
Berezovskaya et al. Biology Direct 2014, 9:13
http://www.biologydirect.com/content/9/1/13
RESEARCH Open Access
Pseudo-chaotic oscillations in CRISPR-virus
coevolution predicted by bifurcation analysis
Faina S Berezovskaya1, Yuri I Wolf2, Eugene V Koonin2* and Georgy P Karev2
Abstract

Background: The CRISPR-Cas systems of adaptive antivirus immunity are present in most archaea and many
bacteria, and provide resistance to specific viruses or plasmids by inserting fragments of foreign DNA into the host
genome and then utilizing transcripts of these spacers to inactivate the cognate foreign genome. The recent
development of powerful genome engineering tools on the basis of CRISPR-Cas has sharply increased the interest in
the diversity and evolution of these systems. Comparative genomic data indicate that during evolution of prokaryotes
CRISPR-Cas loci are lost and acquired via horizontal gene transfer at high rates. Mathematical modeling and initial
experimental studies of CRISPR-carrying microbes and viruses reveal complex coevolutionary dynamics.

Results: We performed a bifurcation analysis of models of coevolution of viruses and microbial host that possess
CRISPR-Cas hereditary adaptive immunity systems. The analyzed Malthusian and logistic models display complex,
and in particular, quasi-chaotic oscillation regimes that have not been previously observed experimentally or in
agent-based models of the CRISPR-mediated immunity. The key factors for the appearance of the quasi-chaotic
oscillations are the non-linear dependence of the host immunity on the virus load and the partitioning of the
hosts into the immune and susceptible populations, so that the system consists of three components.

Conclusions: Bifurcation analysis of CRISPR-host coevolution model predicts complex regimes including
quasi-chaotic oscillations. The quasi-chaotic regimes of virus-host coevolution are likely to be biologically
relevant given the evolutionary instability of the CRISPR-Cas loci revealed by comparative genomics. The results
of this analysis might have implications beyond the CRISPR-Cas systems, i.e. could describe the behavior of any
adaptive immunity system with a heritable component, be it genetic or epigenetic. These predictions are
experimentally testable.

Reviewers’ reports: This manuscript was reviewed by Sandor Pongor, Sergei Maslov and Marek Kimmel. For the
complete reports, go to the Reviewers’ Reports section.
Background
The arms races between microbes and viruses preying on
them often display rich, complex population dynamics [1].
In principle, the dynamics of virus-microbe interactions is
analogous to the classical predator–prey models [2-5]
but both microbes and viruses evolve much faster than
animals such that virus-host interactions change on a
scale that may be amenable to direct laboratory study.
One of the adaptation mechanisms employed by hosts
to curb viruses is the CRISPR-Cas (Clustered Regularly
Interspaced Short Palindromic Repeats-CRISPR associated
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proteins), a recently discovered adaptive immunity system
that is present in the great majority of Archaea and
many bacteria [6-12]. Microbes create heritable memory
of viruses that attack them by inserting virus-derived
spacers into CRISPR repeat cassettes, thus following the
Lamarckian modality of evolution that dramatically accel-
erates adaptation [13]. The rapid adaptation through the
activity of CRISPR-Cas is possible because this system en-
genders heritable genetic changes that are directly benefi-
cial for the archaeon or bacterium in the face of a specific
environmental challenge (a virus), in contrast to the ran-
dom, undirected mutations in the Darwinian evolutionary
framework [14]. The CRISPR-Cas systems are increasingly
used as powerful, versatile tools for genomic engineering
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tools which sharply increases the interest in their diversity
and evolution [15-20].
General considerations suggest that the population

dynamics of virus-host coevolution should be dominated
by periodic selective sweeps alternating between the host
(when it “discovers” a resistance mutation or acquires
immunity against the dominant virus lineage) and the
virus (when an immunity escape mutation occurs), similar
to the case of rapidly evolving human viruses [21]. Indeed,
such behavior has been observed in simple Lotka-Volterra
type models of phage-bacteria coevolution [22,23] as well
as in direct evolutionary experiments [23]. However, direct
and indirect population studies reveal much more com-
plex behaviors of the actual populations that usually does
not involve strain dominance and instead displays long-
term persistence of multiple lineages of both the microbial
hosts and the viruses [24-27].
Several detailed agent-based models of coevolution

between viruses and CRISPR-Cas-carrying hosts have
been developed and analyzed [26,28-35]. The agent-based
models incorporate the salient features of the CRISPR-Cas
system such as the existence of the CRISPR cassette with
virus-derived spacers, immunity conferred to a host by
spacers that match the attacking virus and acquisition of
new spacers as a result of failed virus infections. These
models allow one to reproduce many aspects of the
observed behavior of coevolving virus-host systems and
predict conditions required for the evolutionary mainten-
ance of the CRISPR-Cas immunity, such as a threshold of
viral diversity [28].
Agent-based models provide for the exploration of

