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Background: Ribosome profiling (or Ribo-seq) is currently the most popular methodology for studying translation;
it has been employed in recent years to decipher various fundamental gene expression regulation aspects.

The main promise of the approach is its ability to detect ribosome densities over an entire transcriptome in
high resolution of single codons. Indeed, dozens of ribo-seq studies have included results related to local
ribosome densities in different parts of the transcript; nevertheless, the performance of Ribo-seq has yet to be
quantitatively evaluated and reported in a large-scale multi-organismal and multi-protocol study of currently

Results: Here we provide the first objective evaluation of Ribo-seq at the resolution of a single nucleotide(s)
using clear, interpretable measures, based on the analysis of 15 experiments, 6 organisms, and a total of 612,
961 transcripts. Our major conclusion is that the ability to infer signals of ribosomal densities at nucleotide
scale is considerably lower than previously thought, as signals at this level are not reproduced well in
experimental replicates. In addition, we provide various quantitative measures that connect the expected error

Conclusions: The analysis of Ribo-seq data at the resolution of codons and nucleotides provides a
challenging task, calls for task-specific statistical methods and further protocol improvements. We believe that
our results are important for every researcher studying translation and specifically for researchers analyzing
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Background

Translation has a major role in the regulation of gene ex-
pression and significantly affects various fundamental
intracellular processes and biomedical phenomena [1-7].
It is an energetically most costly process, and each of its
initiation, elongation and termination steps is tightly regu-
lated [8, 9]. The most prominent experimental technique
for studying translation in recent years has been ribosome
profiling (RP; or Ribo-seq) [10]. This approach enables
high-throughput monitoring of ribosomal density along
genes by utilizing deep sequencing methods and has been
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employed to decipher fundamental gene expression regu-
lation aspects in recent years [10—16].

Ribosome profiling is based on deep-sequencing of
ribosome protected mRNA fragments from living cells,
such that the sequence of each fragment indicates the
position of a translating ribosome on the transcript [10].
The experiment comprises of the following main steps:
preparation of the biological samples; sample lysis; nucle-
ase footprinting, in which mRNA that is not protected by
ribosomes is digested; ribosome (monosome) recovery;
linker ligation; rRNA depletion; library sequencing,
followed by bioinformatics analysis of the sequences [17].
Various variants of the experimental protocol have been
developed, and many steps in the protocol need to be
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optimized according to the relevant organism and ex-
perimental system [18]. Specifically, it has been shown
that the choice methods for translation inhibition [19,
20], RNA digestion enzyme and concentration [17, 18],
monosome purification [18] and rRNA depletion [18,
20] all affect the quality of the resultant data. Moreover,
several methods have been applied for mapping the se-
quenced ribosome protected fragments, and specifically
the location of the A-site (or P-site) of the ribosome, to
the genome [10, 17, 18, 21-23].

It has been suggested, by utilizing various methods as
well as RP, that the speed by which ribosomes progress
along the mRNA is affected by different local features of
the coding sequence [24, 25]. However, despite its prom-
ising throughput, analysis of RP data has led to contra-
dictory conclusions between studies, such as the heating
the debate around the determinants of ribosome elong-
ation speed. These include, among others, the following
issues: wobble base-pairing was suggested to slow elong-
ation down in C. elegans and human [26], in agreement
with previous (non-RP) experiments [27, 28], but no evi-
dence for this was found in recent studies that analyzed
S. cerevisiae profiles [21, 29]. Positively-charged amino
acids were shown to slow elongation down in multiple
organisms [25, 30], in agreement with previous experi-
ments [31], but no evidence for this was found in a re-
cent study [21]. The local secondary structure of the
mRNA was shown to have a relation between its folding
energy and elongation rate [25, 32, 33], in agreement
with previous reports [34], but no evidence for this was
found in other studies [21, 30]. Finally, the effect of opti-
mal/non-optimal codons on elongation rate and the re-
lation between the latter and tRNA abundance has been
reported [11, 35] and denied [21, 30, 36—38], while being
verified by other experimental means [39-42].

While the consistency and reproducibility of RP esti-
mation over entire coding regions was provided in the
first paper about this method [10], no similar analysis
has been provided for RP estimations in local regions of
the coding region, and particularly not in a large-scale
approach encompassing multiple datasets in various or-
ganisms and based on various conventional protocols.
Thus, the performance of the RP method has yet to be
accurately/objectively and thoroughly evaluated. The
aim of the current study is to provide for the first time
such an objective evaluation which should be robust to
the different RP analyses approaches and simple to inter-
pret. In addition, we discuss how our analysis can be
used as a tool in future studies of local translation as-
pects via RP.

