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Background: About 5-6% of the European bison (Bison bonasus) males are affected by posthitis (necrotic
inflammation of the prepuce) and die in the wild forest. Despite many years of study, pathogenesis of this disease
has not yet been determined. The main aim of the study was to find SNP markers significantly associated with the
incidence of posthitis and mine the genome for candidate genes potentially involved in the development of the

Results: It was shown that relatively small number of SNPs effects reached genome-wide significance after false
discovery rate (FDR) correction. Among 25 significant markers, the highest effects were found for two SNPs
(rs110456748 and rs136792896) located at the distance of 23846 bp and 37742 bp, respectively, from OR10A3 gene
(olfactory receptor genes), known to be involved in atopic dermatitis in humans. It was also observed that five other
significant SNP markers were located in the proximity of candidate genes involved in severe diseases of skin tissue and
cancer/tumour development of epithelial or testicular germ cells, which suggest their potential participation in the
posthitis. The 25 investigated SNPs showed marked differences in allelic and genotypic frequencies between the healthy

Conclusions: The 2 Mb region of the BTAT5 chromosome is involved in genetic background of posthitis and should be
closer examined to find causal mutations helpful in better understanding of the disease ethology and to control its

Reviewers: This article was reviewed by Prof. Lev Klebanov and Dr. Fyodor Kondrashov.

Background

Genome Wide Association Studies (GWAS) have be-
come one of the major tools in explaining the ethology
of human diseases of genetic origin [1]. The technique
has also been applied in studies on model organisms [2]
and domestic animals [3,4] as well as in crops [5]. Per-
forming GWAS in wild living species is usually difficult,
as all the commercially available microarray sets are de-
signed for model or domestic animals. It has been shown
that cattle SNP microarrays work well in bison species
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[6-8]. The European Bison (Bison bonasus), (EB), after
extinction in the wild before World War II, was restored
based on progeny of just 12 individuals preserved in pri-
vate collections and zoological gardens [9]. The restored
population was divided into two isolated genetic lines:
the Lowland or the Bialowieza line (in which the foun-
ders were seven pure Lowland bison) and the Lowland-
Caucasian line (in which the founders were 11 Lowland
bison individuals and one Caucasian bison bull). Both
populations of the EB are extremely inbred [10].

In the last four decades, a severe disease called posthitis
affected EB males. This disease was discovered in the
1980s in the Bialowieza Forest [11,12]. At the end of the
1990s, similar symptoms were also observed in five young
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EB of the Lowland line from the Bayerisher Wald National
Park, Germany [13]. Posthitis is defined as necrotic inflam-
mation of the prepuce. About 5-6% of the males are af-
fected each year and die in the wild forest or are eliminated
by officially approved hunting [14]. Despite many years of
study, pathogenesis of posthitis in bison has not yet been
determined. The affected bulls do not exhibit changes in
the general physiological mechanism as indicated in the
long-term studies of 30 physiological indices [15]. Posthitis
is thought to be a disease of an endemic character since it
is only observed in males living in Bialowieza National Park
or transported from it. Apparently, no environmental or
genetic factors which would explain the susceptibility of
some individuals to develop the disease have been identi-
fied [14]. New tools for whole genome analysis (SNP mi-
croarrays) available for the Bovidae species since 2009
(www.illumina.com) have opened new possibilities to im-
prove the genetic analysis of posthitis.

Among the commercially available microarrays, the
[lumina Bovine HD 777 K microarray is the most suitable
tool for bison genome studies. Its usefulness was evaluated
recently by showing that the Lowland line is a genetically
homogenous population, with only a small amount of
polymorphic loci, which can be helpful in pedigree ana-
lysis [7,16]. It was also shown that only 2.8% out of 54,000
bovine point mutations are polymorphic in ten EB repre-
senting the Caucasian and Lowland lines [8].

