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Background: Epidermal Growth Factor Receptor (EGFR) is a well-characterized cancer drug target. In the past,
several QSAR models have been developed for predicting inhibition activity of molecules against EGFR. These
models are useful to a limited set of molecules for a particular class like quinazoline-derivatives. In this study, an
attempt has been made to develop prediction models on a large set of molecules (~3500 molecules) that include
diverse scaffolds like quinazoline, pyrimidine, quinoline and indole.

Results: We train, test and validate our classification models on a dataset called EGFR10 that contains 508 inhibitors
(having inhibition activity 1Csq less than 10 nM) and 2997 non-inhibitors. Our Random forest based model achieved
maximum MCC 049 with accuracy 83.7% on a validation set using 881 PubChem fingerprints. In this study,
frequency-based feature selection technique has been used to identify best fingerprints. It was observed that
PubChem fingerprints FP380 (C(~O) (~0)), FP579 (O = C-C-C-C), FP388 (C(:C) (N) (N)) and FP 816 (CICTCC(BrCCCT)
are more frequent in the inhibitors in comparison to non-inhibitors. In addition, we created different datasets namely
EGFR100 containing inhibitors having ICsq < 100 nM and EGFR1000 containing inhibitors having ICso < 1000 nM. We
trained, test and validate our models on datasets EGFR100 and EGFR1000 datasets and achieved and maximum MCC 0.58
and 0.71 respectively. In addition, models were developed for predicting quinazoline and pyrimidine based EGFR inhibitors.

Conclusions: In summary, models have been developed on a large set of molecules of various classes for discriminating
EGFR inhibitors and non-inhibitors. These highly accurate prediction models can be used to design

and discover novel EGFR inhibitors. In order to provide service to the scientific community, a web server/standalone
EGFRpred also has been developed (http://crdd.osdd.net/oscadd/egfrpred/).

Reviewers: This article was reviewed by Dr Murphy, Prof Wang and Dr. Eisenhaber.
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Background

Epidermal Growth Factor Receptor (EGFR) is a member
of the receptor tyrosine kinase family. It is involved in
the regulation of several critical processes such as cell
proliferation, survival, adhesion, migration and differen-
tiation [1,2]. It is one of the most studied cancer drug
target [3], whose aberrant activity has been associated
with a number of cancers [4]. Since, inhibition of EGFR
has been demonstrated to have therapeutic potential.
Thus, a large number of tyrosine kinase inhibitors have
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been designed in past [5]. The treatment of patients with
EGFR based inhibitors as targeted therapy thus has
shown a significant reduction in the cancer progression.
As a result, a large number of researchers have continu-
ously synthesized small molecules and investigated them
for anti-EGFR activity using a variety of in vitro cellular
and enzymatic assay systems. This has resulted in the
identification of a range of bioactive compounds making
a large volume of biological and structural information
available in the public domain. These hundreds of small
molecules belong to various distinct chemical classes such
as pyrimidine, quinazoline and indole. Although, the
number of active EGFR inhibitors is steadily expanding,
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yet the search for newer EGFR inhibitors is still a sig-
nificant scientific challenge.

In the recent years, various structure and ligand-based
approaches like virtual screening [6], molecular docking
[7], QSAR [8,9] and pharmacophore modeling [10] have
been widely exploited for identifying new EGFR inhibitor
molecules. QSAR models generated in the past have
been developed using single scaffold based analogues
along with experimental data generated by a single bio-
assay system [11-14]. These models have been developed
on a limited set of molecules for a particular class, and
thus the predictive coverage is limited. Thus, there is a
need to develop a single model that can cover wide
ranging inhibiting molecules from various classes of
chemicals. Unique model for diverse molecules is also
important in identification of chemical component/
properties (e.g., structural-fragments) that contribute to
inhibitory bioactivities of EGFR inhibitors. In the present
study, we have used a large dataset of ~3500 diverse
molecules for understanding structure-activity relation-
ship and for developing QSAR-based prediction models.
We develop models using various machine-learning
techniques (e.g., random forest) for predicting inhibition
potential of a molecule. We identify important scaffolds/
substructures/fingerprints that play a significant role in
discrimination in EGFR inhibitors and non-inhibitors.
As the coverage of chemical space offered by this model
is large, for this reason the application of this system is
expected to be high.
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Results

Frequency of functional groups

We used chemmineR [15] to calculate the various
functional groups frequency in EGFR10 inhibitors and
EGFR1000 non-inhibitors (inhibitors having ICsgvalues
greater than 1000 nM). We observe from the functional
group frequency distribution that the number of the sec-
ondary amines (R2NH), tertiary amines (R3N), and rings
are higher in the most active EGFR inhibitors (Figure 1).
Almost all the 4-anilino quinazoline based EGFR small
molecule kinase inhibitors that compete for ATP binding
site contains this functional group (R2NH). On one side
of Nitrogen is the core group, which is responsible for
making hydrogen bonds with EGEFR active site residues
while on the other side, stabilizing group is present that
extends into the cleft for tighter interactions with the
enzyme. It is in accordance with the known biological
information that the most active EGFR inhibitors like
gefitinib drug demonstrate the above characteristics
(Figure 2). Thus, it indicates that use of the above func-
tional groups, as backbone moiety is helpful for designing
inhibitors active against EGFR.