To this end, we analyze multiple RP datasets containing
experimental replicates in order to determine the
consistency and reproducibility of the profiles in closely re-
lated repetitions. We show that in most of the studied
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experiments to date, the level of reproducibility in mea-
sured ribosomal densities at nucleotide (or a few nucleo-
tides) scale is considerably lower than previously thought,
and argue that some of the aforementioned contradictions
may be attributed to the resolution and relatively high
‘noise’ levels in RP data when studying ribosome densities
in short fragments of the coding regions. We believe that
our results are important for every researcher studying
translation and specifically for researchers analyzing data
generated by the RP approach.

Results

The robustness of local RP measurements is usually more
than one order of magnitude lower than global RP
measurements

Correlations between experimental replicates in the ribo-
some profiling literature are often reported to be very high
[10, 23, 43], similar in level to RNA-seq measurements
[10] (Fig. 1). We analyzed 15 ribosome profiling experi-
ments containing multiple replicates from 6 organisms
and confirmed that, indeed, the correlations between the
Ribo-seq read count densities (RCD) of genes in different
experimental replicates are high in most cases (r between
0.85 and 1.00). However, while representing every gene
with a single value is informative enough for certain types
of analyses, many of the questions that ribosome profiling
was designed to answer require reproducibility at a much-
higher resolution, up to the nucleotide level. It should be
noted that local RP measurements (e.g., nucleotide posi-
tions) are subject to additional biases and noise that are
not as dominant at the global, gene level. For example,
one source for such type of noise could be related to
inefficient halting of elongation that at some probability
allows for additional cycles of elongation to occur [39].
Thus, previous analyses of replicate consistency at the glo-
bal level cannot predict reproducibility at the local level
(Fig. 2). We therefore tested for the first time the reprodu-
cibility of ribosome occupancy profiles at the nucleotide
level (Fig. 3). The coverage (percentage of nucleotides in
the transcript to which at least one ribosomal footprint
mapped) of most transcripts in the genome is low, leading
to sparse profiles with many differences between repeti-
tions. For example, a typical gene in terms of coverage in
the Ingolia-2009 [10] dataset appears in Fig. 3a, with a
coverage as low as 8 % (this is in fact the 3™ quartile,
with a coverage higher than that of 75 % of the genes).
The correlation between measured read counts at every
nucleotide position in replicates for this transcript was
0.24 (p = 2x107'°) (Fig. 3b), a significant but rather weak
correlation (only 5.8 % of the variance of the read count
profile of one replicate can be explained by the second
one). We computed per-position correlations for the entire
transcriptome between replicates in the 15 experiments
(Fig. 3c). For example, the median correlation between two
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Fig. 1 Comparison of ribosomal densities. a Scatter plot for all genes in zebrafish, where the x-axis represents the Ribo-seq read count density
(RCD) of a gene in one replicate of the Bazzini-2012 dataset [14] (WT, 6hpf), while the y-axis represents RCD in a second replicate. Spearman’s rho,
p-value and the number of points are denoted above the plot. This is the lowest correlation obtained between replicates in this analysis. b Same
for the Ingolia-2011 dataset [38] (w/LIF, 60s CHX). This is the median correlation obtained between replicates in this analysis. ¢ Same for the Brar-2012
dataset [12] (meiotic stage). This is the highest correlation obtained between replicates in this analysis. d The correlation between all pairs of replicates
for all genes and for the subset of 20 % highly expressed genes in each dataset

AL sacCer / Ingolia-2009 B s escCol / Li-2012

S 045 ) W ntreads S 045 BN ntreads

= 040 l I gene-reads < 040 J ! I gene-reads
Q 035 o 1 Q 035 N

030 N 030

S0 S0

g 020 s v g 020

= 0.15 UL = 0.15

2 0.10 ‘ * P, 2 0.10

S 0.05 B VIS USU R . S 0.05 ooce 0o o

n n 000000, 0000000000000000000 0 6 © ©

0.00 0.00 .
107" 10° 10° 102 103 10* 107" 10° 10° 102 103 10* 10° 10°
total = RC1+RC2 total = RC1+RC2

C 050 caeEle / Stadler-2011 D 050 musMus / Ingolia-2011

g 0.45 . I nt-reads % 0.45 ? I nt-reads

= 040 ‘ I gene-reads < 040 I gene-reads
o XN | %)

g 035 o4 g 035

I 0.30 . 1 0.30

§o2s i ol 5025

© 040 0°, ©

S 0.20 o’ 0% S 00, S 020

< 015 8 ® ""M’V - . < 015

L]

> 010 o WA ose® e > 010 o .

