survival
while, maintaining acceptable levels of toxicity in
early- and late-responding tissues [5]. They derived
the closed form solution to the problem and proved
that the optimization problem can be split into two
separate optimization tasks that can be tackled inde-
pendently. The first model involves optimization of
dose per fraction and the optimal total dose, and the
second model optimizes inter-fraction intervals between
radiation doses. It was observed that normal tissues spar-
ing factors and radiosensitivities, and the magnitude of
the α/β ratio for tumor are determinant factors defining
the optimal radiation scheme, i.e. for low (high) values of
tumor α/β ratio, the hypo-fractionated (hyper-fraction-
ated) schedule is optimal. For the time-dependent model,
the optimal inter-fraction intervals only depend on the
time dynamics of the dedifferentiation process and treat-
ment duration. In particular it was observed that optimal
inter-fraction intervals are equal to the dose spacing that
leads to the maximal amount of cell reversion to the
stem-like state, i.e. a0.
Several stochastic and cellular automata models have

been used in more complicated simulation based studies
of complete tumor cell kinetics during radiation therapy.
Gao et al. used an integrated experimental and cellular
Potts model to simulate glioblastoma population growth
and response to irradiation [41]. They found that in
order to maintain the tumor population following radio-
therapy, surviving glioma CSCs in vitro increase their rate
of self-renewal, i.e. the fraction of CSCs in the populations
is increased after radiation. By comparing acute and frac-
tionated irradiation response, the authors observed that
the relative increase in fraction of CSCs in tumor popula-
tion after fractionated treatment cannot be explained
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merely by radioresistance of CSCs. This simulation based
model suggests that repeated exposure to radiation might
increase the symmetric division rate of CSCs, which even-
tually may lead to accelerated repopulation of CSCs. A
series of in vivo 4D simulation models for GBM explore
the tumor growth dynamics and response to radiation,
considering vasculature, oxygen supply and radiosensitiv-
ity [2, 27, 28]. These works clustered cells into dynamic
classes based on the mean cell cycle phase durations over
the various cell cycle phases and used a linear quadratic
model to describe the number of cells killed. They asso-
ciated p53 mutations with increased radioresistance
and inefficient clinical outcome for patients with GBM,
as suggested by Haas-Kogan et al. [46]. Evaluating the
response to treatment for different fractionation regi-
mens revealed that hyper-fractionated schedules may
lead to an improvement in local tumor control com-
pared to standard schedules.

Chemotherapy
In this section we will review previous works that studied
stochastic modeling and optimization of chemotherapy
for heterogeneous tumor cell populations.

Optimization models
There is a vast literature on the mathematical modeling
and optimization of the delivery of chemotherapy, e.g.,
see the three review papers Shi et al. [83], Swan [86] and
Kimmel and Swiernak [64], or the textbook by Martin
and Teo [69]. In this large literature optimization prob-
lems are formulated to optimally achieve a desired
patient outcome subject to various constraints. Several
works in these reviews follow an optimal control
approach, e.g., Swan mentions several problems of this
form [86]. Specifically, these works assume that cancer
cell population satisfies a differential equation that
depends on the drug concentration, e.g.,

∂x
∂t

¼ x f xð Þ−h uð Þ½ � ;

where x is the cancer cell population size and u is the
drug concentration level. Also f and gare arbitrary func-
tions that represent density dependence and drug
induced cell kill respectively. Then a cost function is
specified, e.g.

Fig. 4 Mathematical model described in [67]
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J x;uð Þ ¼
Z t

0

ω x tð Þð Þ þ ρ u tð Þ2� �
dt;

and the goal is then to use optimal control methodology
to numerically identify the optimal drug concentration
profile u. There is a wide range of works on models of
this kind and we refer the reader to the reviews Shi et al.
[83], Swan [86] and Kimmel and Swiernak [64] for fur-
ther examples.
Given the large amount of literature on this topic, we

focus in the remainder of this section on works related
to optimization of stochastic models of the treatment
process for heterogeneous tumors with resistant
subtypes.