Maximum common substructures (MCS)

The MCS module of Chemaxon (http://www.chemaxon.
com/) was used to find the maximum common substruc-
tures in EGFR10 inhibitor dataset. We mainly find that
three structural scaffolds (4-anilino quinazoline, indole
and anilino thienopyrimidine) dominate within the dataset

Average frequency of various functional groups in EGFR datasets
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Figure 1 Average frequency with standard deviation of various functional groups in inhibitors and non-inhibitors of EGFR10 and
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Figure 2 Shows EGFR inhibitor gefitinib marked with two frequently occurring functional groups (R2NH and rings).

Rings

(Figure 3). The presence of 4-anilino quinazoline sub-
structures is as per the expectation, as these are present
in known drugs gefitinib and erlotinib. Consequently,
chemists worldwide have been synthesizing, and testing
analogues having these moieties to identify new molecules
with higher potency. In addition, in the previous studies,
analogues of anilino thienopyrimidines have been gener-
ated and demonstrated activity in the low nanomolar
range against EGFR [16-18]. We also find substituted
anilines (halogenated anilines) that are present in EGFR
inhibitors like gefitinib, EKB-569, lapatinib and act as
linkers have high frequency of occurrence (Figure 3). As
depicted in Figure 3, we observe that the 1st substructure
is aniline that is attached to the quinazoline in Anilino-
quinazoline, while the 2nd substructure occurs in two
known EGER inhibitors gefitinib, EKB-569. The 3rd sub-
structure is quinazoline ring; 5th substructure is indole,
and the 6th substructure is a part of Lapatinib, a well
known EGEFR inhibitors. This analysis gives us indication
that new analogues synthesized using these skeletons
would have a better probability of exhibiting significant
binding interactions and activity against EGFR.

Analysis of fingerprints

Using our fingerprint selection approach we found that
PubChem fingerprint (FP) 816 (CIC1CC(Br)CCC1), FP815
(CIC1CC(Cl)CCC1), FP380 (C(~O) (~0O)), FP579 (O =C-
C-C-C), FP388 (C(:C) (:N) (:N)), FP661 (C-C=C-C-C)
and FP613 (C-N-C-C-C) are among the best fingerprints
for discrimination of EGFR inhibitors as opposed to non-
inhibitors (Table 1). As evident from Figure 4, PubChem
FP816 and PubChem FP815 are highly similar cyclic
structure with bromine or chlorine substitution at ortho
and para position indicating that the presence of halogens
attached to a cyclic structure influences the activity against
EGFR. The PubChem FP186 state the presence of >= 2
saturated or aromatic carbon-only ESSSR (canonic Ex-
tended Smallest Set of Smallest Rings) ring size 6. We also
observed high frequency of PubChem FP388 substructure
of 4- anilinoquinazoline in active inhibitors. A number of
derivatives of 4- anilinoquinazoline are inhibitors of EGFR
[19-21]. The PubChem FP661, FP613 and FP579 are in
essence part of the ring structure, which appeared to be ali-
phatic in nature. It is interesting to note that best positive
fingerprints are non-aromatic and aliphatic in nature.
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Figure 3 Maximum common substructures (MCS) and their count found in active/inhibitors of EGFR10 dataset.

Thieno-
pyrimidine

Substituted
aniline

Indole

e @

35 29 21




Singh et al. Biology Direct (2015) 10:10

Page 4 of 12

Table 1 List of best 10 positive and negative fingerprints that occurs more frequently in inhibitors and non-inhibitors

of EGFR10 dataset respectively.

Best 10 positive fingerprints

Best 10 negative fingerprints

Fingerprint Number Freq. (+) Freq. (-) Diffe-rence Fingerprint Number Freq. (+) Freq. (-) Diffe-rence
380 71.85 4364 2821 698 21.26 4515 —-23.89
579 75.79 52.82 2297 673 8.27 31.80 -2353
189 38.78 17.35 2143 690 5748 76.51 -19.03
388 67.52 4641 ARN 700 1929 3800 -18.71
816 24.21 6.24 17.97 714 3.54 2042 -16.88
815 32.68 16.68 15.99 145 30.31 45.28 -14.96
374 39.96 27.06 12.90 701 1437 28.50 -14.13
613 32.87 20.95 11.92 669 2.17 1592 -13.75
661 31.50 19.82 11.68 195 6.50 18.02 -11.52
348 40.16 29.50 10.66 382 256 11.61 —9.05