S 0.05 . S 0.05 N PO

2] 2]

0.00 0.00
107 10° 10° 102 10° 10* 107 10° 10° 102 10° 10* 10°
total = RC1+RC2 total = RC1+RC2

Fig. 2 Local and global reproducibility in RP replicates. The figure presents the inter-replicate variance for a measured nucleotide position in the
transcript (blue) and for complete genes (red). Y-axis is the standard deviation of the fraction of total read counts (RCs) measured in replicate 1
(read count 1, RC1), while the X-axis denotes the total number of read counts in that position in both replicates (RC1, RC2). Each point (bin) is
based on the standard deviation of 1000 positions in the dataset for nt-reads, or 100 positions for gene-reads. The confidence in the measurement
increases (the variance decreases) with the total read count, as expected. The difference between the two profiles indicates that additional noise and bias
exist at the nucleotide level, that is considerably higher than in the gene level. This noise/difference is evident even after the profiles reach plateau, and its
gain varies from experiment to experiment. Repeated for: a Ingolia-2009 [10]; b Li-2012 [36]; ¢ Stadler-2011 [26]; d Ingolia-2011 [38]
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Fig. 3 Comparison of position-specific occupancies. a Two measured profiles for the S. cerevisiae gene YMR272C from replicates in the Ingolia-2009
dataset [10]. Bars represent the approximated location of the A-site (15 nt downstream from the 5" end of the measured read). The average coverage
in this profile is 84 % (7.4 % in the first replicate and 9.5 % in the second one). This is the 3 quartile transcript according to coverage in this dataset
(its coverage is higher than that of 75 % of the genes). b Scatter plot of the respective read counts in all nucleotide positions, in each of the replicates
for the transcript in panel (a). Spearman’s rho, p-value and the number of points are denoted above the plot. ¢ The median per-position correlation
between all pairs of replicates for all genes and for the subset of 20 % highly expressed genes in each dataset

transcripts appearing in the Ingolia-2009 dataset [10] is
0.12 (p=>5.7x10"®). Similarly, in most ribosome profiling
experiments analyzed we found that the median correlation
in the genome was below 0.4 (16 % of the variance of the
read count profile of one replicate can be explained by the
second one), indicating that the profiles are not reprodu-
cible at the nucleotide level. The 20 % highly expressed
genes in each experiment showed higher correlations, but
still typically below 0.6 (36 % of the variance of the read
count profile of one replicate can be explained by the sec-
ond one). Highly expressed genes have a higher RCD and
tend to have profiles of higher coverage, leading to a higher
number of reads per position and to a higher confidence in
their count per position, which promotes reproducibility
(Fig. 3¢). It should be noted that we obtained similar results
for datasets that were generated using various RP protocol
variants, including such that avoided pre-treatment of the
samples with cycloheximide before lysis [23, 26, 36, 44].
Similar conclusions regarding the local and global reprodu-
cibility of RP were obtained via different measures, demon-
strating the robustness of these conclusions (Fig. 2).

Estimation of the increase in local RP robustness as a
function of the level of resolution

In order to estimate the resolution of profiles better, and
to test whether the integration of additional reads can im-
prove correlations, we utilized sliding window averaging

