
Goncearenco and Berezovsky Biology Direct 2014, 9:29
http://www.biologydirect.com/content/9/1/29
RESEARCH Open Access
The fundamental tradeoff in genomes and
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Abstract

Background: Mutations in nucleotide sequences provide a foundation for genetic variability, and selection is the
driving force of the evolution and molecular adaptation. Despite considerable progress in the understanding of
selective forces and their compositional determinants, the very nature of underlying mutational biases remains
unclear.

Results: We explore here a fundamental tradeoff, which analytically describes mutual adjustment of the nucleotide
and amino acid compositions and its possible effect on the mutational biases. The tradeoff is determined by the
interplay between the genetic code, optimization of the codon entropy, and demands on the structure and
stability of nucleic acids and proteins.

Conclusion: The tradeoff is the unifying property of all prokaryotes regardless of the differences in their
phylogenies, life styles, and extreme environments. It underlies mutational biases characteristic for genomes with
different nucleotide and amino acid compositions, providing foundation for evolution and adaptation.

Reviewers: This article was reviewed by Eugene Koonin, Michael Gromiha, and Alexander Schleiffer.
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Background
While the genetic code inherently bridges the realms of
nucleic acids and proteins, causal relations between the
nucleotide and amino acid compositions continue to be a
topic of intense discussion [1-5]. Degeneracy of the gen-
etic code along with flexibility in the choice of chemically
similar amino acids leads to a mutual adjustment of the
genomic and proteomic compositions [2,5,6]. Phylogeny
and environmental conditions, on the other hand, intro-
duce biases in either or both of these compositions [2,3,5].
Both nucleotide [7-17] and amino acid [1-3,18-29] con-
tents are important determinants of the mechanisms of
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stability and adaptation [1,4,5,14,18,19,28-33]. Purine load
(the (A +G) content [2,5,16,34]) and the (G + C) content
[2,8,11,17,28,29,35-37] were shown to be the signatures of
thermal adaptation in prokaryotes. Increase of the purine
load in coding DNA is to a large extent result of the ther-
mal adaptation of proteins [5], as well as a signal of stabil-
izing stacking interactions between purine bases in DNA
and RNA [2,5,16]. The GC content can be governed by
the number of factors, such as genome replication and
DNA repair mechanisms [17], involvement into lineage-
and niche-specific molecular strategies of adaptation [36],
contribution of the codon usage [35] and amino acid com-
position [11,29,38,39]. Amino acid compositions, in turn,
can directly reflect demands on the protein structure and
stability [1,3,18-27,33,40-42] and even affect the nucleo-
tide compositions [2,4]. Conversely, protein content can
be driven by the nucleotide compositions [11,29,35,38,39].
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As a result, causal relationships between the nucleotide
and amino acid compositions are very complex, and they
depend on various evolutionary and environmental factors
[2,4,15,18,19,25,26,29,31,32]. Therefore, the correct and
yet unanswered question is how and to what extent
the compositions of nucleic acids and proteins affect
each other [2]. In order to unravel an intricate connec-
tion between them, we considered the realms of nat-
ural nucleotide and amino acid compositions and their
theoretical limits.
We found that all the genomes are confined within

the narrow area along the curve of presumably optimal
tradeoff between the compositions of nucleic acids and
proteins regardless of the environmental conditions,
habitat, phylogeny and other factors. We explored the
nonlinear nature of the compositional tradeoff, and we
argue that it is governed by the basic properties of the
genetic code and can be described analytically. The
tradeoff allows predicting amino acid composition in
prokaryotes based on the genomic GC with high pre-
cision (find prediction of the amino acid composition
for the GC content of interest here: http://folk.uib.no/
agoncear/GC_AA/). We also simulated random muta-
tions in order to explore the nature and dynamics of
the tradeoff. Amino acid depth [43,44] is a parameter
that reflects proper compactness and ratio between
the hydrophobic core and hydrophilic surface in the
native protein globule. We, therefore, used average
depth in simulations of mutations as compositional
criteria of protein foldability and stability. We show
that demand on protein stability is an important if not
the major determinant of the tradeoff ’s width. The
purine/pyrimidine ratio (R/Y) and the GC content
were used in the above simulations as compositional
determinants of nucleic acids’ stability [2,5,45]. We
revealed that in genomes with low GC content the R/Y ra-
tio is increased, and there is an excess of purine-purine
(RpR) dinucleotides in both strands of the double-
stranded DNA. This dinucleotide bias is directly related
to the contribution of purine-purine stacking to stabil-
ity, pointing to a potential switch from the base paring
to base stacking as the dominant mechanism of DNA
stability in genomes with low GC content. Despite
increased rate of the nonsynonymous mutations in ge-
nomes with low GC, we observed persistence of the
physical-chemical characteristics in the amino acid substi-
tutions, indicating that both DNA and protein structure
stabilizing mechanisms are at play. Overall, we show that
in addition to the role of genetic code, the optimization of
codon entropy and demands on the DNA, RNA and pro-
tein stability are the crucial determinants of the tradeoff.
Resulting compositional tradeoff observed here underlies
mutational trends and mutual tuning of the nucleotide
and amino acid compositions.
Methods
Genome database and analysis of compositions,
phylogenetic and environmental factors, and analysis of
the GC content
We downloaded 1364 prokaryotic genomes (106 Archaea
and 1258 Bacteria, the summary is in Additional file 1:
Table S1) from NCBI Genbank and calculated natural GC
content (GCNAT) of the protein-coding DNA sequences
(Figure 1). The average standard deviation of the GC
content in individual protein-coding sequences reaches
up to 4.5 percent for the genomes with 40 to 65 percent
genomic GC and stays within 3.8 percent for other
genomes (Additional file 1: Figure S1). The average
genomic GC content was used as the characteristic of
the genomic nucleotide composition. The GC load of
individual amino acids, obtained as the average over the
synonymous codons for corresponding amino acid, was
used to express the amino acid composition of a prote-
ome in GC units. The GC content of protein-coding
DNA without codon bias (GCNCB) mimics a random
choice of codons. It is calculated as a product of the
genomic amino acid frequencies and corresponding GC
saturation values, i.e. the average GC content of the
amino acid’s codons (Additional file 1: Table S2). We
also obtained the GCmax and GCmin content values by
taking the GC-richest and GC-poorest codon for each
amino acid, respectively. Prokaryotic genomes exploit a
wide range of nucleotide compositions, with the GC
content varying from 17 to 76 percent in 1364 genomes
analyzed in this work. There is a wide range of theoretic-
ally possible combinations of the nucleotide and amino
acid compositions. Noteworthy, significant compositional
differences were observed for species that are proximal
in phylogeny and/or thrive under the same extreme
conditions. We considered the following environmental
and genomic factors: salinity, optimal growth temperature,
oxygen tolerance, domain of life, and habitat. All the
factors were assigned according to NCBI Genbank
annotations.
We used dinucleotide contrast CN1pN2 = fN1pN2/