Classification based on best fingerprints

In order to understand, whether combining the best
fingerprints for classification purpose would increase
the efficiency of the classification or not. Therefore, we
have combined the best 10 positive and best 10 negative
to make best 20 fingerprints as described in Additional

file 1: Table S2, S3. For each compound the best 20 finger-
prints were summed, accordingly a compound having
zero score has equal number of positive and negative
fingerprints. If a compound has>= 1 score, positive
fingerprints dominate over negative fingerprints, and
we classify the compound as EGFR inhibitor. Similarly,

clcicc(Brcccl cicicc(clhcect C(-0)(-0)
FP-816 FP-815 FP-380
0-C-0-C-C C-N-C-C-C
FP-661 FESOLD
0=C-C-C-C C(:C)(N)(:N)
FP-579 FP-388
Figure 4 Structural representation of PubChem fingerprints found more frequently in inhibitors as compare to non-inhibitors.
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for the compound having score below zero means nega-
tive fingerprints dominate over positive fingerprints and
the compound was classified EGFR non-inhibitor. It was
observed that neither positive nor negative fingerprints
achieved a reasonable sensitivity and specificity. The bal-
ance results were obtained at score < =0 and > =1, where
equal number of positive and negative fingerprints were
present. We obtained 71.7% sensitivity, 64.6% specificity,
66.0% accuracy and 0.26 MCC (Figure 5). Thus, it can
be concluded that by combining best positive and best
negative fingerprints, reasonable sensitivity and specificity
can be achieved.

Model developed on EGFR10 dataset

We developed classification models for predicting inhibi-
tors using various algorithms/techniques that include IBK,
Bayes, Naive Bayes, SVM, and Random forest. These
models were evaluated using fivefold cross-validation and
881 PubChem fingerprints. It was observed that model
based on Random forest algorithm using 100 trees
performed best among various classifiers and achieved
accuracy 84.95% with MCC 0.49 (Table 2). Random forest
based models were developed using 881 fingerprints and
evaluated on the EGFR10 validation set and achieved
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accuracy 83.65% with MCC 0.49 MCC (Table 3). The
performance of models developed using best 10-100
fingerprints is slightly lower than model developed using
881 fingerprints. The algorithm of Random forest learn
the best fingerprints itself and the model developed using
881 fingerprints perform better.

Class specific models

In addition, we made an attempt to develop models for
predicting class-specific inhibitors. We developed models
on Pyrimidine for predicting Pyrimidine based inhibitors.
These models were evaluated on Pyrimidine class of
molecules using five-fold cross validation technique and
achieved maximum accuracy 86.92 with MCC 0.62
(Table 3). These models also evaluated on Quinazoline
class of molecules and achieved poor accuracy 58.88 with
MCC 0.21. Similarly we developed models on Quinazoline
dataset and achieved maximum accuracy 76.31 with MCC
0.45, when evaluated on Quinazoline class of molecules.
These models perform poor with MCC 0.27, when
evaluated on Pyrimidine class of molecules. It is clear
from results shown in Table 3, that models developed on
class-specific molecules are only suitable for that class of
molecules but not suitable for other class of molecules.

SO Sensitivity sz Specificity Accuracy == e=MCC
0000 (T TE TS Y TS 1S
¥ [¥ |Y I [} |Y |} I} [g
NININEININENERNENERNER
N N N N N R N R
Y [N [N [N I [§ |Y |Y [Y |Y
NEEREEERER NEEREERE R
S (Y [ I8 [ [N Y [Y [§|Y
N N N R N N N RN R
(X X (Y[R (8 | [Y [¥ |Y
NERERER NERERERER
SO [N I NN ININININ
L S N N N N N N N N
NN N RN R R RN Y
NININITNINENENENIRNDE N
e N N NN NN NN MR R
¥ (3 IX I} (R I¥ [} [ |] N
NITNINTNINENENER N R N
SN NN NNNMNN? N
N N | N N 5 N | N \
¥ I [} |} |} [} |¥Y]Y \EC N N
NEEREERER N i
40.00 —S——S——‘Q——S——S——S—Q—%Q 'S’zi —s
NNINNNNY AN N
Y |8 N X N N
SN NN NN AN NRINIR
B N N N NE N
N OIN [N |N X NN NE N
NERERER Y | NE NE NI
S NN Z S NIN I N NIN
A (Y ) N N NIN
NI NI RS N N N I
10.00 —s——s—”—il——g——S—Q —\\}g:— —s —S——s—
N | NE N by Ny : : :
Y N \.; Y NE N N \:5 NE o
0.00 L% NN I AN AN AN NE | O SB[ S8 | XN | 88 RE| W] 500
’ <=-10| <=9 | <=-8 | <=7 | <=6 | <=-5 | <=4 | <=-3 | <=- >=1 | >=2 >=4 | >=5 | >=6 | >=7 >=9 | >=10 '
>Oww Sensitivity | 100.0100.01100.01100.0199.8099.6199.02 |1 98.23|96.26 71.2663.58 41.73/30.1222.24|12.20| 5.51 | 2.95 | 0.00
sz Specificity | 0.00 | 0.17 | 1.10 | 3.44 | 6.71 [11.95[20.49|28.16[34.03 64.63|75.24 89.66|94.76|98.13]99.33/99.87/99.97| 100.0
Accuracy |14.00(15.00/15.00/17.00(20.00|25.00|32.00|38.00|43.00 66.00|74.00 83.00(85.00(87.00(87.00|86.0086.00/86.00
= =MCC 0.00 | 002 004|007 |0.10[0.13 018022023 026 | 0.30 0.31031/033]027|020]015|0.00