Optimization of stochastic models
The majority of stochastic models of tumor response to
chemotherapy have been based on the continuous time
binary multi-type branching process framework (see e.g.
[3]). In this modeling framework there are m possible
cell types, and all cells of a given type behave in a statis-
tically identical fashion independently of all other cells
present. In particular a cell of type-i well wait an expo-
nentially distributed amount of time with mean 1/ai be-
fore a birth/death/mutation event. During this event the
type-i cell produces offspring of type (j1,…, jm) with
probability p(i)(j1,…, jm), where j1 +… + jm {0, 2} (see
Fig. 5). The multi-type branching process is specified by
the vector a! ¼ a1⋯ am½ � and the vector valued
mapping

P j1; ::; jm
� � ¼ p 1ð Þ j1;…; jm

� �
⋮p mð Þ j1;…; jm

� �	 


The long term behavior of a multi-type branching
process is easily deduced from this information. In par-
ticular, one forms a mean matrix M = (mij), where mij is
the expected number of type-j offspring a type-i

offspring will produce. If the maximum eigenvalue of
the matrix M is less than or equal to one then the
branching process is guaranteed to go extinct, while if it
is greater than 1 then the branching process can either
go extinct or its size diverge to positive infinity. There-
fore understanding the long term behavior of the
branching process is straightforward. When studying the
problem of drug resistance in cancer one is often inter-
ested in the behavior of the process over a long (but finite)
time interval, and therefore it is not sufficient to simply look
at the maximal eigenvalue of M. For an example of other
techniques that can be used see e.g. Durrett and Moseley
[30], Iwasa et al. [61], Haeno et al. [47], or Durrett et al. [31].
When modeling drug resistance in chemotherapy, a

standard approach would be to assume that initially
most cells are type-1, which is assumed to be sensitive
to some first line therapy. Thus during treatment with
this first line therapy the type-1 cells will begin to de-
crease; however, these cells may mutate to a different
type of cell that can grow under the first line therapy.
This type of cell may decline under a second line ther-
apy; however it may now mutate to a type of cell resist-
ant to both types of therapy. In this model then the
question becomes, how does one administer the various
therapies so that the risk of total treatment failure (no
more viable drugs) is minimized.
Seminal work was done in this field by Coldman and

Goldie in several papers, e.g., Goldie and Coldman [43],
Goldie et al. [44] and Coldman and Goldie [19]. We will
focus on Coldman and Goldie [19], since it generalizes
the previous works. It is assumed that there are n treat-
ments available T1,…, Tn, and 2n different cell types
present, each type specified by which subset of therapies
the constituent cells are resistant to. Specifically, Ri1;…; im

tð Þ is the number of cells at time t that are resistant to
the therapies Ti1…; Tim and sensitive to all other therap-
ies. The cell type R0 is sensitive to all therapies. In the
absence of therapy it is assumed that all cells behave