(fN1 × fN2) to analyze dinucleotide frequencies and
their GC content dependencies. Here, the fN1pN2 is an
observed frequency of the dinucleotide N1pN2, and fN1

and fN2 are natural frequencies of the nucleotides N1

and N2.
We used average amino acid depth [43,44] as a param-

eter that reflects proper compactness and ratio between
the hydrophobic core and hydrophilic surface in the na-
tive protein globule. Since it can be deduced purely from
the amino acid compositions, we calculated a proteomic
average of the amino acid depths. For 1364 prokaryotes
under study, the proteomic depth persists in a very narrow
interval (0.96-1.02) throughout the whole range of the
genomic GC.

http://folk.uib.no/agoncear/GC_AA/
http://folk.uib.no/agoncear/GC_AA/
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Figure 1 Distribution of the GCCB and GCNCB content and the derived theoretical limits for 1364 prokaryotic genomes. A, the highest
(red) and lowest (green) limits on nucleotide composition obtained by replacing natural codons with synonymous GC-richest and GC-poorest
ones. B, the theoretical limits (red and green) on amino acid composition (GCNCB), see also Additional file 1: Figure S1.
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Nonlinear least squares regression
We used constrained weighted nonlinear least squares
(R software, nls routine, “port” algorithm [46]) to fit param-
eters of the logistic function GCCB(GCNCB) (Figure 2). The
theoretical limits showed in Figure 1 were used as min/max
constraints. Because the genomes are not distributed evenly
in the range of GCNAT we assigned weights w ¼ − ln
pdf GCNAT − GCNAT

―――― ÞÞðð , where GCNAT
――――

is the average
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Figure 2 The tradeoff between nucleotide and amino acid
compositions. Theoretical model. Black circles represent the
genomes. The lower (green) and upper (red) limits for GCCB are
calculated in the same way as in Figure 1a. The tradeoff describes
the relation between the two components of GC depicted by an
orange curve (with the coefficients a = 20.82, b = −16.28, c = −49.4,
r = 0.255). The colored circles illustrate three pairs of genomes with
the same GCNAT (45 percent – magenta, 51 – yellow, and 63 – blue)
obtained by combining the GCCB and GCNCB in different proportions
(see Additional file 1: Table S7 for details).
across all the genomes. The pdf is a probability density
function of the GC content being different from the
average, which is estimated by fitting a mixture of
Gaussian distributions (Additional file 1: Figure S2).
The GC saturation scale and standardized (z-scored)
amino acid frequencies
The amino acid component of natural GC content, GCNCB,
is a manifestation of the cumulative contribution from
all 20 amino acids. To quantify a relationship between
the nucleotide and amino acid compositions directly, we
introduced the “GC saturation scale” (Additional file 1:
Figure S3, Additional file 1: Table S2). The scale shows
an average percentage of guanine and cytosine bases
in the codons of each amino acid (Additional file 1:
Figure S3). There are three groups of amino acids ac-
cording to their GC saturation: GC-rich (PGARW),
GC-medium (MLCDEHQSTV), and GC-poor (IPKNY).
We standardized frequencies f of the amino acids be-

longing to the same GC saturation group P, and calculated
combined z-scores for each GC saturation group in each

genome ZP ¼ 1
n

X
i∈P

f i − �f l
σ i

, where �f i is the average fre-

quency of the amino acid i in all the genomes, n is the
number of amino acids in the group P, and σi is the stand-
ard deviation. The standardized fraction of amino acids
(z-score) with medium GC saturation shows almost no
correlation with the GCNCB (Pearson’s r = 0.29, Additional
file 1: Figure S3). The z-scores of amino acids with low
GC saturation are strongly anti-correlated with GCNCB

(r = −0.99), whereas z-scores of highly GC-saturated
amino acids are strongly correlated with GCNCB (r = 0.98,
Additional file 1: Figure S3). Thus, frequencies of amino
acids at the extremes of the GC saturation scale change at
the expense of each other.
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Amino acid content prediction based on genomic GC
content
As shown in the previous section GCNCB represents
the amino acid composition, thus allowing one to
predict an amino acid content given the genomic GC.
Prediction is a two-step procedure: first, the GCNCB

value is obtained from the genomic GC; second, amino
acid content is derived from GCNCB. Genomic GC is a
combination of the average (non-codon-biased) GC
load of amino acids (GCNCB), codon bias effect (GCCB),
and a contribution from the RNA-coding genes and
intergenic regions. In prokaryotes, the GC content of
protein-coding DNA determines genomic GC [2]. There-
fore, it is safe to neglect contribution from the RNA-coding
genes and intergenic regions without any significant loss
in the prediction’s precision (Additional file 1: Table S3).
Using the compositional tradeoff model for the codon
bias (GCCB) as a function of the non-codon biased
GC content (GCNCB), an optimal combination of
GCNCB and GCCB given the genomic GC can be
found in the optimization procedure with the target
(GC − GCNCB − GCCB(GCNCB))