In this paper, we used high density bovine SNP micro-
array to investigate the entire bison genome in order to
identify differences in SNP allele and genotype frequencies
between the group of individuals affected by posthitis and
the non-affected group. The differences in allelic frequency
found between these two groups were used to perform
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a GWAS to identify genes potentially involved in the
posthitis disease.

Results

A global view of all SNPs effects for posthitis incidence
is presented in the Manhattan plot in Figure 1. It is
shown that a relatively small number of SNPs effects
reached genome-wide significance after FDR correction.
Among the 25 top significant markers, most of them
(18) were located on chromosome 15. Single significant
markers were also found on chromosome 3, 9, 13, 26
and three markers on chromosome 12.

Detailed characterization of the top 25 markers are
given in Table 1, including the SNP position on UMD
3.1 genome map, the name of the closest candidate gene
and its distance from the significant marker and the ref-
erence confirming the potential involvement of a candi-
date gene in posthitis. Eleven significant markers were
located on chromosome 15 in the close vicinity of olfac-
tory receptor genes.

To better show how the number of SNP genotypes
change between affected and unaffected bison, the allelic
and genotypic frequencies of the 25 markers were esti-
mated for the two bison groups and are listed in Table 2.

For two randomly chosen significant markers, SNP ge-
notypes designated by Illumina Bead Studio were checked
by sequencing (rs136792896and rs137427505). No discrep-
ancies between the alternative genotypes (AA vs BB) for
these SNPs were found (Figure 2).

Discussion
European bison is an example of an extinct species,
which was successfully reintroduced to wild nature. Due
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to check whether bovine SNP give the same genotype on bison DNA.

Figure 1 Results of the statistical analysis. Manhattan plot showing global distribution of 18,079 SNPs along the genome of bison to map SNP
associated with posthitis. SNPs above the solid line represent a significant association [—log10(P-value) = 3,4]. Two circled markers were sequenced
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Table 1 SNPs with highest effects on the posthitis incidence
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SNP id Chr SNP Closest candidate gene Reference

position Symbol Distance from SNP  Name

marker (bp)

rs110456748 15 45238956 OR10A3 23846 Olfactory receptor, family 10, subfamily A, member 3 [20]
rs13679289% 15 45252852 ORIT0A3 37742
rs109096473 15 45264139  LOC539064 46997 Olfactory receptor 1030-like
rs43150190 15 45271797 LOC539064 39339
rs134156378 15 46596723 LOC516636 6473 Olfactory receptor 6-like
1542993236 15 47910912 LOC507428 1314 Olfactory receptor, family 52, subfamily N, member 2-like
rs41986233 15 48091239  LOC/87878 0 Putative olfactory receptor 56B2-like
rs41986306 15 48143907  LOC100139556 3799 Olfactory receptor 56B1-like
1542503200 15 45475858 LOC782645 2580 Olfactory receptor, family 10, subfamily R, member 2-like
rs136242790 15 45239543 ORI10A3 24433 Olfactory receptor, family 10, subfamily A, member 3
rs109730608 15 46420735 OR2D3 1737 Olfactory receptor, family 2, subfamily D, member 3
rs42505727 15 45714724 PPFIBP2 0 PTPRF interacting protein, binding protein 2 (liprin beta 2) [22]
141597707 15 45743620 PPFIBP2 0
rs43674350 15 45773658 PPFIBP2 0
1543674363 15 45779930 PPFIBP2 0
1541766565 15 45858786 OLFMLT 0 Olfactomedin-like 1 [23]
rs133100902 15 45865065  OLFMLI 0
rs134495844 15 46365446  ZNF214 3184 Zinc finger protein 214 [18]
rs110088444 26 25589629  SORCS3 0 Sortilin-related VPS10 domain containing receptor 3 -
rs137458105 13 48582285 LRRN4 0 Leucine rich repeat neuronal 4 -
rs134132514 9 10444161 B3GAT2 142985 Beta-1,3-glucuronyltransferase 2 (glucuronosyltransferase S) -
rs137024050 12 22730025 COG6 0 Component of oligomeric golgi complex 6 [20]
rs133483310 12 22928947 LHFP 0 Lipoma HMGIC fusion partner [19]
rs137427505 12 23622735 UFM1 62366 Ubiquitin-fold modifier 1 -
rs134255411 3 109983658  CSF3R 78187 Colony stimulating factor 3 receptor (granulocyte) [28]