Figure 5 The performance of simple method that predicts inhibitors based on occurrence of best 20 fingerprints found in inhibitors
and non-inhibitors. The secondary Y-axis shows the range of MCC and X-axis shows the summed up values of best 20 Fingerprints.
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Table 2 The performance of models based on various
classifiers developed & evaluated on EGFR10 dataset

Classifier Sensitivity ~ Specificity Accuracy MCC ROC
IBK 68.69 84.98 82.63 045 087
Bayes 68.73 70.57 70.31 0.29 0.72
Naive Bayes 69.87 67.96 6823 027 070
SVM 67.11 86.24 8348 046 087
Random Forest  68.74 87.67 84.95 049 089

In order to understand the performance of general
classifier for prediction of unknown EGFR class, we
developed two datasets: EGFR10-pyrimidine (all mole-
cules except Pyrimidine class of molecules) and EGFR10-
quinazoline (all molecules except Quinazoline class of
molecules). The model trained and tested on EGFR10-
pyrimidine and EGFR10-quinazoline dataset achieved
accuracy 91.34 with MCC 0.59 and accuracy 94.04 with
MCC 0.64 respectively (Table 3). Next, we evaluate our
general classifier (trained on EGFR10-pyrimidine dataset)
on Pyrimidine class of molecules and achieved accuracy
74.77 with MCC 0.40. Similarly, we also evaluated our
general classifier (trained on EGFR10-quinazoline dataset)
on quinazoline dataset and achieved accuracy 71.66 with
MCC 0.35 MCC (Table 3).

Models developed on additional datasets

In addition to EGFR10 dataset, we also developed and
evaluated our models on additional datasets EGFR100
and EGFR1000. Initially, models developed and evaluated
on EGFR100 train set using 881 fingerprints achieved
maximum MCC 0.58 (Table 4). We also evaluate predic-
tion performance on EGFR100 validation set and achieved
MCC 0.58 using 881 fingerprints (Table 4). Similarly,
models were developed and evaluated on EGFR1000 train
and validation sets (Table 4). We achieved MCC more
than 0.6 for both train and validation sets. It is important
to note that performance was better for EGFR1000 dataset
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in comparison to other datasets; it is probably due to
balancing of number of inhibitors and non-inhibitors data.

Comparison with existing methods

It is necessary to compare performance of newly devel-
oped method with existing methods in order to justify
whether newly developed method is worth. Unfortu-
nately, it is not possible for us to compare our method
with existing methods as we developed models on the
largest dataset. In addition, our models are classification
models whereas models developed in previous studies
are regression-based models. None of the previous
methods used more than 200 molecules for developing
models whereas we used around 3500 molecules.

Web server and standalone

In this study, we developed a user-friendly web server
for prediction anti-EGFR molecules. The user can either
draw a single compound or provide a list of compounds
in SMILES format for virtual screening. The web server
allows users to generate analogs based upon a combin-
ation of given scaffold, building blocks and linkers. The
server subsequently predicts the potential EFGR inhibitors
of analogs. The output shows the classification of the
query compound as anti-EGFR inhibitor or non anti-
EGER inhibitor along with the probability score depending
upon the model selected. For the prediction of large
number of molecules, we have also provided Python
and R language based standalone package.

Conclusion

Epidermal growth factor protein is a well-known cell
surface receptor protein involved in cancer. Numerous
models have been developed in the past that considers
few molecules of a similar nature identified using a single
bioassay system. As these models have limitations, it has
become necessary to develop a model that considers het-
erogeneous dataset of molecules covering broad chemical

Table 3 The performance of models developed on EGFR10 dataset, class-specific molecules and EGFR10 excluding
single class, evaluated using cross-validation techniques for testing on same-class of molecules

Trained on Tested on Sensitivity Specificity Accuracy MCC ROC
EGFR10 train EGFR10 train 68.74 87.67 84.95 049 0.89
EGFR10 train EGFR10 Validation 69.89 86.03 83.66 049 0.89
Pyrimidine Pyrimidine 69.25 9213 86.92 062 092
Pyrimidine Quinazoline 68.62 54.88 58.88 0.21 067
Quinazoline Quinazoline 68.15 79.63 76.31 045 081