2 →min. Once the
GCNCB value is found, the amino acid frequency f can
be predicted as: f = (αGCNCB + β)σ + μ, where μ is
the mean value and σ is the standard deviation of the
amino acid frequency taken from Additional file 1:
Table S2. The parameters α and β can be found for
each amino acid individually, but it is also possible to
take advantage of the grouping arrangement of amino
acids according to their GC saturation, thereby decreasing
the total number of fitted parameters in the predictor.
For GC-poor amino acids α = −0.213 and β = 10.334,
while for GC-rich amino acids α = 0.211 and β = −10.232
(Additional file 1: Figure S3). In GC-medium group, where
the correlation between standardized amino frequencies
and GCNCB is low, we took the average values of natural
frequencies in all prokaryotes. However, for valine, serine,
and histidine belonging to the GC-medium group, the in-
dividual linear regression models can be used to improve
the prediction performance up to R2 = 0.51, 0.37, and 0.22,
respectively (Additional file 1: Tables S3, S4). The web-
based predictor of the amino acid compositions (http://
folk.uib.no/agoncear/GC_AA/) calculates amino acid fre-
quencies using the tradeoff model (described in Results
section) and individual linear regressions for each residue
type.
The accuracy of amino acid composition’s prediction

relies on the correctly determined GCNCB values. We
use chi-squared test to assess how well the logistic
model fits the data. We split the range of natural and
predicted GCNCB values into k intervals. For k = 11,
number of degrees of freedom is equal to 6 (with 4
regression parameters in the tradeoff model), χ2 = 10.692,
p-value = 0.0984. The coefficient of determination (R2) is
used to assess the performance of amino acid frequency
predictions:

R2 ¼ 1 −

Xn

i¼1
yi − ŷið Þ2Xn

i¼1
yi − yð Þ2

where y is natural amino acid frequency, ŷ is a predicted
frequency of corresponding amino acid, �y is average
frequency of corresponding amino acid frequency in all
genomes (see Additional file 1: Table S2), and n is the
number of genomes.
The root mean square error (RMSE) measures the

accuracy of the amino acid frequency predictions:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi − ŷið Þ2
s

, which should be less than

the standard deviation of the observed values. Additional
file 1: Table S3 contains R2 and RMSE measurements for
the whole set of genomes.

Simulations of random mutations in relation to the
tradeoff
We simulated random mutations by using a compositional
substitution matrix based on the nucleotide frequencies of
the original (wild type) genome [47]. The goal here was
to survey changes in the codon composition caused by
mutations given the genomic nucleotide composition. It
is important to keep the nucleotide composition un-
changed in order to explore composition-dependent
trends. Otherwise, the affinity to change composition
will dominate the simulation process. As an illustration,
we simulated mutations with unnatural substitution
matrix where the bases are equiprobable (1/4 each). All
the simulation traces converged to one point, corrobor-
ating importance of preserving the original composition
(Additional file 1: Figure S4). We fixed the nucleotide
content by using compositional substitution matrix of
the original genome and allowing the codon and amino
acid compositions to change freely without any selection
applied. A compositional mutation is simulated as follows.
First, we choose a codon to be mutated with the prob-
ability proportional to its genomic frequency. Second,
we randomly (with uniform probability) choose one of
the positions in the codon. The selected nucleotide is
then mutated according to probabilities in the nucleotide
substitution matrix [47]. Codon frequencies are updated
as a result of mutations, while the substitution matrix is
kept unchanged.
In the first experiment, we simulated dynamics of the

nucleotide/amino acid content in genomes with strongly
distorted (from natural) codon bias. Using constrained
optimization by linear approximation method imple-
mented in SciPy (http://www.scipy.org/) we substantially
changed the codon bias in Streptobacillus moniliformis

http://folk.uib.no/agoncear/GC_AA/
http://folk.uib.no/agoncear/GC_AA/
http://www.scipy.org/
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DSM 12112 and Nocardiopsis dassonvillei subs. dassonvil-
lei DSM 43111 to desired value, preserving, however, their
amino acid composition and the GCNAT content. We used
the genomes with distorted codon bias as the starting
points in the simulations, allowing the nucleotide and
amino acid compositions to change freely. We made 2⋅107

mutations (Figure 3A, B) in simulations of each genome,
calculating the following characteristics every 10 000 mu-
tations: codon entropy, GCNAT, GCCB, GCNCB, nucleotide
composition and its purine/pyrimidine ratio, the number
of synonymous and nonsynonymous substitutions, amino
acid composition, and the average amino acid depth index.
The points in the plots (Figure 3A, B and Additional
file 1: Figure S5) show changes in corresponding char-
acteristics for each step in the simulations.
In the experiments on all 1364 genomes the natural

nucleotide compositions and codon biases were used,
and both nucleotide and amino acid compositions were
allowed to change. The simulations were performed by
applying 2⋅106 mutations (simulation traces are shown
in Figure 3C, D and Additional file 1: Figure S6a, b).
Since it may be hard to trace individual genomes in a
combined plot, we show simulations for six representative
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Figure 3 Simulations of the tradeoff dynamics via random nucleotide
dassonvillei subs. dassonvillei DSM 43111, GCNAT = 72.7; and Streptobacillus m
changes in the GCCB/GCNCB pairs related to the tradeoff. B, the increase of
entropies in all genomes. C and D, simulations of mutations in 1364 natura
continues along the lines. The traces are colored by average amino acid de
behavior of the codon entropy.
genomes sampled at different GC values (Additional file 1:
Table S5 and Additional file 1: Figure S7).