Top 25 SNP markers showing the highest effect associated with the incidence of posthitis (with FDR correction) and suggested candidate genes located in the

closest vicinity to significant marker.

to the founder effect, the current free-living bison popula-
tion of the Lowland line (about 1000 individuals in 2011
[17]) is extremely inbred and, therefore special attention
should be paid to any threats decreasing the reproductive
potential of the population and, consequently, lowering
the genetic diversity of the species [9].

The inbreeding level of EB was also considered as a po-
tential factor increasing the risk of disease, but the differ-
ence between the inbreeding coefficient of healthy (32
bison) and affected (12 bison) was not found to be signifi-
cant [18]. Another analysis of 69 affected males did not
find significant associations between MHC DRB3 alleles
and the susceptibility to posthitis [19].

In this study, the utilization of an HD (High Density)
microarray, allowed a detailed screening of 18,079 poly-
morphic markers which were used in a GWAS analysis
to identify those significantly associated with the inci-
dence of posthitis. In Figure 1 and Table 1 it is shown

that a group of markers located on chromosome 15
have the highest effect. They are located within
OLFMLI and PPFIBP2 and in the close vicinity of the
ZNF214 gene. Most significant effects were found for
two SNPs (rs110456748 and rs136792896) located at a
distance of 23846 bp and 37742 bp from ORI0OA3 gene,
known as being involved in atopic dermatitis, a com-
mon inflammatory skin disease [20].

Several significant markers were mapped within two
genes: PPFIBP2 and OLFMLI. PPFIBP2 encodes protein-
tyrosine phosphatase-interacting protein, which is differ-
entially expressed in endometrial cancer [21] and is also
involved in tumour cell migration and invasiveness of
extracellular signal-regulated kinase depleted cells [22].
OLFMLI (olfactomedin-like protein 1) encodes a secreted
protein, is expressed in many tissues and may play a sig-
nificant role in the regulation of cell proliferation in vitro
[23]. Another gene located closely to significant marker
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Table 2 Frequency of genotypes and alleles
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SNP id Number of genotypes Allele frequency Number
Affected Unaffected Affected Unaffected gferr::)i:;:)negs
AA AB BB AA AB BB A B A B
rs110456748 40 13 1 13 15 0.861 0.139 0.569 0431 0
1513679289 40 13 1 13 15 0.861 0.139 0.569 0431 0
rs109096473 1 13 40 8 15 13 0.139 0.861 0431 0.569 0
rs43150190 1 13 40 8 14 13 0.139 0.861 0429 0571 1
1542505727 39 14 1 13 15 0.852 0.148 0.569 0431 0
41597707 39 14 1 13 15 0.852 0.148 0.569 0431 0
rs43674350 1 14 39 8 15 13 0.148 0.852 0431 0.569 0
1543674363 1 14 39 8 15 13 0.148 0.852 0431 0.569 0
rs41766565 39 14 1 13 15 0.852 0.148 0.569 0431 0
rs133100902 39 14 1 13 15 0.852 0.148 0.569 0431 0
rs134495844 1 14 39 8 15 13 0.148 0.852 0431 0.569 0
rs134156378 1 14 39 8 15 13 0.148 0.852 0431 0.569 0
rs42993236 1 14 39 8 15 13 0.148 0.852 0431 0.569 0
rs41986233 39 14 1 13 15 0.852 0.148 0.569 0431 0
rs41986306 1 14 39 8 15 13 0.148 0.852 0431 0.569 0
rs42503200 39 13 1 13 14 0.858 0.142 0571 0429 2
rs110088444 0 14 33 8 14 12 0.149 0.851 0441 0.559 9
rs136242790 1 13 40 7 15 13 0.139 0.861 0471 0.529 1
rs109730608 1 14 39 8 14 13 0.148 0.852 0429 0571 1
rs137458105 0 0 50 0 9 26 0.000 1.000 0.129 0.871 5
41594613 53 0 0 25 8 1.000 0.000 0.879 0.121 4
rs134132514 0 2 52 2 10 24 0.019 0.981 0.194 0.806 0
rs137024050 13 24 17 20 14 0463 0.537 0.778 0.222 0
rs133483310 17 24 13 2 14 20 0.537 0463 0.222 0.778 0
rs137427505 13 24 17 20 14 0463 0537 0.778 0222 0
rs134255411 0 13 33 0 24 12 0.141 0.859 0.333 0.667 8