Fig. 5 In panel (a), we show an event where a type-j replicates without mutation, panel (b) a type-j has a single mutated offspring a type-k cell,
and in panel (c) a type-j cell dies
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according to a pure birth process with birth rate λ per
cell. During cell division events, mutations may occur
and cells can acquire resistance to new types of drugs.
Chemotherapy is modeled as an instantaneous probabil-
istic reduction in population of all sensitive cells accord-
ing to a log cell kill rule. The authors then derive
formulas for the probability of evolution of cells resistant
to therapies within a finite time horizon. Coldman and
Goldie, consider the case of two therapies and three dis-
tinct resistant cells in depth. In particular, let P12(t) be
the probability that no cells with resistance to both ther-
apies evolve by timet. Under symmetry assumptions on
the efficacy of the two therapies and the behavior of the
two singly resistant mutants, Coldman and Goldie [19]
establishes that alternating therapies maximizesP12(t).
Day computationally investigated relaxation of the sym-
metry assumptions and found that some non-alternating
schedules could outperform the alternating schedule in
that scenario [24]. In particular Day proposed a ‘worst
drug first’ rule, this rule was investigated in further
depth by Katouli and Komarova who considered a wide
range of possible cyclic therapies [62]. In later works
Murray and Coldman [72] and Coldman and Murray
[20] extended the original model of Coldman and Goldie
[19] to allow for toxicity constraints on normal tissues,
simultaneous administration of multiple drugs, and in-
cluded the possibility of inter-patient heterogeneity. In
[18], Chen et al. further investigated the effects of asym-
metry in the efficacy of the two possible therapies, and
derived general conditions for the identification of opti-
mal drug administration sequences. One potential short-
fall of the Goldie and Coldman model is that the tumor
cell populations grow exponentially ignoring possible ef-
fects of resource depletion. Chapter 9 of the monograph
Martin and Teo [69] develops a deterministic model that
allows for logistic and Gompertz growth in the tumor
population. In this model they have four types of cells
and two therapies, the authors develop an algorithm that
searches for the schedule of therapies that leads to the
maximal time until treatment failure. Note that this al-
gorithm only identifies local optima though.
Despite the large amount of work done in this field

there are still significant challenges remaining. In par-
ticular, previous works have looked at optimal schedules
with only a small number of resistant types and potential
therapies. Going forward, an important extension will be
to develop methodologies that allow for the optimization
of administration schedules for larger number of therap-
ies and a larger number of resistant types. Another pos-
sible extension is to study minimization of probability of
resistance in more complex stochastic models. Until
now the stochastic models have all had essentially expo-
nential growth properties, which are known to be incon-
sistent with tumor growth curves. An exciting challenge

for the future is to minimize resistance probabilities in
stochastic models that include density dependence.

Stochastic analysis
There has been a large volume of work on the stochastic
modeling of cancer evolution, e.g., see the monographs
Kimmel and Axelrod [63] and Durrett [29]. Given this
large body of work we will focus on stochastic models
for the evolution of resistance under therapy. In the
works of Komarova and Wodarz [66] and Komarova
[65], Komarova and Wodarz extended the model of
Coldman and Goldie by replacing a pure birth process
with cell kill events due to therapy with a multi-type
binary branching process. Here the types are representa-
tive of the therapies that the cells are resistant, and cells
mutate to give rise to daughter cells with new types of
resistance. In [36], Foo and Michor also consider a
multi-type binary branching process, but they allow for
time inhomogeneous birth and death rates and then
identify dosing schedules that minimize risk of resistance
subject to toxicity constraints. A follow up work [37]
generalized this model to allow for arbitrary concentra-
tion curves and incorporated pharmacokinetic effects.
Fla et al. constructed a stochastic model for the evolu-
tion of normal blood stem cells, wild-type leukemic stem
cells, and mutated drug resistant leukemic stem cells
[33]. A novel feature of this model is that it was a sto-
chastic model that incorporated competition. The au-
thors derived the Fokker-Planck equations governing the
probability mass functions of the stochastic model and
analyzed the possible equilibrium of the system. In a
series of works Foo and Leder [35, 38] studied a branch-
ing process model for the evolution of heterogeneous
cancer population undergoing therapy. In particular de-
note the drug sensitive cell population at time t by Z0(t)
and the drug resistant cell population by Z1(t), with
Z0(0) = n and Z1(0) = 0. The sensitive cell population is
modeled as a subcritical binary branching process, that
produces resistant cells at rate μ and each resistant cell
initiates a super-critical branching process with random
net growth rate. In these works the properties of the
cancer cell population is investigated at the ‘crossover-
time’:

ξ ¼ min t > 0 : Z1 tð Þ > Z0 tð Þf g:

In particular, Foo and Leder [35] study the relationship
between ξ and the extinction time of the sensitive cell
process. While Foo et al. [38] study the diversity proper-
ties of the resistant cell population at the time ξ. There
are several standard metrics for diversity of a population,
e.g. the number of distinct species present, the Simpson’s
Index (probability two randomly chosen cells are genomi-
cally identical), and Shannon’s Index (related to Shannon’s
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Entropy, see e.g. [22]). In Foo et al. [38] they consider all
three of these diversity measures. Lastly the work of Foo
et al. [39] establishes a central limit theorem for ξ in the
limit as the initial population Z0(0) goes to infinity, and
identifies the effect of the random fitness distribution on
the large n behavior of the crossover time ξ.
There are lots of open problems remaining in the topic

of stochastic models of cancer cells undergoing therapy.
An interesting extension would be to investigate the
treatment process when spatially explicit models (such
as [95]) are used.