interactions of arbitrary complexity and naturally incorp-
orate the desired level of granularity (e.g. individual-based
or lineage-based models) and the stochasticity of the
processes involved. However, such models typically
possess a high-dimensional parameter space that cannot
be explored in full, so that not all potential regimes, some
of which could be biologically relevant, are captured.
In contrast, mathematical models based on systems of
differential equations are limited in complexity and are
inherently less realistic (at the very least because they
approximate reality with infinitely small deterministic
changes) but when analytically tractable, permit a full
and rigorous analysis of all possible behaviors.
Here we describe Lotka-Volterra type models of

interaction between a host with a heritable adaptive
immunity system, such as CRISPR-Cas, and a virus
that escapes the immunity via implicit accumulation of
mutations which is implemented as gradual immunity
decay. We construct “minimal” analytical models which
capture qualitatively the basic regimes of the CRISPR-Cas
system behaviors previously found experimentally and
through the agent-based modeling. We explore the full
spectrum of possible behaviors of this virus-host system,
compare the results with those of a more detailed agent-
based model [32], and describe a previously unnoticed
regime of quasi-chaotic oscillations.

Results
Three-component CRISPR population dynamics:
Malthusian and logistic versions
In order to construct “minimal” analytical models that
would qualitatively capture the basic regimes of the
CRISPR-Cas system behaviors we analyzed, as a prelim-
inary step, a two-component Volterra-type model which
describes the dynamics of virus-host system and con-
sider immunity static within the timescale of the model.
Our analysis shows that two-component models display
simple dynamical regimes (see Methods for details).
However, the CRISPR-Cas system of adaptive immunity,
which this work seeks to model, cannot be expected to
follow these simple regimes given its dynamic evolution
that involves rapid acquisition of immunity to a particu-
lar virus or plasmid along with loss and gain of entire
CRISPR-Cas loci [36]. Thus, more realistic models
should take into account that adaptive immunity sys-
tems are characterized by the existence of immune
memory that enhances the response in individuals en-
countering a familiar challenge [37,38]. Originally non-
immune (“native”) individuals can acquire the adaptive
response capacity that persists at timescales relevant for
our model. Thus, we introduce two categories of hosts,
immune and non-immune, that interact differently
with the virus and exchange individuals via immunity
acquisition and decay.
Let x(t) be the density of immune hosts with the im-

munity p with respect to viruses, 0 ≤ p ≤ 1; y(t) be the
density of sensitive hosts with immunity s, 0 ≤ s ≤ p ≤ 1;
z(t) be the density of viruses. We consider the following
3-component model:

dx
dt

¼ x 1−l−a xþ yð Þð Þ−bxz 1−pð Þ þ esyz ≡P x; y; zð Þ;
dy
dt

¼ yþ lx−ay xþ yð Þ−byz 1−sð Þ−esyz ≡Q x; y; zð Þ;
dz
dt

¼ z −d þ bM x 1−pð Þ þ y 1−sð Þð Þ−b xpþ ysð Þð Þ≡R x; y; zð Þ:
ð1Þ

Here l is the immunity decay rate (x→ y flow), e is the
immunity acquisition rate; d is the death rate of viruses,
M is the virus reproduction rate; b is the encounter rate
coefficient; the growth rates of immune and sensitive
hosts are equal to 1.
Model (1) for a = 0 describes a situation when immune

and sensitive hosts in the absence of viruses grow according
to the Malthusian model. If a > 0, the model (1) describes a
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more realistic situation when both classes of hosts grow
according to the logistics model.
Coordinates of equilibria of (1) solve the system:

P x; y; zð Þ≡ x 1−l−a xþ yð Þð Þ−bxz 1−pð Þ þ esyz ¼ 0;

Q x; y; zð Þ≡ yþ lx−ay xþ yð Þ−byz 1−sð Þ−esyz ¼ 0;
R x; y; zð Þ≡ z −d þ bM x 1−pð Þ þ y 1−sð Þð Þ−b xpþ ysð Þð Þ ¼ 0:

ð2Þ
Model (1) has equilibrium O(0, 0, 0) in all cases. The

logistic model with a > 0 has one more equilibrium A
(0,1/a,0), which corresponds to existence of only non-
immune hosts.
In Methods the following assertions are proven.

Statement 1.

(1) Equilibrium O(x = y = z = 0) is unstable for all
parameter values;

(2) If a > 0 then equilibrium A(0,1/a,0) is stable for
M < daþbs

b 1−sð Þ and unstable for M > daþbs
b 1−sð Þ :