The frequency of genotypes and alleles in 25 significant SNPs observed in healthy and affected bison.

rs134495844 is coding zing finger protein 214 (ZNF214) -
a potential tumour suppressor gene whose expression is
increased in tumours derived from testicular germ cells
[24]. The next candidate genes, COG6 and LHFP were
found to be associated with susceptibility to psoriasis
[25,26]. Among the genes listed in Table 1, five candidate
genes are associated with severe skin diseases (atopic
dermatitis, psoriasis) or cancer/tumour development of
epithelial or testicular germ cells, which suggest their po-
tential participation in the posthitis.

The fact that the remaining five candidate genes
(Table 1) do not show a direct link with an inflamma-
tion/necrosis specific function does not exclude the pos-
sibility that these genes are contributing to pothistis
susceptibility. It is possible that their contribution is in-
direct, through immunological pathways, or has not yet
been reported. It can be assumed that, as for any

complex trait, many genes whose names are not “trait-
specific” participate in the overall genetic variance of the
trait [27].

Being aware that in typical GWAS, most of the signifi-
cant markers are located outside the functional genes and
are in linkage disequilibrium with other genes, we add-
itionally used the MapViewer service to identify genes lo-
cated in the broader neighborhood of the significant
marker (at a distance of less than 1 Mb). The size of the
inspected region is difficult to be justified objectively since
the distribution of the functional gene along the chromo-
somes is very different and specific to each autosome [28].
One Mb distance from a significant marker seems to be a
manageable region to manually screen all genes included.
All such genes were checked for functional association
with inflammation/tumour/cancer/necrosis. In this way,
we were able to find further candidate genes related to the
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Figure 2 Correctness of microarray genotyping. Checking the correctness of genotyping on two randomly-chosen significant SNPs. A - SNP
rs136792896 located on chromosome 15, B - SNP rs137427505 located on chromosome 12. Genotypes designated by Illumina Bead Studio (on
the left) agree with the genotypes obtained by sequencing (on the right).
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trait of interest. For example, COL17A1 encoding collagen
type XVII, alpha 1 (located 529,5 Kb from the significant
marker rs110088444, on BTA 26) is involved in epidermo-
lysis bullosa, causing separation of the basal keratinocyte
from the underlying basement membrane and conse-
quently skin atrophy [29]. TRIM6 coding tripartite motif 6
located 3799 bp from the significant marker rs1986306
has been reported as playing a role in an IFN-induced
antiviral state against retrovirus infection [30]. /LK gene
encoding integrin-linked kinase (mapped 477,9 K from
significant marker rs134156378, BTA15) interacts with
pathogenic bacteria reinforcing host cell adherence [31].
Another gene associated with skin pathology, FERMT1
encoding fermitin family member 1 is located 34,7Kb from
significant marker rs137458105 (BTA13). Its mutation
causes Kindler syndrome, whose symptoms include skin
blistering, skin atrophy, photosensitivity, colonic inflam-
mation and mucosal stenosis [32]. Proliferating cell nu-
clear antigen (PCNA) is located about 787Kb from marker
rs137458105. It was shown that the percentage of PCNA-
positive cells in malignant and some non-malignant skin
diseases (atopic dermatitis, psoriasis) is from 2- to 5- times
higher than in normal skin cells [33].