Discussion
Viewing tumors as an evolving population of cells has
proven to be a useful tool in the study of cancer. Anti-
cancer therapy clearly has the potential to impact the
evolutionary trajectory of the tumor cell population. The
behavior of this evolution is extremely interesting in the
context of diverse tumor cell populations. For example,
one might expect that therapy will select for cells with
therapy resistance, thus leaving a more difficult to treat
tumor. In order to achieve the best possible therapeutic
results it is thus seems necessary to create treatment
strategies that take into account the diversity present
within a tumor and the evolutionary changes the tumor
might undergo during therapy.
There has clearly been a significant amount of work

done in the field of cancer therapy optimization. How-
ever, there are still lots of exciting problems remaining
to be investigated. For example, there are few theoretical
results about the structure of optimal radiotherapy
schedules when studying heterogeneous populations.
In the chemotherapy setting there are no suitable
optimization methods for dealing with large amounts
of heterogeneity present, i.e., large numbers of dis-
tinct cell types. There are several interesting open
problems in the stochastic modeling and optimization
framework. In particular, more work needs to be done
in this area that incorporates cellular competition.
Perhaps the biggest challenge in the field of designing

optimal cancer therapies, is bringing these optimized
therapeutic schedules into the clinic. While there have
been successes in the laboratory setting, e.g., Leder et al.
[67], Gao et al. [41], successes in a clinical setting are
quite rare.

Reviewers’ comments
Reviewer’s report 1 Thomas McDonald, Biostatistics and
Computational Biology, Dana-Farber Cancer Institute
Reviewer comments:
Summary:
The review provides a general overview of modeling

therapy of tumors. It separates into radiotherapy and
chemotherapy discussing historical and more recent

models of each and the impact of heterogeneity that
affect tumor response. The authors do a good job dis-
cussing radiotherapy beginning with the Linear-
Quadratic model before moving into the various exten-
sions too account for the four ‘Rs’. The section on
Chemotherapy covers a wide range of work from the
Coldman and Goldie models up to modern methods
used and include a discussion of the next necessary steps
and issues to tackle. Ultimately, this review provides a
useful recap of the work done in mathematical modeling
of radiotherapy and chemotherapy.
Reviewer recommendations to authors:
Major: The main suggestion is to include a few more

pictures of some of the processes mentioned. The radio-
therapy models could be illustrated with curves and
example plots of tumor response curves showing the im-
pact of heterogeneity as modeled in some of the articles
cited.
The second part on chemotherapy seems lacking in

the detail that the radiotherapy section got, and it may
deserve a little more time or mathematical description
of the work. The focus of the work is clearly radiother-
apy, but explaining some of the chemotherapy models in
a little more depth or describing a quick background of
branching processes and their use would make the re-
view more complete. A more careful proofreading is ne-
cessary. There are minor grammatical errors scattered
throughout. An incomplete list is given below.
The first section on radiotherapy may be separated

into subsections since the authors jumped between
models abruptly.
Author’s response: Thank you for your careful reading

of the manuscript and helpful suggestions, we have ad-
dressed these comments.

Reviewer’s report 2 David Axelrod, Rutgers University
Reviewer comments:
Summary: Recommendation status: Endorse publica-

tion as a Review. Reviewers report: Summary of some
mathematical modeling to optimize radiotherapy and
chemotherapy, with brief mention of open problems, but
little indication of whether or not the modeling has had
a clinical impact, and if not why not. Not comprehensive
or original, although useful as an entrance to the
literature.
Author’s response: Thank you for your careful reading

of the manuscript and helpful suggestions, we have
addressed these comments.