If the immunity p in model (1) is a constant, then,
additionally, the model may have either non-trivial stable
equilibrium, or may demonstrate periodic oscillations.
Detail description of possible behaviors of the model
with constant p is given in Methods.
More realistically, the immunity p is not a constant but

depends on the density of the virus, p = p(z) (0 ≤ p ≤ 1).
Below we consider the latter case, in agreement with
empirical observations and computer simulations. Specif-
ically, it has been shown that CRISPR-Cas systems are
(nearly) ubiquitous in archaeal and bacterial hyperthermo-
philes are present in less than half of the available mesophile
genomes [28,32,39,40]. Analysis of agent-based models of
virus-host coevolution suggest that this distinction stems
from the fact that hyperthermophiles face lower virus
loads and diversity than mesophiles providing for higher
efficacy of CRISPR-Cas [28].
Our aim is to find all stable modes of the model at

different values of the model parameters and to describe
the transitions from one mode to another when parameters
vary; by other words, we want to construct the bifurcation
diagram of the model. It is natural to suppose that p = p(z)
monotonically decreases and tends to the immunity s of
sensitive hosts at large z. From now on we consider:

p zð Þ ¼ 1−sð Þe−kz þ s ð3Þ
where k, s are constants, 0 < s < 1, k > 0. Under equation
(3), immunity is a monotonically declining function of
the virus amount that tends to a constant, maximum
p (maximally efficient adaptive immunity) when z tends
to zero, and tends to s (no adaptive immunity, innate
immunity only) when z tends to infinity.
Let us consider model (1) with the immunity p = p(z)
defined by (3). We do not attempt a complete analysis of
this model but rather seek to identify stable modes and
most interesting dynamical behaviors.
We start with the Malthusian version when a = 0. It

has non-trivial equilibrium Be(xe, ye, ze) such that x = xe,
y = ye are expressed via z = ze:

xe ¼ −d 1−b 1−sð Þzð Þ
b p−sð Þ 1þM−bzð Þ ; ye ¼

d 1−b 1−pð Þzð Þ
b p−sð Þ 1þM−bzð Þ ; ð4Þ

where z = ze solves the equation

1−lð Þ þ b −2þ l þ pþ s−es 1−lð Þð Þz þ b2 1−pð Þ
� 1−sþ esð Þz2 ¼ 0:

ð5Þ

In particular, we show that for a wide domain of the
parameter values, the model demonstrates non-periodic
oscillation of all three variables. The following assertions
are valid (see Methods).
Statement 2. For a wide range of (fixed) parameters l, e,

s, b, 0 < k ≤ 1, system (1), (3) with a = 0 has only one posi-
tive and unstable equilibrium Be(xe, ye, ze) under condi-
tion p zeð Þ < M

Mþ1 ; the coordinates (xe, ye, ze) of this
equilibrium satisfy (4), (5).
Trajectories of the model show quasi-chaotic behavior

for a broad range of the model parameters. Consider in
detail the behavior of the model solutions depending on
the values of the parameters l, e, and M. For l > e, typical
trajectories starting close to the equilibrium point are
shown at Figure 1. Initially, all variables show almost
periodic oscillations with increasing amplitudes. Then,
as the amplitudes become large enough, the behavior of
the trajectories changes sharply and the oscillations
become (quasi)-chaotic; if the initial point is far from
the equilibrium, then the (quasi)-chaotic oscillations are
observed from the very beginning. When l < e the behav-
ior of the trajectories is similar. The difference is that the
fraction of immune hosts, x, in case l < e is greater than it
is in case l > e. Again, if the initial point is taken far from
the equilibrium, then the (quasi)-chaotic oscillations are
observed from the very beginning, similar to Figure 1.
These types of behavior are observed in a wide area of
values of the parameter M, 1 <M < 1000. Notice, that
when M increases, the maximum values of x,y decrease
whereas z does not depend on M. This effect does not
seem to have a plausible biological interpretation (viruses
cannot exist if the hosts go extinct), indicative of apparent
limitations of the model.
Let us consider a more realistic version of 3-component

system (1) with logistic growth of hosts and the immunity
p(z) given by (3). Again, we do not attempt a complete
analysis of this model but rather seek to identify stable
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Figure 1 Solutions {x(t), y(t), z(t)} and phase portrait of the Malthusian model (1), a = 0 with parameter values l = 0.9, e = 0.1. Other
parameters are M = 100, d = 1, b = 0.01 , k = 0.5, s = 0.1. Initial values x(0) = 0.07, y(0) = 0.15, z(0) = 22.25 are chosen to be close to the equilibrium.
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modes and most interesting dynamical behaviors and
to compare them to those of the Malthusian version of
the model. In particular, we show that the model displays
non-trivial stable equilibria, stable oscillations, and quasi-
chaotic oscillations of all three variables. More precisely,
there exists a critical value of the virus birth rate Mcr at
fixed values of all other parameters such that the system
tends to a stable equilibrium when M <Mcr, but if M >
Mcr, then small periodic oscillations appear due to the
Hopf bifurcation and then, if M > >Mcr, the system tran-
sits to a regime of (quasi)-chaotic oscillations.
Coordinates of any non-trivial equilibrium B(xe, ye, ze)

should satisfy system (2); taking a = 1 for simplicity, we
present system (2) in the form:
xþ yð Þ− xþ yð Þ2−b xþ yð Þz þ b pxþ syð Þz ¼ 0;