to smooth the profiles (Fig. 4a). The smoothed profiles
showed increasing per-position correlations for growing
sliding window sizes, with the maximal correlation obtained
for the largest window size (300 nt), as expected from
undersampled profiles (the median correlation was 0.15 for
a 3 nt-window, 0.23 for a 10 nt-window, 0.29 for a 30-nt
window and 045 for a 300 nt-window, see Fig. 4b). The
smoothed profiles integrate over more reads than the raw
profiles in order to estimate the occupancy at a given pos-
ition, interpolate values for missing positions, and are less
sensitive to small shifts in the mapping of reads. We tested
to what extent the coverage and depth (average count of
reads mapped to each position in the transcriptome, i.e.,
the total read count density) of an experiment can predict
the reproducibility of the results. To this end, we plotted
the median per-position correlation of all pairs of replicates
against the depth of the combined replicates (details in
Methods), for all genes (Fig. 5a), and for the subset of
highly expressed genes (Fig. 5b). The results suggest that se-
quencing depth should be exponentially increased to raise
the correlation between profiles (a correlation of 0 for 0.02
reads/nt in Bazzini-2012 [14] up to a correlation of 0.63 for
48.7 reads/nt in Li-2012 [36]); thus our analysis provides a
way to estimate the expected intra coding sequence repro-
ducibility when deciding on the sequencing depth. Similar
results were obtained when plotting the correlation against
the depth of individual genes (Fig. 5c). In addition, we
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Fig. 4 Smoothing of profiles using sliding windows. a Zoom-in on YMR272C (see also Fig. 3a), showing the smoothed profile for various averaging
windows. The correlation between the profiles increases with the window size. b The median per-position correlation between all pairs of replicates
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plotted the same per-position correlations against the aver-
age coverage of replicates (Fig. 5d—e), with results suggest-
ing a linear relation between coverage and the expected
correlation (an increase of 10 % in coverage is related to an
increase of 0.09 in the correlation coefficient). When look-
ing at the correlations and coverage of individual genes,
many of the experiments show a linear relation, with some
small deviations (Fig. 5f). While each experiment shows a
trend that is consistent with a single linear model, the
model parameters differ between experiments. This diver-
sity may be attributed to other parameters that determine
the amount of noise in the experiment, such as the protocol
being used, the conditions during its execution, the organ-
ism studied etc.

Typically 30 % of the RP extreme peaks are reproducible

In the next step, we tested the reproducibility of ex-
treme values in the profiles. Peaks in ribosome profiles
have been suggested to represent pauses in translation
and have been analyzed to determine pausing factors in
the sequence [13, 36, 38, 45]. Peaks vary in their fre-
quency between experiments and are typically detected
in 0.1-1 % of the genome (details in Methods). We de-
fined a peak detection reproducibility score as the frac-
tion of total detected peaks in two profiles (replicates)
that have corresponding peaks in the other replicate,
within an error of 3 nt (Fig. 6a). We computed this score
for all genes in all pairs of replicates, and found that
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median peak reproducibility over all experiments is
30 % (Fig. 6b). As with the previous tests, highly
expressed genes showed higher consistency (the median
peak reproducibility is 40 %). These results demonstrate
that also extreme peaks tend to be irreproducible.

Discussion

It is important to mention that we limited our analyses
only to a number of aspects that may affect reproducibil-
ity. The variance between the studied datasets suggests
that many other factors play a significant role in determin-
ing the consistency between replicates and the conclu-
sions of different studies. Among others, additional noise
and biases may rise from various further sources: from
steps in the experimental protocol such as elongation halt-
ing [19, 46], RNA digestion, rRNA filtering, etc.; from gen-
ome construction and annotations; from read mapping
biases; from analysis of a (very) small subset of reliable
genes. Thus, as the analysis of the datasets was performed
here in a unified manner (where methods usually vary be-
tween studies) and focused on replicates from the same
experiment (conducted in very similar conditions), the re-
sults reported here are only an upper bound on reproduci-
bility of Ribo-seq analysis results, which is expected to be
much lower in practice (specifically when comparing the
results obtained based on different experimental protocols
and computational procedures).
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Fig. 6 Peak detection consistency. a Two measured profiles for the S. cerevisiae gene YNLO1OW from replicates in the Ingolia-2009 dataset [10].
Bars represent the approximated location of the A-site (15 nt downstream from the 5" end of the measured read). Detected peaks in each profile
are denoted with a star. 43 % of all identified peaks have corresponding peaks within 3 nt of their identified position in the other replicate. This is
the 4™ quintile transcript according to its peak detection reproducibility score in the dataset. b Peak detection score between all pairs of replicates, for
all genes and for the subset of 20 % highly expressed genes in each dataset
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Our study demonstrates that usually we should be very
cautious when analyzing RP at the intra-coding region
nucleotide(s) level; if such an analysis is performed it
should be based on statistical approaches tailored for
dealing with this challenging data or should include vari-
ous filtering steps. We also suggest to evaluate the ex-
pected reproducibility before starting the analysis/
experiments, as described here.

Indeed, more elaborate models can be utilized to deal
with bias and noise in the data without discarding informa-
tion. Ingolia et al. [38] improved the mapping of the A/P-
sites by estimating the location of the site along reads that
mapped directly upstream the start/sop codons. Oh et al.
[23] assigned ribosome protected footprints in 1-16 nt long
smoothed footprints, depending on the footprint length,
thus adjusting the effective resolution of the profiles. Artieri
and Fraser [21] performed bias correction by normalizing
the observed RP read counts using the corresponding
RNA-seq read counts at the same positions. Recently, a
multi-scale approach for analyzing RP profiles at an adap-
tive resolution while correcting for biases has been pro-
posed by Gritsenko et al. [47]. In Dana and Tuller [11] the
noise in RP read counts was modeled as a combination of
independent random variables (signal and noise), in order
to filter out the latter.