Reviewer’s report 3 (Author’s response included in italics)
Leonid Hanin, Idaho State University
Reviewer comments:
Summary: The authors attempted to review a huge re-

search field (mathematical models of radiation therapy/
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chemotherapy and stochastic models of tumor cell pop-
ulations) through a prism of optimal cancer treatment
schedules and intra-tumor heterogeneity. From among
many hundreds of relevant articles and dozens of books
published on these subjects the authors selected a rela-
tively small fraction for their discussion. The review is
somewhat sketchy and oftentimes superficial. In my
opinion, it does not delve deep enough into biological,
clinical and mathematical issues. The overall picture of
the field does not come through clear enough as well. I
believe the review is missing some general guiding ideas
that would make the discussion of the subject coherent
and captivating from methodological and historical
standpoints.
Reviewer recommendations to authors: The article

provides a brief overview of the following areas of bio-
mathematical research: cancer radiotherapy, chemother-
apy and stochastic modeling of cancer cell populations.
The umbrella topic that gives a common thread to the
reviewed modeling approaches and results is the effects
of heterogeneity of cancer cell populations on optimal
radiotherapy or chemotherapy schedules. I believe the
review is too sketchy, incomplete and lacking technical
details to do justice to these extensive and important
areas of research. Specifically, the following important
questions have not been addressed in sufficient depth
and detail:
(1) What are the biological and mathematical assump-

tions underlying the quoted studies?
(2) What are the sources of heterogeneity (spatial, oxy-

genation level, radiosensitivity, cell cycle phases, vari-
ation in kinetic parameters, inter-patient variation, etc.)
accounted for and disregarded in any particular study?
Without this, results of the cited research can be neither
fully appreciated nor compared.
(3) What are the types of radiation involved (fraction-

ated, continuous with constant dose rate, brachytherapy,
etc.)?
(4) Are the results and conclusions theoretical or

numerical and, in the latter case, how were model
parameters selected?
(5) What is the basis for various equations discussed

in the text?
Author’s response: Thank you so much for your com-

ments, we have included more discussion on the under-
lying assumptions on the models, equations, various types
of radiation, and classification of the heterogeneity
sources in radiotherapy
General Comments
1. Due to selection effects some of the heterogeneity

issues seem irrelevant in the case of fractionated irradi-
ation with sufficiently many fractions, protracted con-
tinuous radiation and chemotherapy. For example, this
is the case for heterogeneity with respect to cell

sensitivity and proliferation rate, for sensitive and slowly
growing tumor subpopulation will disappear soon after
the start of treatment, so it seems feasible to deal from
the outset with the homogeneous subpopulations of the
most resistant and/or fastest growing cells. See e.g. [1] in
the list of references below for the discussion of selec-
tion of the fastest growing subpopulation. This fairly ob-
vious but important consideration provides the missing
evolutionary context to the discussion of heterogeneity.
Author’s response: Thank you so much for you valu-

able comment. We have added a paragraph in the paper
to explain this matter.
2. The article disregarded a profound difference be-

tween fractionated and continuous radiation. While the
former leads to memoryless kinetic models that can be
described using Markov processes, the latter brings
about long biological memory (due to the arrest of irra-
diated cells in the most radiosensitive phases of the cell
cycle and non-markovian kinetics of radiation damage
accumulation and repair/misrepair), see e.g. [2] and ex-
perimental studies quoted therein.
Author’s response: Thank you so much for pointing out

this shortcoming. We have added a paragraph to address
this issue.
3. As it was briefly mentioned in the article, clinically

relevant approaches to radiotherapy optimization must
involve constraints accounting for damage to normal tis-
sue. However, no details were provided and no results
reviewed. Modeling normal tissue complication prob-
ability (NTCP) leads to many mathematical and biomed-
ical challenges including heterogeneity issues [1].
Author’s response: We appreciate reviewer comment.