−d þ bM xþ yð Þ−b pxþ syð Þ M þ 1ð Þ ¼ 0;

yþ lx−y xþ yð Þ−b 1−sþ esð Þyz ¼ 0;

p ¼ p zð Þ ¼ 1−sð Þexp −kzð Þ þ s

ð6Þ

It follows from the first two equations of (6) that

xþ yð Þ2− xþ yð Þ 1þM−bzð Þ
M þ 1

þ dz
M þ 1

¼ 0:

The solution to the last equation is

xþ y ¼ 1þM−bzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þbz−Mð Þ2−4d 1þMð Þz

p
2 1þMð Þ ≤ 1þM−bz

1þM : So,

0 ≤ xe þ ye < 1 and ze <
1þM

b
: ð7Þ
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It means that all possible non-trivial equilibria of the
model are placed in a bounded area of the variable values;
the amount of hosts is comparatively small (<1) and the
amount of viruses is restricted by the virus reproduction
rate M.
Solving system (6) we find coordinates of non-trivial

equilibrium B(xe, ye, ze) such that x = xe, y = ye are expressed
via z = ze

x ¼ −d þ bf � zð Þ M 1−sð Þ−sð Þ
b 1þMð Þ p−sð Þ ;

y ¼ d−bf � zð Þ M 1−pð Þ−pð Þ
b 1þMð Þ p−sð Þ ;where

f � zð Þ ¼
1þM−bz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM−bzð Þ2−4ad 1þMð Þz

q
2a 1þMð Þ

ð8Þ
and z -coordinate solves the equation:

−1þ l þ af �
� �

d−bf � M 1−sð Þ−sð Þ� �
þðdes−b2f � 1−pð Þ M 1−sð Þ−sð Þ þ bðd 1−pð Þ
− ef � M 1−pð Þ−pð ÞsÞÞz ¼ 0:

ð9Þ

Analysis of the system (1) with a > 0, (3) showed that
there exists such threshold Mcr (depending on the model
parameters) that the equilibrium B is stable if M <Mcr;
when M increases and intersects the threshold M =Mcr,
the equilibrium B loses stability and a stable limit cycle
appears in the system. We summarize the results of this
analysis in
Statement 3. For a wide range of (fixed) parameters l,

e, s, b, 0 < k ≤ 1, model (1), (3) with a = 1 has a stable equi-
librium for 0 <M <Mcr and stable oscillations for M >Mcr,
which appear due to supercritical Hopf bifurcation at
M =Mcr(l, e, s, b).
See Methods for sketch of the proof.
Examples of the evolution of trajectories and phase

portraits as the value of M increases are given in Figures 2,
3, 4, 5. Figure 2 shows trajectories of the system that tend
to a stable equilibrium when the parameter M is below
the bifurcation threshold. Figure 3 demonstrates that the
system arrives at a stable limit cycle when M intersects
the bifurcation threshold, and Figure 4 shows that the
established regime at the steady state is very close to
periodic oscillations.
Oscillations that are observed in Figure 4, with M

above the bifurcation threshold Mcr, are very close to but
not perfectly periodic. This peculiarity of the trajectories
can be explained in the following way. The Hopf the-
orem for a 3-dimension system states (see, e.g., [41],
ch.5) that there exists such one-to-one transformation of
the initial variables x→ x*, y→ y*, z→ z* that two of new
variables (say, x* and y*) show stable periodic oscillations
but the third one does not and is governed by a separate
equation. For this reason, the trajectories of initial
variables, which are functions of x*, y*, z*, may be non-
periodic and may show not exactly periodic and even
quasi- chaotic oscillations.
It should be emphasized that, when the value of param-

eter M crosses the bifurcation boundary, the qualitative
behavior of the system changes sharply: as M increases,
the behavior of the system becomes more and more
“chaotic”, with increasing non-regularity of the shapes
of the trajectories (Figure 5). At large M, phase curves
fill a surface in the (x, y, z) -space (see Figure 6, left
panel, in contrast to Figure 4), and the phase portrait of
the system reveals sharp, quasi-chaotic oscillations (see
Figure 6, right panel).

Discussion
The bifurcation analysis of the virus-host system described
here reveals complex, and in particular quasi-chaotic,
oscillation regimes that so far have not been previously
observed experimentally or in agent-based models of the
CRISPR-mediated adaptive immunity [26,28-35]. The
patchy distribution of the CRISPR-Cas systems across
the microbial diversity, and even within relatively narrow
groups of bacteria [10,42,43], implies complex dynamics
of virus-host coevolution. Here we show that, in order to
detect such non-trivial co-evolutionary regimes, the model
has to be sufficiently complex, or put another way, less
unrealistic than toy models that deal with a single host
population and a simple dependence (or independence) of
immunity on the amount of the virus, such as the two-
component models examined here. The key factors for the
appearance of quasi-chaotic oscillations are the non-linear
dependence of the immunity on the amount of viruses
and the three-dimensional phase space of the model
which divides the hosts into the immune and suscep-
tible populations, so that the system consists of three
components (Table 1). In a conceptually similar manner,
chaotic behavior has been observed in a model of
bacteriophage-host interaction where the complexity of
the system is introduced through inclusion of the time-
delayed formation of consumable bacterial debris as a
result of cell lysis [44,45].
It should be emphasized that the three-component