Results and discussion
The GC content of protein-coding DNA (GCNAT) in
1364 analyzed prokaryotic genomes spans from 13 to 75
percent (Figure 1A, black dots). The GC content with
eliminated codon bias (GCNCB) represents the GC-load of
the amino acid composition (Figure 1B and Additional
file 1: Figure S8). The maximal (red dots) and minimal
(green) theoretical limits of the GCNAT content are ob-
tained by replacing natural codons with the GC-richest
and GC-poorest synonymous codons (Additional file 1:
Table S2). These limits indicate that given a natural
amino acid composition it is possible to obtain a wide
range of GC values provided by the codon bias. The
boundaries of the GC content determine, in turn, theoretic-
ally maximal and minimal values of the non-codon-biased
GC content (GCNCB). Noteworthy, a relation between the
nucleotide (represented here via GCNAT) and amino acid
compositions (expressed via GCNCB) is asymmetric. The
range of allowed GCNAT values is about 40 percent, and the
whole range shifts to higher values as GCNCB increases
20 30 40 50 60 70

4.
0

4.
5

5.
0

5.
5

6.
0

GC content

C
od

on
 e

nt
ro

py
, b

its

xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

4.5

5.0

5.5

6.0

20 40 60

GC content

C
od

on
 e

nt
ro

py
, b

its

20 30 40 50 60 70

4.
0

4.
5

5.
0

5.
5

6.
0

GC content

C
od

on
 e

nt
ro

py
, b

its

xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

4.5

5.0

5.5

6.0

20 40 60

GC content

C
od

on
 e

nt
ro

py
, b

its

B

D

mutations. A, B, simulations for two genomes (Nocardiopsis
oniliformis DSM 12112, GCNAT = 26.3) with distorted codon bias. A,
the genomes’ codon entropy in relation to the distribution of
l genomes; the simulation starts at points marked by filled circles and
pth C, changes in the GCCB/GCNCB pairs related to the tradeoff. D,
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(Figure 1A). The inverse is very different with the maximal
interval of GCNCB values about 30 percent (for the values
of GCNAT between 35 and 50 percent), which is gradually
diminishing at the extremes of the GC scale (Figure 1B).

The tradeoff between the nucleotide and amino acid
compositions
Natural protein-coding GC content (GCNAT) content
can be represented as a sum of the non-codon-biased
GC content (GCNCB) and the codon bias (GCCB). The
nature of the relation between two components of GCNAT

in prokaryotic genomes, GCCB and GCNCB, is nonlinear
(Figure 2). At the extremes of the GC content interval, the
codon usage bias approaches its theoretical limits and a
contribution from the amino acid composition to protein-
coding GCNAT becomes much more pronounced than in
genomes with an average GC content. The tradeoff be-
tween the nucleotide and amino acid compositions can be
expressed via differential equation

dGCCB

dGCNCB
¼ rGCCB 1 − GCCBð Þ

where r is the maximal GCCB/GCNCB rate. The solution
of this equation can be written in the form of logistic
function

GCCB ¼ b þ a − b
1 þ e−r GCNCB−cð Þ

where a and b are upper and lower limits of GCCB

respectively. The inflection point c corresponds to the
GCNCB value with the rate r. Using weighted nonlinear
regression (see Methods) we fit the model parameters to
the GCCB and GCNCB values of the natural protein-coding
genomic sequences. The resulting model,

GCCB ¼ 37:1
1 þ e−0:255 GCNCB−49:4ð Þ −16:28

quantitatively describes the tradeoff between the nu-
cleotide and amino acid compositions (orange curve,
Figure 2). Since in prokaryotes the content of protein
coding sequences (GCNAT) determines corresponding
genomic GC, the same parameters are also applicable to
genomic GC content (including RNA-coding genes and
non-coding regions) without any significant loss of pre-
cision (Additional file 1: Table S3).
Taking advantage of the fact that fractions of amino

acids (anti)correlate with GCNCB (see the corresponding
section in Methods and Additional file 1: Figure S3), we
have challenged the tradeoff model for prediction of the
amino acid composition given the genomic GC content.
The first step of the procedure is calculation of the
GCNCB and GCCB values using the tradeoff model. The
root mean square error (RMSE) in prediction of GCNCB
using the tradeoff model is 0.85 percent of GC content.
The second step is prediction of the amino acid fre-
quencies based on the regression models for the GC-
poor/-medium/-rich amino acid groups (see Methods
and Additional file 1: Figure S3). The resulting error
(RMSE) of predicted amino acid frequencies compared
to the natural ones is between 0.2 and 0.91 percent of
amino acid content (Additional file 1: Table S3). Pre-
dictive power of the tradeoff was additionally tested by
determining the amino acid compositions of three re-
cently sequenced genomes (not present in the original
set of 1364, Additional file 1: Table S6). For illustration
purposes we also provide the web application that predicts
amino acid compositions of proteomes given their gen-
omic GC content: http://folk.uib.no/agoncear/GC_AA/.

Versatility of the tradeoff: phylogeny, life styles, and
extreme environments
There are many peculiar nucleotide and amino acid
compositional biases, which reflect molecular adaptation
to different life styles and environments [2-5,19,26]. We
analyzed how different types of genomes are distributed
with respect to the tradeoff (Figure 4). Noteworthy, the
narrow width of the distribution of genomes around the
tradeoff curve (about ±5 percent GC at its maximum,
Figures 2 and 4) is sufficient for supporting genomic
diversity in archaeal and bacterial domains of life, differ-
ent life styles, and adaptation to different environments.
Adaptation to the same extreme conditions can be achieved
via nucleotide/amino acid content pairs located far from
each other along the tradeoff ’s GC scale (Figure 4).
Hyperthermophiles yield the narrowest range of GC
values (shown in comparison to mesophiles in Figure 4A)
compared to other genomic and environmental factors
(Figure 4B-D). Low values of the GC content are typical
for host-associated organisms (parasites and symbionts).
Terrestrial organisms have higher GC content (Figure 4B),
implying that their nucleotide and amino acid composi-
tions are biased in different ways. The GC range in aer-
obes is wider than in anaerobes, showing an important
role of the codon bias in tuning nucleotide compositions
of anaerobic organisms (Figure 4C). Archaea has a relatively
narrow range of GC compared to Bacteria (Figure 4D),
which points to stronger amino acid adjustment in the
adaptation mechanisms of Bacteria. The qualitative simi-
larity between Archaea/Bacteria and hyperthermophiles/
mesophiles is presumably a consequence of the archeal
domination in the hyperthermophilic environments
(Figure 4A, B). Regardless of the environmental and
lifestyle factors all prokaryotic genomes obey the same
tradeoff model, and the RMSE in prediction of GCNCB