The focus of the present work is to review the studies that
properly model the intra-tumor heterogeneity. However
to add some discussion about this important topic, we
have added a paragraph that explains the difference be-
tween inter-patient and intra-tumor heterogeneity. We
also cited reference [1] to provide some additional
sources for covering this important topic briefly.
4. The article deals with the linear-quadratic (LQ)

model of irradiated cell survival and its extensions. This
model is based on a fairly sophisticated mechanistic de-
scription of the kinetics of sublesion generation, repair/
misrepair and pairwise interaction that produces lethal
lesions (typically chromosomal aberrations). However,
converting this formalism into cell survival probability is
based on a highly unrealistic assumption that the distri-
bution of the number of lesions is Poisson. Although
this and other critical flaws of the LQ model have been
uncovered about four decades ago, see [3] for a more
recent discussion, LQ model is still in business. This is
especially surprising given that alternatives have been
proposed, see e.g. [3] where a parsimonious model based
on rigorous microdosimetric analysis and overcoming
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many flaws of the LQ model was introduced. Another
fundamental problem of the LQ model is that it is in-
applicable to large doses (>10 Gy) [4]. For example, it
was shown in [3] that for such doses LQ model underes-
timates cell survival (compared to the more realistic
model developed in [3]) by several orders of magnitude!
Insisting on the LQ model confines researchers to a
mathematical abstraction that in many cases has little to
do with clinical reality.
Author’s response: We appreciate reviewer comments

on this shortcoming. We have added a paragraph in the
paper to explain this shortcoming and present our rea-
soning for using LQ model.
5. Discussion of optimal radiation schedules is overly

ad hoc. Addressing the question as to whether some
general principles are true in a given biological/modeling
setting would bring much needed structure and clarity.
For example, is TCP invariant under rearrangement of
fractional doses? Does it satisfy the front loading
principle (i.e. “hit the tumor as hard and as early as pos-
sible”) true? Is the uniform radiation schedule optimal?
For a discussion of these and other general principles,
see [5-7].
Author’s response: Thank you so much, we have added

a few sentences to explain this topic briefly.
6. The article says nothing about the time point at

which TCP is evaluated. As discussed in [8], its selection
is consequential.
Author’s response: We have added a few sentences to

explain its importance.
7. Among the many Rs of radiation biology repopula-

tion is probably the most important, yet its discussion in
the article is scarce thus missing many aspects of the
subject at hand. In the case of fractionated radiation, the
TCP in the repopulation setting was computed in closed
form in [9, 10] under arbitrary time-dependent birth and
spontaneous death rates, arbitrary time post-treatment,
arbitrary radiation schedule and arbitrary dose–response
function. Moreover, computed in these two works was
not only TCP but the entire distribution of the number
of surviving clonogenic cancer cells.
Author’s response: We have added these two papers to

our review study.
7. Discussion of optimization problems never men-

tioned constraints on the total dose, fractional doses and
dose rates. What are they and where did they come
from?
Author’s response: Thank you. We have added a para-

graph to explain this important matter in detail.
Technical Comments
1. P. 4, lines 22-27. The basic LQ model contains also

the time-dependent Lea-Catcheside dose-protraction
factor that accounts for the temporal pattern of radiation
dose delivery and depends on the rate of sublethal

damage repair. Models accounting for repopulation and
reoxygenation do not have to be of LQ type.
Author’s response: Thank you. We agree that Lea-