models require the immune host to persist in the popula-
tion, hence the results obtained here are only applicable to
adaptive immunity that involves stable inheritance, i.e. the
Lamarckian mode of evolution [13]. The CRISPR-Cas
systems that function by introducing unique, directed
modifications into the host genomes present the most
straightforward case of such Lamarckian immunity [13,34].
Nevertheless, other adaptive immunity systems, in par-
ticular the piRNA mechanism of transposon restriction
in the animal germline, function on similar principles
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[46]. Moreover, the siRNA branch of eukaryotic RNA
interference, which is nearly universal among eukaryotes,
also encompasses a substantial heritable component,
albeit in this case via the epigenetic route [37,47-49].
The quasi-chaotic regime of virus-host coevolution de-
scribed here might be relevant for these immunity systems
as well.
Both the Malthusian and the logistic versions of the

three-component model demonstrate quasi-chaotic oscil-
lations but they appear via distinct mechanisms (Table 1).
The Malthusian version has no stable modes, with un-
stable equilibria. For a wide area of the parameter values,
the trajectories lie in a bounded domain, and for this rea-
son, these trajectories demonstrate (quasi)chaotic behavior
for all reasonable values of the virus birth rate M. In
contrast, the logistic model has stable modes. There exists
a critical value, namely a threshold of the virus birth rate
Mcr at fixed values of all other parameters, such that
the system tends to a stable non-trivial equilibrium at
M <Mcr. When M >Mcr, the qualitative behavior of the
system changes sharply. A limit cycle and (almost)
periodic oscillations appear. With the further increase
of M, the limit cycle turns into a “surface”, and the behav-
ior of the system becomes more and more “chaotic”, with
increasing non-regularity of the shapes of the trajectories.
When M > >Mcr, the system transits to a regime of quasi-
chaotic oscillations.
Thus, the models described here make concrete, quan-

titative predictions that can be directly tested using an
experimental set-up for virus-host coevolution [27,50].

Conclusions
Comparative genomics as well as direct experiments reveal
notable evolutionary instability of the CRISPR-Cas systems
[36,50-52]. It is common for closely related isolates of
bacteria or archaea to differ with respect to the presence
or absence of CRISPR-Cas, indicating that this immune
system is easily lost and gained via HGT. Rearrangements



3600 3800 4000 4200 4400 4600 4800 5000 3600 3800 4000 4200 48004400 4600 5000
t

0.2

0.3

0.4

0.5

0.6

x

t

0.02

0.04

0.06

0.08

y

t

10

20

30

40

z

3600 3800 4000 4200 4400 4600 4800 5000

Figure 3 A limit cycle appears in the system (1), (3); M = 98.226 >Mcr.

Berezovskaya et al. Biology Direct 2014, 9:13 Page 7 of 17
http://www.biologydirect.com/content/9/1/13
of the CRISPR-Cas loci are also extremely widespread
among microbes [43,53]. Given this evolutionary plasticity,
complex and in particular quasi-chaotic regimes of virus-
host coevolution revealed here appear to be plausible and
potentially important for the evolutionary outcomes. In
light of the current, rapidly increasing interest in CRISPR
research, experimental validation of such regimes could
be a realistic prospect.

Methods
Two-component model with p = const
The host-virus dynamics may be considered within the
framework of the Volterra-type models

x` ¼ x 1−ax−bz 1−pð Þð Þ≡P x; zð Þ;
z` ¼ z −d−bxpþ bMx 1−pð Þð Þ ≡ Q x; zð Þ
x ≥ 0; z ≥ 0; a ≥ 0; b; d;M > 0

ðM1Þ
If the parameter p is constant and a = 0 then model

(M1) is Hamiltonian (conservative) with the Hamiltonian
G(x, z) = ln |z| + d ln |x| − b(M(1 − p) − p)x − b(1 − p)z. If
0 < p < M
Mþ1 then the system has a saddle in the origin

O and a center in the equilibrium

B �x ¼ d
b M 1−pð Þ−pð Þ ;�z ¼ 1−a�x

b 1−pð Þ
� �

:

If a > 0 (logistic case), then for constant 0 < p < M
Mþ1

system (M1) has a saddle in the origin, equilibria A(1/a, 0)

and B x ¼ d
b M 1−pð Þ−pð Þ ; z ¼ b M 1−pð Þ−pð Þ−ad

b2 1−pð Þ M 1−pð Þ−pð Þ

� �
; equilibrium B

belongs to the positive quadrant (x, z) if b(M(1 − p) − p) −
ad > 0. In this case, B is a stable node/spiral and A is a sad-
dle , A is a stable node if B is not positive (see, e.g., [54]).