One possible approach to alleviate the issues discussed
here is to conduct larger/high-coverage experiments, as
we show that reproducibility is strongly correlated with
depth and coverage. Sequencing depth can also be par-
tially increased by improved preparation of the RP library
in order to avoid contamination, e.g., by rRNA fragments
[18]. However, it should be noted that the plots in Fig. 5
are in logarithmic scale, and the reproducibility does not
grow very quickly. For instance, in order to achieve an ex-
pected correlation of 0.9 between replicates, according to
Fig. 5b, we would need a sequencing depth of 105 reads
per base. Such a transcriptome-wide sequencing depth
would require approximately 400 M mappable reads for a
small transcriptome like E. coli’s, but closer to 4,000 M
mappable reads for the human, mouse or zebrafish tran-
scriptomes — 2-3 orders of magnitude higher than recently
published RP papers. Authors should be encouraged to re-
port the extent and scale of their experiments clearly in
every study; this is specifically important when local
nucleotide-level signals are reported. Another approach
that is more readily available is rigorous statistical hand-
ling of the data. The experience gained since ribosome
profiling was first proposed has led to the development
of a number of techniques to reduce noise in the data.
The most common of which is gene filtering, either ac-
cording to read count threshold [10, 14, 23, 36, 38, 43,
48, 49], coverage threshold [11, 13], or by comparing to
a reference null distribution [50]. Reads are usually fil-
tered according to their length, with approaches that
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vary from strict [30, 37] to more relaxed ones [10]. Ac-
ceptable alignments to the genome are also subject to
constraints, from 0 mismatches and unique alignment
[21, 37], to 2 mismatches and handling of multiple
alignments [11]. Another form of filtering is ignoring
the 5-end and/or 3’-end of ORF [11, 13, 21]. When
detecting transcripts with differential changes in read-
counts, genes with inconsistent results between repli-
cates can be filtered out [43].

Here we provide an additional approach for handling
data as the plots reported here can be used for evaluation
of the RP data and for choosing the resolution of the ana-
lyses according to the desired reproducibility level.

The challenges in analyzing RP data that arise from
this report call for the continuation of development and
enhancement of robust and tailored statistical methods.

Conclusions
In this study we provide, for the first time, an objective
evaluation of RP reproducibility at different levels of
intra-coding region resolution for various organisms and
RP protocols.

Our main conclusions are that that the level of noise in
measured ribosomal densities at nucleotide(s) scale is con-
siderably higher than previously thought, as signals at this
level are not reproduced well in experimental replicates.
Our analyses indicate that this holds even when ignoring
80 % of the genes with lower expression levels in the gen-
ome. Furthermore, various protocol variants, including
such that avoided pre-treatment of the samples with
cycloheximide before lysis, showed similar levels of per-
formance in our analyses. This issue has important impli-
cations to many of the intra-coding region analyses done
on ribosome profiling data, and may explain some of the
discrepancies between the conclusions of different studies
in the field; nevertheless, it hasn’t been systematically
studied and discussed in the literature.

Methods

Genome sequences

Transcript sequences were obtained from EnsEMBL
[51]: S. cerevisiae (R64-1-1, release 78, 12/2014), M.
musculus (GRCm38, release 78, 12/2014), H. sapiens
(GRCh38, release 80, 5/2015), D. rerio (GRCz10, release
81, 7/2015), C. elegans (WBcel235, release 81, 7/2015),
E. coli (K-12 MG1655 release 121, accessed 28/07/15).
We used annotated UTRs where available, and otherwise
used up to 100 nt upstream and downstream the ORF
that didn’t overlap another ORF. Each gene was repre-
sented by its longest annotated transcript.