In the close vicinity of significant marker rs134255411
(BTA 3) CSF3R gene encoding colony stimulating factor
3 receptor is located. Its mutation causes chronic neu-
trophilia [34]. It was reported that periostin, osteoblast
specific factor, a protein encoded by the POSTN gene ex-
acerbates the pathogenesis of atopic dermatitis in mice

[35,36]. POSTN is located 618Kb from the significant
marker rs137427505 on BTA12. Another gene located
near the significant marker rs137024050 is forkhead box
O1 transcription factor, whose loss of expression in
lesional psoriatic tissues has a potential contribution to
the development of psoriasis [37].

All of the above-mentioned reports support the main
outcome of our work - that the most significant
markers for posthitis indicate regions containing genes
involved in the immune system and disorders of skin
and epithelial cells. Unlike in Johnston [3], we used
marker set of extremely high coverage of the cattle gen-
ome — over 770,000 Joci. Attempts to use standard mi-
crochips (of approx. 54,000 SNPs) failed as we could not
find any marker associated with the disease symptoms
(data not shown). In future research, GWAS should be
validated for a larger population of posthitis-affected
bison and candidate genes should be screened to find
causal mutations enabling a better understanding of the
disease and, prospectively, to control its incidence. The
fact that the 25 SNPs investigated showed marked differ-
ences in allelic and genotypic frequencies between the
healthy and affected bison groups is a clear indication of
an excess of the genotype BB in the affected population
together with a higher frequency of the B allele in the af-
fected compared to the non-affected bison population.
In addition, the fact that many alleles showed the same
allelic frequency indicate a strong linkage between sev-
eral SNPs on the same chromosome. This suggests that
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an appropriate breeding strategy based on identity by
descent (IBD) could be developed for the European
bison. Information from the SNP chip could be used as
an accurate tool for guiding which individuals should
mate, and which should be excluded from the mating as
they are bearing the alleles associated with incidence of
posthitis. Given the fact that many of the SNPs which
showed associations are strongly linked, it would be
enough to simply screen one of the SNPs which are
linked to each other. At the same time it would also be
desirable to optimize the best contribution of animals to
the next generation, in order to reduce the pace at which
the inbreeding coefficient is increasing every generation.
This can be in the form of a specific list with suggested
matings or guidelines on the number of matings that a
given bison should be engaged in during a given number
of generations. Developing a SNP chip with a subset of
SNPs found to be associated with the posthitis incidence
and with a subset of SNPs informative for paternity ana-
lysis and to estimate the kinship between individuals
could be useful for this purpose and make these goals
more realistic from an economic point of view.

Conclusions

Allele frequencies of 25 SNP markers are significantly dif-
ferent in health and posthitis-affected animals. Genes lo-
calized in the closest vicinity of these markers show
connections with immunological processes. 18 out of 25
markers are localized on chromosome BTA15 within the
space of 2 Mb, which suggests this region may play an im-
portant role in the ethology of the posthitis. This sub-
region should be closer examined to find causal mutations
helpful in better understanding of the genetic background
of the disease and to control its incidence in the future.

Methods

Animals

The study included 90 adult males of the Lowland line
of the EB living in the Bialowieza National Park. Bison

Page 6 of 9

DNA samples were provided by the Mammal Research
Institute in Bialowieza (Polish Academy of Sciences).
The animals were divided into two groups: healthy (36)
and affected by posthitis (54). The presence of the dis-
ease and the degree of its advancement were ascertained
post mortem by an expert veterinarian, on the basis of
anatomical and pathological changes [38] (Figure 3).