Quinazoline Pyrimidine 67.86 64.04 64.91 0.27 0.74
EFGR10-Pyrimidine EFGR10-Pyrimidine 68.7 94.08 91.34 0.59 0.92
EFGR10-Quinazoline EFGR10- Quinazoline 69.66 964 94.04 0.64 0.95
EFGR10- Pyrimidine Pyrimidine 68.06 76.74 74.77 04 0.77
EFGR10- Quinazoline Quinazoline 60.31 76.25 71.66 035 072
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Table 4 The performance of models developed on EGFR100 and EGFR1000 train sets using different PubChem

fingerprints and evaluated on validations sets

Trained on Tested on Fingerprints count Sensitivity Specificity Accuracy McCC ROC
EGFR100 train set EGFR100 train set PubChem 881 88.01 7334 782 0.58 0.90
EGFR100 train set EGFR100 validation set PubChem 881 911 685 76.8 0.58 0.90
EGFR1000 train set EGFR1000 train set PubChem 881 86.97 78.36 8292 0.66 0.89
EGFR1000 train set EGFR1000 validation set PubChem 881 85.7 85.5 85.6 071 0.90

space so that the pace of EGFR inhibitor drug discovery is
accelerated. In this study, we have used a large dataset of
diverse molecules from published literature to develop an
integrated robust and accurate prediction model using
881 PubChem fingerprints. In addition, analysis of finger-
prints displays the contribution of a particular pattern to-
wards anti-EGFR activity. Our analysis suggests that
PubChem FP 816 (CIC1CC(Br)CCC1), FP815 (CIC1CC
(CI)CCC1), FP380 (C(~O) (~0)), FP579 (O =C-C-C-C),
FP388 (C(:C) (:N) (:N)), FP661 (C-C = C-C-C) and FP613
(C-N-C-C-C) are important for anti-EGFR activity. In this
paper, we have introduced a novel frequency based ap-
proach for selection of most relevant binary fingerprints.
Additionally, a freely available web server and standalone
package named EGFRpred (http://crdd.osdd.net/oscadd/
egfrpred) has been designed for prediction of anti-EGFR
inhibitors. Overall, this study will be helpful in the area of
computational designing of novel anti-EGFR molecules
used for cancer treatment.

Methodology

Dataset

We obtained 3528 anti-EGFR compounds along with their
inhibitory concentration (/Csy) from database EGFRindb
that covers around 350 research articles [22]. These
compounds are diverse in nature and belong to various
structural scaffolds. Based on the inhibition activity, three
different datasets were constructed, ie. EGFR1000,
EGFR100 and EGFR10 datasets (Additional file 1: Table
S1). In the case of EGFR10 dataset, a compound is assigned
as inhibitor or active molecule if IC5y (50% inhibition) is
less than 10 nM. EGFR10 dataset contains 508 inhibitors
and 2997 non-inhibitors (ICsy > 10 nM). In addition, we
created EGFR100 dataset where a compound is classified
as inhibitor if ICsq is less than 100 nM otherwise non-
inhibitor. Similarly, we created EGFR1000 dataset where a
compound is classified as inhibitor if ICsq is less than
1000 nM otherwise non-inhibitor. In this study, we
obtained inhibition activity (ICso of molecules) from vari-
ous studies/assays, and it was observed that only a few
molecules have multiple 1Cs5, values. We removed all
those compounds having conflicting inhibition ICsq
values, for example, in case of EGFR10 we removed 23
compounds having ICsq values less than 10 nM as well as
greater than 10 #AM. In the case of EGFR100 and EGFR100

datasets, we removed 16 compounds and 22 compounds
respectively. For evaluating the performance of the model,
we created two types of set from above datasets called
train and validation set. For example EGFR10 dataset is
split into two set called EGFR10 train set consist of 90% of
data and a set consist of remaining 10% of data called
EGFRI10 validation set.

All molecules in EGFR10 dataset were examined and
observed two classes of molecules (Pyrimidine and
Quinazoline) dominate that dataset. Thus, we created
two datasets from EGFR10 dataset called Pyrimidine
and Quinazoline. The Pyrimidine dataset consists of 246
Pyrimidine inhibitors and 838 Pyrimidine non-inhibitors.
In case of Quinazoline, there are 218 Quinazoline inhibi-
tors and 540 Quinazoline non-inhibitors. In order to
understand the performance of general classifier on
unknown class, we created two additional datasets
EGFR10-pyrimidine dataset and EGFR10-quinazoline
dataset. The EGFR10-pyrimidine dataset consist of 262
EGER inhibitors and 2162 non-inhibitors. There are no
pyrimidine inhibitors in the complete EGFR10-pyrimidine
dataset. Similarly, we also created EGFR10-quinazoline
dataset consist of 290 EGFR inhibitors and 3000 non-
inhibitors.

Descriptor calculation

Chemical descriptors are the representative features of
chemical molecules that are responsible for its activity. In
this study, we have used PubChem based 881 binary finger-
prints calculated using PaDEL software [23]. The complete
details of PubChem 881 fingerprints along with a descrip-
tion are available from PubChem website (ftp://ftp.ncbi.
nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.
txt). Here, we describe the use of a frequency-based ap-
proach for selection of highly significant descriptors.