Two-component model with p = p(z)
Malthusian version of the model (M1) (a = 0).
This system has equilibrium in the origin (0,0), which

is a saddle; z -coordinate of any other equilibrium �x;�zð Þ
has to be a root of the equation 1 − bz(1 − p(z)) = 0 and
�x ¼ d

b M−p �zð Þ 1þMð Þð Þ : The point �x;�zð Þ is positive only if

p �zð Þ < M= 1þMð Þ:



Figure 4 The limit cycle, phase curve; 5000 < t < 30000, M = 98.226.
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Proposition 1. If pz(z) < 0, then the Malthusian model
has only one non-trivial equilibrium B �x;�zð Þ; which is an
unstable node/spiral for every parameter values.
Proof. The Jacobian of the system in the equilibrium
�x;�zð Þ is

J �x;�zð Þ ¼ 0 b�x −1þ p �zð Þ þ �zpz �zð Þð Þ
−b�z −M þ 1þMð Þp �zð Þð Þ −b 1þMð Þ�x�zpz �zð Þ

� �
;

and its determinant and trace are:

Det J �x;�zð Þð Þ ¼ b2�x�z M− 1þMð Þp �zð Þð Þ 1−p �zð Þ−�zpz �zð Þð Þ;
Trace J �x;�zð Þð Þ ¼ −b 1þMð Þ�x�zpz �zð Þ:

ðM2Þ

If the function p(z) decreases monotonically, i.e. pz(z) < 0,
then p(z) and monotonically increasing function h zð Þ ¼ 1−
1
bz can intersect only once. Thus, equation 1− bz(1− p(z)) = 0
has only one root �z , and the Malthusian model has only
one non-trivial equilibrium B �x;�zð Þ: Next, Det J �x;�zð Þð Þ > 0;
Tr J �x;�zð Þð Þ > 0 for positive �x;�z if pz(z) < 0. Thus B �x;�zð Þ is
unstable node or unstable spiral.
Logistic version of model (M1) (a = 1).
Equilibria of system (M1) with a = 1 and p = p(z) defined
by (3) are the points (0,0), A(1,0), and B �x;�zð Þ where coor-
dinates �x;�z solve the system

�x ¼ d
b M−p �zð Þ 1þMð Þð Þ ; 1−�x−b�z 1−p �zð Þð Þ ¼ 0;

p �zð Þ < M= M þ 1ð Þ:

ðM3Þ

Denote h zð Þ≡ d−bMþb2Mz
b −1−MþbMzð Þ ; then �z is a root of the equa-

tion p(z) = h(z). Solutions of this equation are the points
of intersection of the curves p(z) and h(z); up to two
equilibrium points B1 �x1;�z1ð Þ;B2 �x2;�z2ð Þ can appear in
the model with parameter variations. Denote J(x, z) the
Jacobian of system (M1), (3) with a = 1:

J x; zð Þ ¼ 1−2x−bz 1−p zð Þð Þ −bx 1−p zð Þ−zpz zð Þð Þ
−bz −M þ 1þMð Þp zð Þð Þ −d þ bMx 1−p zð Þð Þ−bxp zð Þ−b 1þMð Þxzpz zð Þ

� �
;

J 0; 0ð Þ ¼ 1 0
0 −d

� �
;

J 1; 0ð Þ ¼ −1 −b 1−p 0ð Þð Þ
0 −d þ bM 1−p 0ð Þð Þ−bp 0ð Þ

� �
¼ −1 0

0 −d−b

� �
:

Thus O(0,0) is a saddle and A(1,0) is a stable node for
all parameter values.
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Figure 5 Trajectories show quasi-chaotic oscillations, phase curves fill a surface; M = 500.
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Figure 6 Left panel: phase curves fill a surface, M = 500; right panel: total host population against the virus population, 1000 < t < 100000.
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Table 1 The analyzed models of the coevolution between viruses and CRISPR-Cas-carrying hosts

Two-component model

Malthusian Logistic

p = const Center M > p/(1-p) Damped oscillations M > p/(1-p)

p = p(z) No stable equilibrium z > 0 Damped oscillations M >M* (finite or infinite basin of attraction)

Three-component model

Malthusian Logistic

p = const Damped oscillations M > p/(1-p) or s/(1-s) <M < p/(1-p) and l > l(e) Stable equilibrium for M > adþbs
b 1−sð Þ

p = p(z) Quasi-chaotic oscillations at all M Damped oscillations at M <Mcr; periodic oscillations at M≥Mcr;
quasi-chaotic oscillations at M > >Mcr

Berezovskaya et al. Biology Direct 2014, 9:13 Page 10 of 17
http://www.biologydirect.com/content/9/1/13
Now let us consider the system consisting of equation
(M3) supplemented with the equation Det J �x;�zð Þð Þ ¼ 0:
In the case λ1 ¼ Trace J �x;�zð Þð Þ≠0 this system defines co-
ordinates of saddle-node point B �x;�zð Þ whose second
eigenvalue λ2 = 0. The last system supplemented with
the equation Trace J �x;�zð Þð Þ ¼ 0 defines an additional
degeneration in the system in the point B ��x; ��zð Þ where
λ1 = λ2 = 0.
Lemma 1. For a wide range of fixed parameters b, d, s

there exist a point �M; �k
� �

in the (M, k) -parameter plane
such that the Bogdanov-Takens bifurcation of co-dimension
2 is realized in the model (M1), a = 1 under variations of M
and k close to �M; �k