is less than one percent of GC when the model is applied
to a specific subgroup of genomes. The corresponding
RMSE values for the subgroups of genomes are: 0.83 – for

http://folk.uib.no/agoncear/GC_AA/


30 35 40 45 50 55 60

−
15

−
10

−
5

0
5

10
15

Domain of Life

GC content without codon bias

C
od

on
 b

ia
s 

ef
fe

ct

Bacteria
Archaea

30 35 40 45 50 55 60

−
15

−
10

−
5

0
5

10
15

Habitat

GC content without codon bias

C
od

on
 b

ia
s 

ef
fe

ct

Host−associated
Terrestrial

30 35 40 45 50 55 60

−
15

−
10

−
5

0
5

10
15

Oxygen tolerance

GC content without codon bias

C
od

on
 b

ia
s 

ef
fe

ct

Aerobes
Anaerobes

30 35 40 45 50 55 60

−
15

−
10

−
5

0
5

10
15

Temperature

GC content without codon bias

C
od

on
 b

ia
s 

ef
fe

ct
Mesophiles
Hyperthermophiles

A B

C D
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aerobes; 0.93 – anaerobes; 0.98 – hyperthermophiles;
0.82 – mesophiles; 0.87 – host-associated; 0.63 – terrestrial;
0.94 – Archaea; 0.84 – Bacteria. The most deviating sub-
groups include hyperthermophiles, Archaea, and anaerobes,
likely represented by the same genomes as these groups
overlap significantly.

Determinants of the tradeoff
What are the factors that determine shape of the trade-
off, and why do genomes follow the tradeoff ’s curve so
closely? First, we explore how the very genetic code sets
limits on the compositions of genomes and proteomes.
We started from the analysis of Shannon codon entropy
(H = − Σ p log2p, where p is a genomic codon frequency)
behavior, in order to understand to what extent it deter-
mines a mutual adjustment of the nucleotide and amino
acid compositions. The uniform usage of all 61 sense co-
dons gives the absolute theoretical maximum of the codon
entropy – 5.93. Codon entropies of natural composi-
tions form an umbrella-like distribution (black dots,
Figure 5A, B) with the maximum in the middle of the
genomic GC content interval. We further explored the
theoretical boundaries of the tradeoff ’s entropies by
preserving the amino acid composition and changing the
codon bias. The GCNCB with uniformly used synonymous
codons (blue) represents the upper boundary of the
entropy given a particular amino acid composition
(Figure 5A). The red and green points show the lower
theoretical boundaries of the codon entropy obtained
by replacing synonymous codons with the GC-richest
and the GC-poorest ones, respectively (Figure 5A).
The GC content can also be affected by swapping syn-
onymous codons. Therefore, another theoretical limit
for the given nucleotide and amino acid content can
be obtained by removing degeneracy in synonymous
codons with the same GC saturation. Orange points in
Figure 5B show that this boundary is about 0.6 bits
lower than the entropies of corresponding natural compo-
sitions over the entire range of the genomic GC content.
Overall, theoretical limits of the codon entropy show that
there is a natural tendency for maximizing codon entropy
given the genomic GC content (Figure 5), which is driven
by the nature of random mutations and is supported by
the redundancy of the genetic code. At the same time,
codon entropy does not reach its theoretical maximum
given the amino acid content (blue dots, Figure 5A),
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which points to the existence of additional factors that
affect the codon entropies and corresponding nucleotide
compositions. Specifically, we found that decrease of the
genomic GC content is accompanied by the increase of
the purine (A +G) load in the sense strand of the DNA
(Figure 6A). A plausible explanation is an existence of the
strong contribution from purine-purine dinucleotides to
the stability of double-stranded DNA via the base stacking
mechanism [2,5,48,49]. Base stacking along with base
pairing are two mechanisms that secure stability of the
double-stranded DNA [45,49,50]. While GC pairing
provides stronger interactions (three hydrogen bonds)
than AT pairing (two hydrogen bonds, [45,50]), the
purine-purine (RpR) stacking (for all possible dinucleo-
tide combinations of A and G) has lower energy than
stacking of other dinucleotides [48,50]. Correspond-
ingly, we found an enrichment of the DNA’s sense
strand with purine-purine dinucleotides (Figure 7A),
specifically ApA, ApG, and GpG (Figure 8A-C). We also
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found an increase of the pyrimidine-pyrimidine dinucleo-
tides in the sense strand (Figure 7B and Additional file 1:
Figure S9a-c), indicating an abundance of the complemen-
tary purine-purine dinucleotides in the anti-sense strand.
Thus we conclude that in addition to base-pairing interac-
tions double-stranded DNA is stabilized by stacking inter-
actions provided by ApA, ApG, and GpG dinucleotides
(Figure 8A-C and Additional file 1: Figure S9a-c) scattered
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Overall, increase of the R/Y ratio in conjunction with the
dinucleotide biases in genomes with low GC (Figures 6, 7,
8 and Additional file 1: Figure S9) reveals an apparent
change in the balance between the G•C base pairing
[45,50] and the purine-purine base stacking [48,50]. Base
pairing is the major contributor to DNA stability through-
out most of the GC range. However, the purine-purine
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(Figures 6, 7, and 8). Base stacking can also contribute to
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the stability of a secondary structure (stems) in m-,t-,
rRNA, as well as to the stability of single stranded DNA
and RNA molecules [2]. Furthermore, demands on the na-
tive protein structures and stability imply restrictions on
the amino acid composition, thus becoming one of the
factors that keep the genomes within a narrow area along
the optimal tradeoff (Figure 2). Stability of proteins [51]
requires adherence to the optimal ratio between the in-
terior and exterior of the protein globule [52]. The
genome-averaged amino acid depths, a distance be-
tween the protein’s atom and the nearest bulky water
molecules surrounding the protein [43,44], is a charac-
teristic that describes this ratio. We found that values
of the averaged proteomic depth are confined within a
narrow interval from 0.96 to 1.02 for all 1364 genomes
(Figure 6B).