Genotyping and statistical analysis
Each individual was genotyped using the Illumina Bovi-
neHD 777 K microarray, which consists of 777,962 SNP
markers. Associations were tested using GoldenHelix SVS7
analysis software (Bozeman, MT). Initial data clean-up was
performed to remove poorly performing SNPs. SNPs in the
control population with significant deviations from the
Hardy—Weinberg equilibrium (HWE) at the significance
level of P <0.0001 were removed prior to association ana-
lysis. Additionally, the SNP selection criteria were applied
based on a minor allele frequency (MAF) of at least MAF >
0.005, due to highly monomorphic data and the technical
quality of the chip — a minimum call rate of 98%. After fil-
tering, 18,079 SNPs were used in the final analysis. The
density of SNPs used in the analysis was 1 SNP per 138 kb.
The average call rate obtained for our data set amounted to
98.86% (SD = 0.2%) for selected SNPs.

An additive model of the Linear Regression Analysis with
a False Discovery Rate, kinship matrix (computed on the
autosomal SNPs in SVS7.6) and heterozygosity rate as add-
itional covariate was performed to estimate the effect of an
SNP marker for posthitis incidence. SNP association ana-
lysis was performed on autosomal SNPs. Following this, the
allelic and genotypic frequencies of the significant SNP
markers were then estimated for the two bison groups.

Sequencing

Since bison DNA was used on a bovine SNP array, two frag-
ments of bison genomic DNA (containing two SNPs) were
amplified and sequenced to check whether the SNP geno-
type was correct. The following SNPs were PCR-amplified

R,

Va7
(RN s 0> 6

Figure 3 An example of bison affected by posthitis. A. Affected bison (Courtesy of Mammal Research Institute in Bialowieza) found in the

National Park in Bialowieza. B. Magnification of genital area. Necrosis of prepuce is visible as advanced lesions in skin tissue surrounding the penis.

.
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and sequenced: BovineHD1500012672 (rs136792896) and
BovineHD1200007116 (rs137427505). Primers were de-
signed and blasted using the NCBI primer-blast website
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/):

BOVHD15-L: 5'-GGCCTTCACTGTCCACCTTA-3’

BOVHDI15-R: 5'-TTAAATCACTGCCCCCAAAG-3’

BOVHDI12-L: 5'~ACCATCACAAGCAGACTGCCCA-3’

BOVHDI12-R: 5'-AGCAGAATCGTGAATGTGGCT

GGT-3’

In the PCR reaction, 20 pM of each primer, 1 U of Taq
DNA polymerase (Bioron, Germany), 100 ng of genomic
DNA, 2.5 ul of 10x PCR buffer, 2.5 mM of MgCl, and
800 uM of dNTPs were used. The amplification program
consisted of: an initial DNA denaturation (94°C/3 min),
35 cycles of denaturation (94°C/30 s), annealing (61°C/30 s)
and elongation (72°C/30 s), final synthesis (72°C/5 min).

PCR vyielded two specific amplicons of expected 185
(BovineHD1500012672) and 537 bp (BovineHD1200007116).
The PCR products were purified and sequenced by the
GENOMED Ltd (Poland). The sequences were analyzed
using BioEdit v. 7.2.0 software.

Mining genome for candidate genes

Two approaches were used to locate candidate genes: statis-
tical and functional. In the statistical approach, genes lo-
cated in the closest vicinity of markers above the cut-off line
were chosen (P value after FDR correction was 3.40). In the
functional approach, 1 Mb region around the position of
the significant SNP marker was inspected in the MapViewer
service (www.ncbi.nlm.nih.gov) in order to check whether
there are genes functionally associated with inflammation
or diseases showing symptoms related to posthitis.

The genomic positions of SNPs included in the Illumina
BovineHD 777 K were taken from the Illumina publica-
tion (www.illumina.com). Genomic positions of candidate
genes were assigned based on the UMD 3.1 bovine gen-
ome assembly [39] through the current Ensembl database
(www.ensembl.org).