Descriptor selection using FREQ,; based approach

We used a simple frequency-based approach for selection
of best fingerprints. For each descriptor or fingerprint, the
frequency of a descriptor, in active and inactive molecules,
is calculated using Equation 1 and 2.

>
=1

A =
! NA

x 100 (1)
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NA_;
)
FA _ ijlDi

1 2
. NA x 100 (2)

Where FA and FA represent mean of i™ fingerprint in
active (A) and inactive (I) molecules respectively. NA
and NI are the total number of molecules in active and

inactive datasets respectively. Di is the value of i™ finger-
print for j"™ molecule (value is either 0 or 1). Finally, we
compute fingerprint score (FS) of each fingerprint using
following Equation 3.

FS; = FA-F! (3)

Where FS; is the inhibitory score of i fingerprint. The
descriptors having higher positive score FS means there
are more preferred in active molecules as comparison to
inactive molecules. Similarly, a higher negative score
states that the fingerprint is more preferred in inactive
molecules (or not preferred in active molecules).
Magnitude of a fingerprint score represents significance of
fingerprint.

In order to select best fingerprints, first we remove all
redundant/similar fingerprints having correlation greater
than 0.6, using software package RapidMiner [24] and
obtained 465 non-redundant fingerprints. Secondly, we
select 20 best descriptors from 465 fingerprints, 10
having highest positive score (highly preferred in active
molecules) and 10 having highest negative score (highly
preferred in inactive molecules).

Classification

In this study, we have used various classifiers implemented
in WEKA package and SVM“€" [25 26]. Further, based on
results and computational efficiency we selected Random
forest classifier for the final prediction. The final models
were developed using Random forest algorithm imple-
mented in WEKA package [27,28]. A Random forest is a
classifier consisting of a collection of tree-structured clas-
sifiers {h(x, ©)), k=1,...} where the {®,} are independent
identically distributed random vectors and each tree casts
a unit vote for the most popular class at input x” [27].

Performance evaluation

The performance of the models was evaluated using
five-fold cross-validation techniques. In this technique,
training and testing were carried five times in such a
way that each time one set was used for testing and
remaining (n-1) sets were used for training. The train set
was further randomly divided into five training and test-
ing sets. To avoid any bias in the prediction model, an
independent validation set was also used for further
evaluation. The whole process was repeated five times,
and the results were reported after obtaining the average.
Finally, fitness of the model was assessed using various
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standard parameters like sensitivity, specificity, accuracy,
and Matthew’s correlation coefficient (MCC) [29].

Reviewer’s comment
Response to Dr Murphy

Question 1: The authors describe using standard
compound features and machine learning techniques to
train models of the relationship between chemical struc-
ture and EGF receptor inhibition activity. This best way
to treat this task is as a regression problem, in which the
task is to predict the activity of a given compound, not
whether it is ?active? or ?inactive? using an arbitrary
threshold.

Response: We agree with the reviewer that regression
based models provides more information than classifica-
tion based models. In previous studies, also regression
models have been developed for predicting EGFR inhibi-
tors (PLoS ONE 2014. 9(7): €101079). In order to develop
a regression models, one must collect data for a single
class of molecules whose activity has been determined
using the same bioassay system. Due to these limitations,
existing methods have been developed on limited set of
molecules (maximum 200 molecules). In this study, our
aim is to develop robust models on a large set of EGFR in-
hibitors. Here, we developed prediction models on ~3,500
EGEFR inhibitors obtained from different studies. On this
large dataset, where molecules belong to different classes
and has ICso from varied bioassay system, thus it is not
feasible to develop a regression method. This is the reason
we developed classification models in this study instead of
regression models.

Question 2: No attempt is made to determine whether
the classifier generalizes well across different structures
(e.g., functional groups). An even stronger approach
would be to hold out an entire functional group during
training and determine whether the resulting classifier
can generalize to the held out group.

Response: We are grateful to the reviewer for above
suggestion. Now, we have developed class/function spe-
cific models and evaluate their performance on self-class
of molecules and other class of molecules. It is clear
from results that class-specific molecules are suitable only
for that class of molecules whereas our model works
equally well for all class of molecules. In our revised ver-
sion of manuscript, we have described limitations and
strength of function or class specific models.

Question 3: The manuscript refers to ?validation?
datasets but does not describe their composition or
whether the compounds in the validation sets were
included in the feature selection step. This is only made
clear in Figure S1.

Response: In revised version of manuscript, we have
clearly described training and validation sets.
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Question 4: It is unclear why feature selection was
performed before training the random forest classifiers,
since the random forest should learn the most useful
feature combinations. The results in fact show that the
best performance is achieved using all of the features.
Thus the manuscript should be simplified by removing
feature selection.

Response: The main reason for feature selection is to
select best fingerprints. The best fingerprints perform-
ance is comparable to the performance achieved using
all fingerprints. The importance of selecting best finger-
print is to help biologist/chemist in understanding and
designing inhibitors, considering the best fingerprint
structure. It is always advisable to develop models on
minimum number of descriptors in order to avoid over
fitting.