� �
: The values �M; �k

� �
and coordinates

of the equilibrium B ��x; ��zð Þ where ��x ¼ x �M ; �k
� �

; ��z ¼ z
�M; �k
� �

are defined by the system consisting of equations
(M3) and equations Det J �x;�zð Þð Þ ¼ 0 , Trace J �x;�zð Þð Þ ¼ 0
(see, e.g. , [41]).
We have found this bifurcation for some reasonable

fixed values of the parameters d, b, s with the help of
computer package LOCBIF [55]. Using the Lemma and
Proposition 1 we prove the following statement.
Proposition 2. (1) System (M1), (3) has equilibria: the

saddle O(0,0) and stable-node A(1, 0) for all positive
values of the parameters b, d,M, k = 1, s;
(2) there exists positive M* such that

a) for M <M* the system has only the equilibria O and
stable equilibrium A;

b) for M >M* the system has two more equilibria, a
saddle B1 �x1;�z1ð Þ and a stable topological node/spiral
B2 �x2;�z2ð Þ;

c) there exist M* * >M* such that for M >M* * the spiral
B2 �x2;�z2ð Þ is placed inside an unstable limit cycle.

The bifurcation diagram of the system under variation
of the parameter M is shown in Additional file 1.
Three-component model: proof of Statement 1
Let us formulate Statement 1 in more details:
(1)Equilibrium O(x = y = z = 0) has eigenvalues
λ1(O) = 1, λ2(O) = − d, λ3(O) = 1 − l; it is unstable
for all parameter values;

(2) If a > 0 then equilibrium A(0,1/a,0) has eigenvalues
λ1(A) = − l, λ2(A) = − 1, λ3 Að Þ ¼ −daþb M 1−sð Þ−sð Þ

a ; it is
stable for M < daþbs

b 1−sð Þ and unstable for M > daþbs
b 1−sð Þ :

Proof. Jacobian of system (1) is of the form: J(x, y, z) =
(ai,j)i, j = 1, 2, 3, where
a1,1 = 1 − l − ax − a(x + y) − bz(1 − p(z)), a1,2 = − ax + esz,

a1,3 = esy − bx(1− p(z)) + bxzpz(z); a2,1 = l − ay, a2,2 = 1 − ay −
a(x + y) − b(1 − s)z − esz, a2,3 = − b(1 − s)y − esy,

a3;1 ¼ bMz 1−p zð Þð Þ−bzp zð Þ; a3;2 ¼ bM 1−sð Þz−bsz;

a3;3 ¼ −d þ b M xþ yð Þ− M þ 1ð Þ p zð Þxþ syð Þð Þ−bxzpz zð Þ 1þMð Þ:

pz(z) = 0, if p = const and pz(z) = k(s − p(z)), if p(z) = (1 − s)
e− kz+ s.

J 0; 0; 0ð Þ ¼
1−l 0 0
l 1 0
0 0 −d

0
@

1
A;

J 0; 1=a; 0ð Þ ¼
 −l 0 bes=a
−1þ l −1 b −1þ s−esð Þ=a

0 0 −ðad−b M 1−sð Þ−sð Þ=a

!
:

So, the equilibrium O(0, 0, 0) is unstable for both
Malthusian and logistic models, the equilibrium A 0; 1a ; 0

� �
of logistic model is stable for M < adþbs

b 1−sð Þ and unstable for

M > adþbs
b 1−sð Þ : The Statement is proven.

Three-component Malthusian model with constant
immunity p, p ≥ s > 0
Let us analyze the dynamics of model (1) depending on
the parameters l, e. The system has trivial unstable
equilibrium O(0,0,0). Let firstly p = s. Then system (1)
by changing of variables u = x + y, z = z is reduced to 2-
component Malthusian system (M1) with respect to u,
z − variables. For s ¼ p < M

Mþ1 the orbits {u, z} of this
system belongs to the positive quadrant, the non-trivial
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equilibrium �u ¼ d
b M 1−sð Þ−sð Þ ;�z ¼ 1

b 1−sð Þ is a center, i.e., it is

located inside closed orbits (similar to model (M1)) and
trajectories demonstrate periodic oscillations. In variables
x(t), y(t), z(t) model (1) also demonstrates periodic oscilla-
tions; the model has equilibrium B(xe, ye, ze) where

xe ¼ des
b M 1−sð Þ−sð Þ bl 1−sð Þ þ esð Þ ;

ye ¼
dl 1−sð Þ

M 1−sð Þ−sð Þ bl 1−sð Þ þ esð Þ ;

ze ¼ 1
b 1−sð Þ

ðM4Þ

If p > s then any non-trivial equilibrium (xe, ye, ze) of
model (1) is such that the coordinate ze solves the quad-
ratic equation