Mapping reads
We selected a wide range of datasets from multiple stud-
ies, labs, protocol variants and organisms that contained
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at least two replicates that could be analyzed and com-
pared. Details on datasets and replicates appear in Table 1.
We trimmed adaptors from the reads using Cutadapt [52]
(version 1.8.3), and utilized Bowtie [53] (version 1.1.1) to
map them to the transcriptome (representing each gene by
its longest annotated transcript). In the first phase, we dis-
carded reads that mapped to rRNA and tRNA sequences
with Bowtie parameters ‘—n 2 —seedlen 23 —k 1 —norc’. In
the second phase, we mapped the remaining reads to the
transcriptome with Bowtie parameters ‘-v 2 —a —strata
—best —norc —m 200’. When the 3’ adaptor contained polyA
we tried to extend alignments to their maximal length by
comparing the polyA with the aligned transcript until
reaching the maximal allowed error (2 mismatches across

Table 1 Dataset summary
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the read, with 3-end mismatches avoided). We filtered out
reads longer than 34 nt and shorter than 27 nt. Unique
alignments were first assigned to the ribosome occupancy
profiles. For multiple alignments, the best alignments in
terms of number of mismatches were kept. Then, multiple
aligned reads were distributed between locations according
to the distribution of unique ribosomal reads in the respect-
ive surrounding regions. To this end, a 100 nt window was
used to compute the read count density RCD; (total read
counts in the window divided by length, based on unique
reads) in vicinity of the M multiple aligned positions in the
transcriptome, and the fraction of a read assigned to each
position was RCD,/xM 1RCD;. The location of the A-site
was approximated by a 15 nt shift from the 5 end of the

Organism Dataset Condition Treatment Replicate Type Accession
C. elegans Stadler_2011 [26] L1 post CHX repl biological SRR405089
rep2 SRR405091-2
Stadler_2012 [44] L1 post CHX repl biological SRR522871
rep2 SRR522872
rep3 SRR522896
rep4 SRR522897
D. rerio Bazzini_2012 [14] WT, 2hpf pre/post CHX repl biological SRR392998-9
WT, 6hpf rep2 SRR393000-1
repl SRR393006-7
rep2 SRR393008-9
E. coli Li_2012 [36] MOPS post GMPPNP+ repl biological SRR407274-5
Chloramphenicol rep2 SRR407276-7
Oh_2011 [23] DSP pre/post repl biological SRR364364
Chloramphenicol rep2 SRR364366
rapid filtration rep3 SRR364368
H. sapiens Stadler_2011 [26] Hela, CHX post CHX repl technical SRR407637
rep2 SRR407638
Lee_2012 [54] HEK293T, CHX pre/post CHX repl technical SRR618770
rep2 SRR618771
Liu_2013 [45] Hela-tTA, K71TM pre/post CHX repl biological SRR619099
rep2 SRR619100
Stumpf_2013 [50] Hela, G1 pre/post CHX repl biological SRR970490
rep2 SRR970538
Andreev_2015 [48] HEK293T, control post CHX repl biological SRR1173905
rep2 SRR1173909-10
M. musculus Inoglia_2011 [38] mESC, nolLIF-36 h pre/post CHX repl biological SRR315620-2
mESC, yesLIF rep2 SRR315623
repl SRR315601-2
rep2 SRR315624-6
rep3 SRR315627
S. cerevisiae Ingolia_2009 [10] YPD pre/post CHX repl biological SRR014374-6
rep2 SRR014377-81
Brar_2012 [12] meiotic pre/post CHX repl biological SRR387904
rep2 SRR387905
Artieri_2014 [43] YPD, mixed pre/post CHX repl biological SRR1040415
\w S. paradoxus rep2 SRR1040423,
SRR1040427
McManus_2014 [49] YPD pre/post CHX repl biological SRR948553
rep2 SRR948555

Details for all analyzed datasets are provided. The Treatment column denotes which drug was used to arrest translation and whether it was added pre- and/or post-lysis
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aligned read [21, 26, 35]. We verified that our mapping ap-
proach vyields similar profiles to previously published ones
[14, 49] (Additional file 1). While additional (or less) heuris-
tics can be applied during mapping, our mapping approach
serves as a baseline to compare the replicates using a
unified method, thus eliminating differences that often arise
from the choice of mapping and/or analysis methods be-
tween studies. Optimizing the mapping procedure of Ribo-
seq data remains an open question and deferred to future
studies.

Replicate testing

Data analysis was performed in Python 3.4 (Anaconda
distribution, version 2.3.0) and plotting was done using
the Seaborn package (version 0.7.0). All tests in this
study are based on comparing a pair of replicates. To
this end, we generated all unique pairs between experi-
mental replicates (a total of 26 pairs from 15 publica-
tions/datasets). Some of the analyses, such as coverage
and depth calculation, were performed independently
for each replicate and then averaged or summed to as-
sign the pair with a single value (for example, see Fig. 5a,
and details below). When taking the subset of highly
expressed genes, we analyzed genes that were in the top
20 % of genes’ ribosomal densities in both replicates. All
analyses were performed only on ORFs.