Question 5: No information is provided about the
parameters used for the random forest classifier training.

Response: In this study, we used the Random Forest
implemented in WEKA package and found that using
100 trees we achieved the best performance. In revised
manuscript, parameter used for developing models has
been revealed.

Question 6: There are a number of English errors in
the manuscript. For example, ?biasness? is not considered
to be a valid English word by most scholars. ?Bias? is the
correct term. ?Accessed? is used but ?assessed? is meant.

Response: In the revised manuscript, we have incor-
porated reviewer suggestion and improved the overall
language of the manuscript.

Comments from second revision

Question 1: My second question was not addressed.
The question is not whether one can train structural
class-specific classifiers; that has been done before. The
question is whether if one trains a general classifier but
holds out all members of a specific structural class while
doing so, the resulting classifier does well at predicting
activities for the held-out class. They have not answered
this question.

Response: We apologize that we were not able to
understand reviewer’s previous query completely. In this
version of manuscript, we have tried to address above
query. In order to address above query we create two
datasets EGFR10-pyrimidine (all molecules except pyr-
imidine class of molecules) and EGFR10-quinazoline (all
molecules except Quinazoline class of molecules). It
means EGFR10-pyrimidine dataset consist of all EGFR
inhibitors and EGFR non-inhibitors, except Pyrimidine
class of molecules. We developed model using EGFR10-
pyrimidine dataset and tested/validated this model on
Pyrimidine class of molecules. We achieved accuracy of
74.77 with MCC 0.40 on Pyrimidine class of molecules.
Similarly, we also developed model on EGFR10-quinazoline
dataset and tested on Quinazoline class of molecules; we
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achieved accuracy 71.66 with MCC 0.35 MCC (Table 3).
These results have been included in revised version.

Question 2: The authors apparently missed the point
in my fourth question about feature selection. The data
that feature selection is unnecessary since not using
it gives better results. In that case it does not seem
warranted to do feature selection at all.

Response: We agree with the reviewer that model
developed using selected features is not giving better
performance. Thus, in the revised manuscript, we have
removed the section describing the performance of
models developed using best features.

Question 3: Regarding my fifth question, the answer
is now provided about how many trees were trained.
However, this raises a more serious problem of potential
overestimation of generalizability if the validation set
was used in part or in whole for any decision-making.
For example, if the number of trees was chosen to give
the best performance on the validation set, any reported
accuracies using that number of trees are likely overesti-
mates of the generalizability (the accuracy expected on
future data).

Response: We are thankful to reviewer for raising
important query on overestimation of models perform-
ance. In this study, the optimized number of trees were
obtained from dataset used for training; estimated during
development of models using five-fold cross validation. Best
models on training dataset were evaluated on validation
dataset. In simple words, we have not used validation or
independent dataset for training or estimation of optimized
number of trees.

Response to Prof Wang

Strong points:

1. This manuscript describes the training and
evaluation of a classifier of EGFR inhibitors vs non-
inhibitors. This is a useful application.

2. It can make classification of a broad range of
molecules. This generality is good.

Weak points

Question 1: The individual steps and the overall
methodology are rather standard. So once the training/
testing data is collected, it is just mechanically feeding
into a standard classifier learning and testing process. So
the methodological novelty is limited.

Response: The novelty of the work is that for the first
time we have tried to develop a generalized QSAR model
for classifying EGFR inhibitors from non-inhibitors. We
identified fingerprints frequently occurs in inhibitors and
non-inhibitors in order to identify best descriptors for
developing classification models. We tried wide range of
algorithms and techniques for developing models for
searching best techniques. In our revised version, we also
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described class specific models developed for predicting
inhibitors of specific class.

Question 2: The performance does not look exciting
to me (~70% sensitivity, ~86% specificity). No effort is
made to seriously improve on it. Also, the performance
analysis lacks depth; e.g., it is unclear which classes of
molecules are predicted more accurately and why.

Response: We agree with reviewer that performance
is not very impressive; it is because it includes different
class of molecules. After getting comment of reviewer,
we perform more analysis and develop class-specific
models. In the revised manuscript, we have updated the
analysis section and added one section on class specific
models.

Question 3: There is no quantitative comparison with
existing works. So superiority of the proposed classifier
is unproven. I understand that these works may be
specific to a class of molecules. You can still compare
with them by restricting your test set to those classes of
molecules. Your classifier can be trained on the full
training set (or on a class-specific subset of the training
set) and tested on a specific class. The competitive
classifier can be trained on class-specific subset of the
training set and tested on the specific class.

Response: We agree that no comparison with the
existing methods was mentioned in the manuscript. We
had searched the literature and found no classification
method for distinguishing EGFR inhibitors from non-
inhibitors exist. The existing methods developed in recent
years are based upon small dataset and are regression
models. As suggested by the reviewer, we have developed
the class specific models and found that Pyrimidine class
of molecules is most accurately predicted. In revised
manuscript, we have added one section on comparison
with existing methods.