Boundaries of the tradeoff and its dynamics
What would happen if unnatural combinations of the
nucleotide/amino acid compositions emerge, i.e. if the
genome is placed far from the optimal tradeoff? We have
chosen two genomes at the extremes of the GCNAT scale,
Streptobacillus moniliformis DSM 12112 (GCNAT = 26.3,
plum dots in Figure 3A, B) and Nocardiopsis dassonvillei
subs. dassonvillei DSM 43111 (GCNAT = 72.7, navy blue
dots) for the following computational experiment. We
strongly distorted their codon biases (around 30 percent
absolute change in each case, dashed lines in Figure 3A, B),
while preserving natural amino acid compositions. Then
we applied series of random DNA mutations with prob-
abilities corresponding to the nucleic acid composition of
modified genome (see Methods). As mutations accumu-
lated, the GCCB/ GCNCB of the genomes followed the
shortest path towards the ratio described by the tradeoff
model along the isoline of the GCNAT content (Figure 3A).
Simultaneously, the Shannon codon entropy (Figure 3B)
increased because of the nature of random mutations and
a tendency of the compositions near the tradeoff to have
high codon entropy. As a result, distorted genomic
compositions have gradually converged to its optimal
values described by the tradeoff model (Figure 3A, B
and Additional file 1: Figure S5). Further, we explored
the dynamics of the relationship between the nucleotide
and amino acid content by simulating random mutations
in all genomes starting from their natural compositions.
In order to explore mutational trends depending on the
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GC content and starting from the assumption that it is a
result of the selection that already took place in natural
genomes/proteomes, we used the substitution matrix
representing the natural nucleotide composition. The
simulations show that proteomic-averaged amino acid
depth imposes restrictions on the GCCB and GCNCB

values, keeping them close to the curve of the optimal
tradeoff and pushing the codon entropy to approach its
maximum (Figure 3D and Additional file 1: Figure S5).
The amino acid depth in mutated genomes (color coded
in Figure 3C) with compositions strongly deviated from
the tradeoff curve felt outside the naturally observed range
of values (green area in Figure 3C corresponding to 0.95
to 1.02 range in Figure 6B). The purine/pyrimidine ratio
(R/Y) exploits the whole range of natural values (~1.0-1.4)
at low and middle values of the genomic GC content
(Additional file 1: Figure S6).
We also explored the composition-dependent muta-

tional trends of the tradeoff. The trend in the GC depend-
ence of the transitions/transversions ratio mimics the
codon entropy change (Additional file 1: Figure S10), with
the maximum in the inflection point of the compositional
tradeoff (Additional file 1: Figure S11 shows the first
derivative of the tradeoff). Thus, transversions (changes of
purine to pyrimidine or vice-versa) are more likely to take
place if the GC content is biased, resulting in the elevated
level of nonsynonymous substitutions that reaches highest
values at low GC (Additional file 1: Figure S12). This trend
roughly corresponds to the purine-pyrimidine ratio (R/Y)
behavior (Figure 6A). Therefore, in the genomes with low
GC the purine-pyrimidine balance can be affected by an
additional constraint on the codon and amino acid com-
positions. To this end, we considered possible difference
in the effects of nonsynonymous substitutions on the
amino acid composition. Specifically, if the amino acid is
replaced by a chemically similar one, the nonsynonymous
nucleotide substitution can be “neutral” from the point of
view of the amino acid’s role in the protein structure and
stability. In this case, the effect of mutation will be rather
negligible, and structure and stability of the protein will
remain intact. Using BLOSUM substitution matrices [53]
for quantifying similarity between the amino acids, we
calculated a substitution score for all simulated nonsy-
nonymous substitutions (Additional file 1: Figure S13)
averaged over the genome. The average BLOSUM score
for all amino acid substitutions obtained in simulations



Goncearenco and Berezovsky Biology Direct 2014, 9:29 Page 11 of 15
http://www.biologydirect.com/content/9/1/29
(Methods) strongly anti-correlates with the GC content of
protein-coding DNA (GCNAT), with r = −0.92 and −0.89
for BLOSUM30 and BLOSUM62 matrices, respectively
(Additional file 1: Figure S13a, b). Thus, in genomes with
low GC content, amino acids are more often replaced
(on average) by the amino acids with similar physical-
chemical characteristics. As a result, in these genomes
switching from base pairing to base stacking as the
dominating mechanism in DNA stability can take place
without compromising stability and function of the
encoded proteins.
One can also ask why are there GC-poor and GC-rich

genomes? What are the factors that originate and sup-
port strong compositional biases? In general, genomic/
proteomic compositions emerge as a direct result of
the mutational processes [54] and selection acting on the
material generated in mutational process [55]. Recently,
strong positive correlation was found between the gen-
omic GC content and strength of the coupling between
selection on protein sequences and optimization of codon
usage in a broad range of Archaea and Bacteria [56]. Se-
lection alone may not sufficient to change the nucleotide
composition and to produce extremes of the GC content
observed in prokaryotes. One, therefore, should seek
for the strong and persistent mutational biases. Two
independent works published back-to-back [57,58] unani-
mously concluded that mutational trends in Bacteria are
universally AT-biased (even in Bacteria with high genomic
GC content). It has been concluded that if AT-bias would
chiefly govern the genomic nucleotide compositions, the
latter would inevitably decline down to about 30 percent
in all bacterial genomes. Another conclusion in these two
works is that natural selection can determine the rates of
fixation of AT→GC and GC→AT mutations. Above ob-
servations provide a potential explanation for emergence
of the GC-poor genomes leaving us with a question about
the origin of the GC-rich extremes. A plausible mechan-
ism proposed recently is that bacterial genomes have dif-
ferent Polymerase III mutator genes that may introduce
GC-biased mutations depending on the alpha subunit
isoforms [59]. In particular, an error prone DNA repair
polymerase with dnaE2 alpha subunit may be driving the
mutagenesis process towards high GC content.