Correlations

All correlations are Spearman rank correlations unless
stated otherwise. Ribo-seq read count densities (RCD)
were computed by summing all reads that mapped to
the ORF and dividing by ORF length (see Fig. 1a-c). Per-
position correlations were computed separately for each
gene by computing the correlation between two replicate
profiles, including all positions in the ORF. The median
correlation of all genes in the genome was used as a
summary statistic in Figs. 3c and 4b.

Profile smoothing

Smoothing was done using a sliding window in various
sizes. Each “nucleotide” in the smoothed profile repre-
sents the average over 3, 10, 30, 100 or 300 nucleotides
around it in the raw profile (see Fig. 4a). Averaging was
calculated uniformly over the window. Genes shorter
than the window were discarded.

Depth and coverage

Depth was defined as the average number of times every
nucleotide in the genome appeared in the 5" of a ribo-
some protected fragment (read). That is, the read count
density of the genome (total read count divided by the
total length of ORFs). This value is directly related to
the sequencing depth of the experiment. When com-
puted for individual genes (see Fig. 5c), the read count
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density of the gene (total read count divided by ORF
length) was utilized as depth. In order to represent a
replicate pair we utilized their total depth, i.e., the sum
of their depths.

Coverage was defined as the percentage of non-zero
positions in a gene, and the total coverage was defined
as the average coverage of all genes. For a replicate pair,
the coverage was the average coverage of the two. This
value is not only related to sequencing depth, but also to
the number of unique ribosome protected fragments
that were sampled in the library (which is related to the
number of cells, number of mRNA molecules and num-
ber of ribosomes on each molecule).

Peak detection score

We defined a peak detection threshold that was calculated
for each gene independently. The threshold was set to be
3 standard deviations above the median, as calculated over
all non-zero positions in the gene. When testing for peak
detection reproducibility we accepted the reproduction of
a peak if the other replicate had a detected peak within
3 nt upstream or downstream the original peak. The peak
detection score is the probability of a detected peak to be
reproduced, as estimated by the fraction of all identified
peaks in the transcriptome that were successfully repro-
duced in the two replicates (see Fig. 6a).

Reviewers’ comments
First Review
Reviewer’s report 1: Dmitrij Frishman, Technische
Universitdt Miinchen, Germany
Reviewer summary

This is a very useful and timely study, which might ex-
plain, at least to some extent, the recent controversial
results in analyzing various aspects of mRNA structure,
function, and evolution based on ribosomal profiling
data. The paper is very well written and its technical
quality is very good.

Reviewer recommendations to authors

— What I found a little confusing is the statement on
page 7, which seems to suggests that reproducibility
of the results quickly grows with increased
sequencing depth. What are the implications of this
finding? Does that mean that the problem can be
fixed by deeper sequencing?

— The authors implemented their own pipeline for
processing NGS data and obtaining ribosomal
occupancy profiles from each experiment. I would
be interested to know whether the profiles they
derived are similar to those provided by the authors
of the original experimental studies. This could
provide some insight as to how much depends on
the particular approach for processing reads.
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— Would it make sense to present results separately
for technical and biological replicates (Table 1)?

Minor issues

— Why is there only the red point in Fig. 1d for the
dataset “sacCerBrar2012” ?

— X-axis label in Fig. 2 is confusing and not explained
(RC1,RC2)

— Explain the meaning of the yellow area in
Figs. 5a, b, d, e

Authors’ response: Thank you for the valuable
comments. Below are our point-by-point responses.

— The reproducibility of the results indeed grows with
the sequencing depth/percentage of sequence covered
by reads. However, it should be noted that the plots
in Fig. 5 are in logarithmic scale, and the
reproducibility does not grow very quickly. For
instance, in order to achieve an expected correlation
of 0.9 between replicates, according to Fig. 5b, we
would need a sequencing depth of 105 reads per
base. Such a transcriptome-wide sequencing depth
would require approximately 400 M mappable reads
for a small transcriptome like E. coli’s, but closer to
4000 M mappable reads for the human, mouse or
zebrafish transcriptomes — 2-3 orders of magnitude
higher than recently published papers. Finally, there
are many additional sources of error/bias in RP
experiments, as discussed in the manuscript.