Question 4: Judging from the best features, they
appear in both inhibitors and non-inhibitors, though
there is some difference in frequency. The difference in
frequency is not exploited. Each feature can be weighted
based on the difference in its frequency in inhibitor and
non-inhibitor. Some alternative classifier models that can
take advantage of such weights can be considered (e.g.,
bagging of naive Bayes based classifiers).

Response: We used frequency of features in inhibitors
and non-inhibitors and exploited it for selecting best fea-
tures. These features have been used for developed highly
accurate classification models; revised manuscript includes
detail description. In this study, we selected positive fin-
gerprints that are more frequent in inhibitors as compare
to non-inhibitors. Similarly, we selected negative finger-
prints that are more frequent in non-inhibitors as com-
pare to inhibitors. Based upon the frequency difference we
selected best60 fingerprint and developed a model, that
achieved 0.49 MCC and the model developed using all
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881 fingerprints also achieved 0.49 MCC. We also devel-
oped models using bagging of naive Bayes based classifiers
in WEKA package. The performance of the naive Bayes
classifier improved from 0.27 MCC to 0.30 MCC, still the
performance is poor as compare to Random forest.

Question 5: Currently, molecules from different classes
are mixed. It may be worth considering each class (pyr-
imidine, quinazoline, etc.) separately, and have several
class-specific classifiers, in addition to an undifferentiated
classifier. Given a new molecular, if a class-specific classi-
fier for its class is available, the class-specific classifier is
used. Otherwise, the undifferentiated classifier is used.

Response: We are grateful to the reviewer for the sug-
gestion. We have developed class specific models and the
results have been reported in the section “Class specific
Models”. The models for two largest classes Pyrimidine and
Quinazoline have been developed as suggested by reviewer
and implemented in the web server. The user can select
either class specific models or the generalized model.

Question 6: While some fingerprints are highlighted,
other than their presence in known EGFR inhibitors,
they are not analyzed/discussed informatively within the
context of EGFR. One should discuss their structural/
physical/chemical significance, after all the structures of
EGFR and some of these inhibitors/non-inhibitors are
known.

Response: In our revised version, we have briefly
discussed the functional group, maximum common sub-
structure and analysis of fingerprints. In the updated
manuscript, we added more information in context of
EGER (Figure 3).

Question 7: The supporting data needs to be prepared
in a way that is more convenient for others to repeat the
study or make comparative study.

Response: The supporting data is updated and available
on the website in smiles format.

Comment from second revision

Deficiencies:

1. The value of this work is mostly in the collection of
training/testing data. The methodological novelty is
very limited in the developed classifiers.

2. The performance of the developed classifiers is not
impressive. Given the lack of methodological novelty,
I feel that more effort needs to be devoted to improve
classifier performance and utility. I understand it is
hard to achieve improvement through methodological
novelty. However, you can still improve the utility of
the classifiers by more mechanical means.
Class-specific classifier is one possible —-I am
glad to see that tried. One can also create a family of
classifiers with different trade-off between sensitivity
and specificity, and let user choose high-sensitivity or
high-specificity classifier to use.
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Response: We are grateful for appreciating our efforts
and for providing useful suggestions. Based on reviewer’s
suggestion, we incorporated threshold parameter with
models in our web server. This threshold selection will allow
users to predict inhibitors with high specificity by selecting
higher threshold and better coverage/sensitivity by selecting
lower threshold.

Question 1: It seems that you have the selection of
the top (50) fingerprints before hand. In selecting these
fingerprints, have you used the test data? In a cross-
validation setting, fingerprints must be selected fresh
from the training portion of that cross-validation fold.
Otherwise, the obtained accuracy/sensitivity/etc. is not
an acceptable estimate of the performance of the result-
ing classifier. This makes your validation methodology
unsound

Response: The best fingerprints were selected only
from the training set; test/validation set was not used for
selection of best fingerprints.

Response to Dr. Eisenhaber

Question: Report form: I think the authors provide a
useful software application tailored to the design of
EGEFR inhibitors. It is especially laudable that the authors
provide both download for datasets and software. It would
be of interest to which extent the tools are applicable if
mutated forms of EGFR are to inhibited.

Answer: It’s difficult to say how accurately EGFRpred
models can predict inhibitors for mutant EGFR. Recently
our group developed a web server ntEGFR (http://crdd.
osdd.net/oscadd/ntegfr) for predicting inhibitors against
wild and mutant EGFR that allows users to predict inhibi-
tors that inhibit mutant form of EGFR. In this study,
we have developed generalized method for predicting
inhibitors against EGFR not specifically against mutant
form of EGFR.

Additional file

Additional file 1: Table S1. Distribution of data in different datasets.
Table S2. Best 100 positive Fingerprints in EGFR10, 100 and 1000
datasets. Table S3. Best 100 negative Fingerprints in EGFR10, 100 and
1000 datasets.
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