Catcheside model is time dependent, however we were
referring to the basic equation of LQ model exp(−αd
− βd2) . We have added this equation to the sentence
to clarify it.
2. What does variable n is Eqs (1) and (4) represent:

absolute or relative number of cells?
Author’s response: Thank you so much for bringing this

subtle point. We modified the definition of n for both equa-
tions, which is absolute in Eq (1) and density in Eq (4).
3. In Eq. (1), is the distribution of radiosensitivity fixed

or changes in time?
Author’s response: Eq (1) represents a standard

Ornstein-Uhlenbeck process for a cell population of fixed
size undergoing “convection” and “diffusion” in a “radi-
ation sensitivity space” parametrized by α and centered
on α0. We added few words to point it out in the text.
4. It follows from Eq. (2) that for sufficiently large

sigma the number of cancer cells will eventually exceed
N(0). How could this happen in the absence of cell pro-
liferation? Also, for sigma = 0 the formula does not coin-
cide with the LQ model. Finally, what is the meaning of
T? The two questions about large sigma and sigma = 0
relate to Eq. (3) as well.
Author’s response: Thank you so much for your com-

ment, there were two typos in these two equations which
are fixed. Also we defined the parameter T in the text.
5. P. 5, lines 24-26. This observation is unclear.
Author’s response: We have added two references to

support this statement and also few sentences to clarify it.
6. P. 5, line 60 and p. 6, line 4. Due to cell arrest in the

most sensitive phases of cell cycle, protracted radiation
promotes synchronization.
Author’s response: Thank you, we have added a sen-

tence to the article about this topic.
7. P. 6, Eq. (4). What is g(a)? Also, n(a, t) on line 22

should be n(a, t) da.
Author’s response: Function g(a) is the function model-

ing mitosis rate at age a. We have added to the text and
changed n(a,t) to n(a,t)da.
8. P. 7, line 24. Shouldn’t t be an argument of function

h rather than A and Q?
Author’s response: Thank you so much, we have ad-

dressed this issue.
9. P. 7, lines 29-41. This whole paragraph is obscure.

What are the assumptions here and how does the argu-
ment work?
Author’s response: We have added a few sentences to

explain the comparison of the active-quiescent model by
Dawson and Hillen and the LQ model.
10. P. 8, Eqs (6) and (7). Are the linearity assumptions

compatible with the physics of oxygen diffusion? Also,
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does this imply that the rate of spontaneous cell death is
decreasing with time as found in [11, 12]?
Author’s response: Thank you so much for your com-

ment. We agree with your point about linearity assump-
tion. We have added a few sentences after equation (6)
and (7) to explain these shortcomings. Also as it is men-
tioned in the original article [wein et al. 2000], based on
equation (6) and (7), the tumor’s net repopulation rate
increases as the tumor shrinks, which is consistent with
the experimental evidence showing that the growth
fraction and sensitivity in solid tumors decrease as the
distance from the nutrient supply increases, therefore
tumor death rate decreases with time based on the equa-
tion (6) and (7).
11. P. 9, line 16. Studied in Hanin et al. 1993 were the

effects of radiosensitivity variation among cancer cells
without any spatial considerations. A more detailed dis-
cussion was presented in the book [13].
Author’s response: Thank you so much for pointing

this out. The spatial term has been removed.
12. P. 9, line 39. The paper Dick 1997 deals with acute

myeloid leukemia that does not form tumors.
Author’s response: Thank you so much for pointing

this out. We removed this paper in that sentence.
13. P. 10, line 17. s(d) should be S(d).
Author’s response: Corrected.
14. P. 10, line 34. “…total volume of tumor with re-

spect to a desired volume…” What do you mean?
Author’s response: The function N(t) is the total vol-

ume of tumor normalized between 0 and 1 which is
equal to Ns(t) +Nd(t). We modified it in the text.
15. P. 10, lines 55-56. Was such dedifferentiation ob-

served and what is its mechanism?
Author’s response: This topic is discussed in the refer-

enced manuscript.
16. P. 10, line 57. Beta depends on many kinetic pa-

rameters accounting for damage production, repair, mis-
repair and pairwise interaction, see [4]. Therefore, the
stated proportionality does not seem likely and, in any
case, requires discussion of the underlying assumptions.
Author’s response: This is simplifying assumption to

enable authors to characterize the radio-sensitivity of
CSC by a single parameter. We have added few sentences
to clarify this.
17. P. 15, line 34. What are the Simpson’s and Shannon’s

indices?
Author’s response: Definitions were added.
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