— We included in the revised manuscript a comparison
between the profiles we generated and two previously
published profiles in S. cerevisiae and in D. rerio
(see Additional file 1). The results show a high
correlation between the two mappings in both cases.
However, it should be noted that in most cases
aligned/further-processed profiles were not provided
by the authors. In addition, even if such profiles exist,
they were often generated using different reference
genomes/gene annotations as these are frequently
updated. The comparison is further complicated
when additional non-trivial steps were taken to
produce the profiles, such as smoothing or various
methods for the estimation of the location of the
A-site of the ribosome.

— Provided that only two of the replicates are technical
replicates, we leave it to the reader.

— We fixed Fig. 1D where one red dot covered a blue
dot with a similar y-axis value.

— We added a clearer description to the legend of Fig. 2.
— The area denotes the 95 % confidence interval of the
regression parameters. We added a clarification to

the figure legend.
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Reviewer’s report 2: Eugene Koonin, National Institutes of
Health, United States
Reviewer summary: In this straightforward paper, Dia-
ment and Tuller analyze the consistency between experi-
mental replicates in ribosomal profiling experiments and
show that it is high at the level of whole genes but low
at the level of individual nucleotides or short segments.
Thus, at present the RP data appear not to be truly
informative for the interpretation of the role of local fea-
tures (such as, for instance, short hairpins in mRNA)
which could explain various contradictions that have
accumulated in the literature. Quite strikingly, the local
accuracy is shown to be low even for subsets of highly
expressed genes. As far as I can see, the analysis is well
done and carefully presented. The authors make several
suggestions how to extract more information from RP
results without discarding the data or seeking a major
experimental breakthrough. I believe these findings are
important for any researcher involved in RP experiments
or using the RP data for other analysis, which is a large
and growing segment of the scientific community.

Reviewer recommendations to authors: I think all is
well done, no suggestions.

Minor issues: No such issues.

Authors’ response: We thank Prof Koonin for his
endorsement.

Reviewer’s report 3: Frank Eisenhaber, Agency for Science,
Technology and Research Singapore
Reviewer summary: The authors review the ribosome
profiling (ribo-seq) methodology as a tool for studying
translation and the biological results obtained with it as
reported in recent literature.

Reviewer recommendations to authors

1) The article is written as if all readers are well informed
about the ribo-seq method and its possible applications.
I suggest the authors to add another section at the
beginning of the results where they describe the
procedure in detail including the post-experimental
data processing and conclusion chain (instead of just
referring to the original articles. Along this description,
the authors can critically remark where are issues
of complications with regard to experimental or
numerical inaccuracies, assumptions that are not
fully supported by evidence, etc. In the later part of
the MS, these issues can then be argued with the
help of data taken from the 15 studies used.

2) What is labelled “conclusions” in the MS, is rather
an elongated discussion section.

Minor issues: none.
Authors’ response: Thank you for your comments.
Below are our point-by-point responses.
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1) We added a description of the ribo-seq method to the
introduction of the paper, along with references to
recent papers that review the experimental protocol
in detail and point to sensitive steps in the process.

2) We re-organized the manuscript and divided the last
section into discussion and conclusions.

Second Review

Reviewer’s report 1: Dmitrij Frishman, Technische
Universitéit Miinchen, Germany

I am happy with the revision.

Reviewer’s report 2: Eugene Koonin, National Institutes of
Health, United States
No comments

Reviewer’s report 3: Frank Eisenhaber, Agency for Science,
Technology and Research Singapore
It appears to me that Dima Frishman has been labelled
as reviewer two times in the answers. I guess that my
name should appear as referee 3.

Authors’ response: Sorry. This was fixed.

Additional file

Additional file 1: Comparison of mapped RP profiles in this study with
previously published ones. (A) Scatter plot for all yeast genes, where the
x-axis represents the RPKM of a gene in the profiles generated in this
study from a replicate of the McManus-2014 dataset (GSM1259974), while
the y-axis represents the RPKM of a gene in the profiles published by the
authors as bedGraph files in sacCer3 strand-specific genomic coordinates.
Since the bedGraph profiles were smoothed by the authors by assigning
values to all bases covered by the aligned ribosome protected fragment,
we performed similar smoothing to our profiles using a 30 nt window.
Spearman’s rho, p-value and the number of points are denoted above
the plot. (B) Histogram of the position-specific correlations for yeast
genes between the mapped profiles in this study and the ones provided
by McManus et al. (median correlation r=0.90). (C) Same as (A), for the
Bazzini-2012 dataset based on smoothed profiles provided by the authors
in GSM854439 in zv9 genomic coordinates (not strand-specific). (D) Same as
(O), for the Bazzini-2012 dataset (median correlation r=0.75). (PNG 839 kb)
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