Conclusions
Coexistence and mutual adjustment of the realms of nu-
cleotide and amino acid compositions in prokaryotes are
the topics of this work. We asked here the most general
question – how and to what extent can the nucleotide
and amino acid compositions affect each other? The
genetic code and codon entropy predetermine mutual
adjustment of nucleotide and amino acid compositions
depending on the genomic GC content. Specifically, in
the middle of the GC content interval (50 ± 5 percent)
redundancy of the genetic code allows tuning of the nu-
cleotide content using only the codon bias and not
strongly affecting the amino acid composition. However,
in genomes with the GC content closer to the upper and
lower extremes, the potential of the codon bias is
exhausted. Therefore, tradeoff is maintained at the ex-
pense of the amino acid compositions, in particular the
amino acids with the GC-poor/-rich codons are preferably
utilized. Charged amino acids comprise an interesting
example of the link between the compositions. Both nega-
tively charged amino acids, aspartate and glutamate, have
medium GC saturation. Therefore, they can not be used
for the efficient tuning of the nucleotide composition,
neither their amount should be significantly affected by
possible changes in the nucleotide composition. On the
other hand, positively charged lysine and arginine belong
to the GC-poor and GC-rich groups. Thus the choice be-
tween the lysine and arginine can change the GC content:
arginine can be preferred over the lysine in the genomes
with high GC content and vice versa.
The most complex relationship in the context of the

tradeoff between the nucleotide and amino acid compo-
sitions was found in the case of switching between the
dominating mechanisms of DNA stability whilst preserv-
ing the structure and stability of corresponding proteins.
It has been established in numerous experimental and
theoretical works that there are two fundamental inter-
actions that determine stability of the double-stranded
DNA: base pairing [45,50] and base stacking [48-50].
While GC pairs in the double helix have stronger base-
pairing interactions than AT pairs, purines A and G, yield
a lower energy of stacking in the purine-purine dinucleo-
tides compared to all others. We found that the codon
bias provides a basis for the increase of purine-purine
(RpR) dinucleotides in both strands of DNA molecules in
the genomes with low GC content. Purine-purine di-
nucleotide bias secures thus DNA stability, underlies
higher stability of the RNA stems and, to lesser extent,
single-stranded DNA and RNA molecules [2,5,48-50]. The
higher purine content at the low GC values is accompan-
ied by the increase of the non-synonymous mutations in
the amino acid sequences. However, most of these amino
acid substitutions do not lead to the change of the amino
acid type, preserving their physical-chemical features
and not compromising structure and stability of the
protein. Overall, the interplay between the genetic
code, optimization of the codon entropy, and demands
on the structure and stability of nucleic acids and pro-
teins chiefly determine the tradeoff throughout the
whole interval of the genomic GC values.
To conclude, the tradeoff is a fundamental concept

quantifying the non-linear relationship between the nucleo-
tide and amino acid compositions of prokaryotes and allow-
ing one to predict a proteomic amino acid composition
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based on a single quantity of the genomic GC content
(http://folk.uib.no/agoncear/GC_AA/). The tradeoff is
purely compositional phenomenon, linking the realms
of nucleic and amino acids in prokaryotes regardless of
their life styles, environments, and phylogeny. Versatility
and diversity in prokaryotic genomes/proteomes is main-
tained by the tradeoff, which provides a playground for
the work of natural selection towards diversification and
adaptation.

Reviewers’ comments
Reviewer 1: Eugene Koonin, National Center for
Biotechnology Information, NIH, Bethesda, Maryland,
United States
As far as I can see, the principal feature of the tradeoff
(and the justification for using this term) is that in the
mid-range of GC-content nucleotide and amino acid
compositions are more or less unlinked (adjustment at
synonymous positions is sufficient to account for the
GC-content) but at the extremes this is no longer the
case and amino acid composition trails the GC-content
(e.g. preference for Arg over Lys in GC-rich genomes).
As the authors point out, the tradeoff is a purely “com-
positional” phenomenon which is fundamental in the
sense that it equally applies to all genomes regardless of
any features of the respective organisms. In other words,
this is a purely mathematical, “forced” feature of nucleo-
tide sequence that accordingly is in a sense trivial. I do not
mean this in a pejorative way: trivial or not it is useful to
carefully describe the connections between GC-content
and amino acid composition as the authors do in this
paper. The interesting effects emerge at the interface
of this compositional tradeoff with selection. The paper
presents some such effects in particular the higher purine
content in GC-poor genomes that apparently is selected
for stabilization of DNA.
To me the most interesting question is: why do ex-

tremely GC-rich and extremely GC-poor genomes exist at
all? It seems that such extremes should be selected against
given the inevitable effect on the amino acid composition
as per the tradeoff. What gives? The present paper does
not address this question.