Statement of ethical approval

Tissue samples were collected during annual culling of the
European bison approved by General Directorate for Envir-
onmental Protection (Warsaw, Poland) and Regional Direct-
orate for Environmental Protection (Bialystok, Poland) and
released for Mammal Research Institute in Bialowieza. Ref-
erence numbers of the approvals: 2010: DOP-Pozgiz-4200/
IV-57/4139/10/kp; 2011: DOP-OZGTZ.6401.05.5.2012.kp;
2012: WPN.6401.222.2012.EJ; 2013: WPN.6401.266.2013.EJ;
2014: WPN.6401.221.2014.E].
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Reviewer 1: Dr. Fyodor Kondrashov

I do not see any issues in the design and implementation
of the present study and the results are straightforward.
The authors capitalized on the application of tools that
have been developed for domestic species to one of con-
servation value. The study identifies several candidate
genes for a specific disease, posthitis, which can now drive
a more enlightened breeding effort to reduce its impact.
While this study is a good demonstration of how tools de-
veloped for specific industries can be taken advantage of
for environmental issues, it is unlikely that species without
a closely related relative of economic impact can be stud-
ied in a similar manner.

Quality of written English: Acceptable

Author respond: We appreciate very much sharing our
view on how new tools developed for domestic animals
may be efficiently used for related species living in wild
conditions.

Reviewer 2: Prof. Lev Klebanov

The manuscript contains an interesting study of finding
SNP markers significantly associated with the incidence
of posthitis and mine the genome for candidate genes
potentially involved in the development of the disease.
The methods developed here are based on the use of
high-density bovine SNP microarray to investigate the
entire bison genome. The study shows that among the
25 top significant markers, 18 were located on chromo-
some 15. Eleven significant markers were located on
chromosome 15 in the close vicinity of olfactory recep-
tor genes. In my opinion, the manuscript on the review
is very interesting and worth to be published in Biology
Direct. However, I have some questions, and think that
the answers them may make the presentation better.
Namely, on page 10 there is written: “SNPs with signifi-
cant deviations from the Hardy—Weinberg equilibrium
(HWE) at the significance level of P <0.0001 were re-
moved prior to association analysis. Additionally, the
SNP selection criteria were applied based on a minor al-
lele frequency (MAF) of at least MAF >0.005, due to
highly monomorphic data and the technical quality of
the chip — a minimum call rate of 98%.” I did not under-
stood, why such levels of P and MAF were used here.

Author respond: Illumina BovineHD BeadChip is de-
signed especially for the domestic cattle and some out-
group Bovidae species (bison, water buffalo, yak). The
out-group species are only related with Bos species,
therefore we have to be aware that bovine SNPs some-
times may generate spurious results when we use bison
DNA. The only way to minimize that is to exclude all
samples (bisons) giving low call rate. Moreover careful
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analysis of SNP cluster quality is also of key value. It was
the reason why we used higher cal rate (>98%) than
standard value (95%).

Another problem with bison SNPs is their limited
number. The Lowland (Bialowieza) line of the European
bison was restored from 7 pure Lowland animals — one
male and six females. The relationship and the inbred
level of all living animals are extremely high. Obviously,
such low heterozygosity reduces the number of SNPs
available for association study. Our intention was to
keep almost each polymorphic SNP to cover the whole
genome with markers located with relatively short dis-
tance from each other. Therefore we decreased the typ-
ical level of MAF from 0.01 to 0.005.

Summing up, both criteria were used to maximize the
number of good-quality heterozygotic SNPs.

Analyzing criteria for SNP selection we found that one
sentence should be corrected “SNPs in the control popula-
tion with significant deviations from the Hardy—Weinberg
equilibrium (HWE) at the significance level of P <0.0001
were removed prior to association analysis”.
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