Authors’ response
Questions why there are GC-poor/-rich genomes and
what factors originate and maintain these compositional
biases are indeed intriguing ones. In general, genomic/
proteomic compositions is a direct result of the muta-
tional processes and selection acting upon the results of
mutations [55]. Selection alone may not be sufficient to
change the nucleotide composition and to produce ex-
tremes of the GC content observed in prokaryotes. One,
therefore, should seek for the strong and persistent mu-
tational biases. Two independent works published back-
to-back [57,58] unanimously concluded that mutational
trends in Bacteria are universally AT-biased (even in Bac-
teria with high genomic GC content). If these biases chiefly
governed the genomic nucleotide compositions, the latter
would inevitably decline down to about 30 percent in all
bacterial genomes. Another conclusion in these two works
is that natural selection can determine the rates of fixation
of AT→GC and GC→AT mutations. Above observations
provide a potential explanation for emergence of the GC-
poor genomes leaving us with a question about the origin
of the GC-rich extremes. A plausible mechanism proposed
recently is that bacterial genomes have different Polymerase
III mutator genes that may introduce GC-biased mutations
depending on the alpha subunit isoforms [59]. In particular,
an error prone DNA repair polymerase with dnaE2 alpha
subunit may be driving the mutagenesis process towards
high GC content.
What other traits of genomes and proteomes that can

originate extreme nucleotide and amino acid composi-
tions, and how can selection affect the tradeoff between
them? Recently, for example, strong positive correlation
was found between the genomic GC content and strength
of the coupling between selection on protein sequences
and optimization of codon usage in a broad range of
Archaea and Bacteria [56]. However, we are still left to
obtain a complete picture of the relations between muta-
tional biases, natural selection, and factors that determine
them. Advances in high-throughput sequencing and pro-
teomics provide a wealth of data, diversity and complete-
ness of which will hopefully allow us to answer all
outstanding questions.
We have added above discussion and references to the

manuscript.

Reviewer 2: Michael Gromiha, Indian Institute of
Technology (IIT) Madras, Tamil Nadu, India
In this work the authors described a fundamental tradeoff
between nucleotide and amino acid compositions using a
set of more than 1300 prokaryotic genomes. A nonlinear
equation has been set to fit the data and analyzed the pos-
sible effects on the mutational biases. They have analyzed
various factors and different organisms such as mesophiles
and thermophiles bacteria and archaea based on habitat
and oxygen tolerance. The work is interesting with the
combination of physical basis and statistical analysis.
The manuscript is well written and sufficient details are
provided:

1. The advantages of using nonlinear fit could be
discussed.

2. The significance of coefficients in Figure 2 may be
discussed.

3. The comparison of features used in Figure 4 using
quantitative measures may be useful.

http://folk.uib.no/agoncear/GC_AA/
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Authors’ response

1. The nonlinear fit is crucial for exhaustive description
of the relationship between the nucleotide and amino
acid compositions. It emphasizes on the difference
between the compositional tradeoff in genomes in
the middle of the GC content interval and those with
biased nucleotide compositions. Indeed, there is a
strong pressure on the amino acid compositions
in genomes with extremely low/high GC contents,
resulting in preferential selection of amino acids
with GC-poor/-rich codons respectively. The nonlinear
nature of the tradeoff can be explored with an interactive
web application: http://folk.uib.no/agoncear/GC_AA/. In
particular, at GC values close to 50 percent the tradeoff
dGCCB/dGCNCB > 2.3, whereas at the extremes where
GC > 70% or GC < 30% the tradeoff is completely
different: dGCCB/dGCNCB < 1.0. In case of the linear fit
the tradeoff would be constant, which is not the case as
exemplified by the genomes at the extremes. Therefore,
using a linear fit it is not possible to predict the
codon bias effect correctly for the genomes with
biased genomic GC content. In order to illustrate
this we fitted a weighted linear model GCCB = 1.889
GCNCB - 90.923. If we apply it, for instance, to
Candidatus Zinderia insecticola CARI genome with
GC of 13.2 (Additional file 1: Table S4) it will predict the
GCNCB value of 36, and codon bias effect GCCB =−22.8,
while the actual value of GCNCB is 30.3 and the most
extreme codon bias effect is −17.1. Of course it will be
impossible to predict amino acid composition given
this high error of the linear model. For all the genomes,
the root mean square error (RMSE) of the linear model
will be 0.97 percent GC versus 0.85 for the nonlinear
model.

2. The model parameters that we obtained for all the
available genomes work well for predicting the codon
bias and amino acid compositions when applied to
different specific subgroups of genomes (see also the
answer to question #3). Although we have not estimated
the robustness directly, we assume that the weighting by
genome abundance across the GC range (see Additional
file 1: Figure S2) removes the possible biases originating
from non-uniform experimental sampling of the
genomes along the GC scale. For completeness we have
also obtained the non-linear model parameters for
specific groups of organisms considered in Figure 4
(Additional file 1: Table S8). However, we would like
to emphasize on the importance of the analytical
expression of the tradeoff and predictive power of
the general tradeoff model, which correctly describes a
relationship between the realms of the nucleotide and
amino acid compositions with high precision (down to
1 percent of composition).
3. In order to quantify the differences between the
compositions of organisms classified according to
different factors in Figure 4, we measured the RMSE, i.e.
the error in predicting the codon bias and non-codon
biased GC content (GCNCB), given the GC content of
coding sequences. For all of the genomes the RMSE is
0.85 percent of GC content. The corresponding RMSE
values for the subgroups of genomes are: 0.83 – for
aerobes; 0.93- anaerobes; 0.98 – hyperthermophiles;
0.82 – mesophiles; 0.87 – host-associated; 0.63 –
terrestrial; 0.94- Archaea; 0.84 – Bacteria. According to
RMSE the most deviating factors are hyperthermophi-
lies, anaerobes, and archaeal domain of life, which are
in fact highly overlapping. Noteworthy, even for the
most deviating subgroups the RMSE is within one
percent of GC.
Corresponding explanations and data were added to
the manuscript and to the Additional file 1.

Reviewer 3: Alexander Schleiffer, Research Institute of
Molecular Pathology (IMP), Vienna, Austria
This manuscript describes an interplay between nucleotide
and amino acid compositions in prokaryotes. More
than 1300 genomes both from Archaea and Bacteria
were analyzed for their average genomic GC content,
and compared to the GC content of individual codons
in proteins. Surprisingly, the genomic and the amino
acid composition are far more tightly linked than previ-
ously thought, and the authors present an algorithm to
predict one from the other. This study opens new ques-
tions regarding the biochemical/biophysical constraints
that determine this relationship.

Additional file

Additional file 1: Compilation of all supplementary figures and
tables. Complete list of supplementary figures and tables is given in the file.
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