1−lð Þ þ b −2þ l þ pþ s−es 1−lð Þð Þz þ b2 1−pð Þ 1−sþ esð Þz2 ¼ 0;

ðM5Þ
and coordinates xe, ye can be expressed via z = ze as follows:

xe ¼ −d 1−b 1−sð Þzð Þ
b p−sð Þ 1þM−bzð Þ ; ye ¼

d 1−b 1−pð Þzð Þ
b p−sð Þ 1þM−bzð Þ :

ðM6Þ
Let l eð Þ ¼ −M þ pþMpð Þð1þ sð1þMÞ

M−sð1þMÞ eÞ: This equation defines
a boundary line Γ = (e, l(e)) in the parametric plane (e, l).

Proposition 3.

1) System (1) with p = const and a = 0 has at most one
positive equilibrium B(xe, ye, ze) where xe, ye, ze are
defined by formulas (M5), (M6) for s < p and by
formula (M4) for s = p;

2) the system has a single positive equilibrium B (xe, ye, ze)
if and only if one of the following conditions holds:

a) s < p < M
Mþ1 ;

b) s < M
Mþ1 < p and l > l(e);

3) in the case a) the equilibrium B is asymptotically stable;
4) for s = p the system demonstrates periodic oscillations

of variables x(t), y(t) while z(t) tends to a stable
value for a wide domain of initial values (x0, y0, z0)
close to the equilibrium B.

Proof.
Taking the solutions of quadratic equation (M5) in the

form

z ¼ z1 l; eð Þ ¼ 2−l− pþ sð Þ þ esð1−lÞ þ ffiffiffiffi
D

p

2b 1−pð Þ 1−sþ esð Þ ;

z ¼ z2 l; eð Þ ¼ 2−l− pþ sð Þ þ esð1−lÞ þ ffiffiffiffi
D

p

2b 1−pð Þ 1−sþ esð Þ
where D = l2(1 − s)2 + (p − s + es)2 − 2l(p(1 − s + 2es) − s(1 +
e − s + es) we can easily verify that both “branches” z1(l, e),
z2(l, e) are real for any positive (e, l) because the expression
under the radical is non-negative. The branches z1(l, e), z2
(l, e) are positive both if l < 1 and only z1(l, e) is positive if
l > 1.
Analysis of formulas (M5), (M6) shows that only the

branch z1(l, e) can define positive coordinates of the
equilibrium xe = x(z1), ye = ye(z1). Substituting z1(l, e) into
formulas (M6) we obtain that xe(e, l), ye(e, l) are positive
if the point (e, l) in the parametric plane is placed above
the boundary line Γ given by equation

−1þ pð Þ 1þ −1þ eð Þsð Þðl M −1þ sð Þ þ sð Þ
þ M −1þ pð Þ þ pð Þ −1þ eð ÞsþM 1þ −1þ eð Þsð Þð Þ ¼ 0:

Statements 1 and 2 of the Proposition are proven.
Let us analyze a stability of equilibrium B (xe, ye, ze) of

the system. For p = s characteristic polynomial of the
system in the point B, whose coordinates are given
by (M4), is of the form E μ0ð Þ ¼ Det J Bð Þ−μ0Ið Þ ¼ð
dþμ20ð Þ b lþμ0ð Þ 1−sð Þþesð Þ

b 1−sð Þ . Thus, two eigenvalues of the point

are imaginary, μ0
1;2 ¼ �i

ffiffiffi
d

p
; and the third is negative,

μ0
3 ¼ − esþbl 1−sð Þ

b 1−sð Þ : Thus, statement 4 is proven.

We show now that for p > s the point B is a sink, i.e.,
its eigenvalues have negative real parts (more exactly, one
eigenvalue is real negative, and two others are complex
with negative real part).
Introduce the parameter α = p − s and write the right

hands of (1), a = 0 in the form:

P x; y; zð Þ ¼ x−lx−b 1−α−sð Þxz þ esyz;

Q x; y; zð Þ ¼ lxþ y−b 1−sð Þyz−esyz;
R x; y; zð Þ ¼ zð−d þ bM 1−α−sð Þxþ 1−sð Þyð Þ

−b αþ sð Þxþ syð ÞÞ:

From the condition R(x, y, z) = 0, Q(x, y, z) = 0 we can
express x = xe, y = ye via z = ze:

xe ¼ −ðd 1−b 1−sð Þz þ eszð Þ
bðα 1þMð Þ 1−b 1−sð Þz þ eszð Þ þ M 1−sð Þ−sð Þ −1þ l þ esz þ bz 1−sð Þð Þ :

ye ¼
dl

b α 1þMð Þ 1−b 1−sð Þz þ eszð Þ þ M 1−sð Þ þ sð Þ −1þ l þ esz þ bz 1−sð Þð Þð

Substituting x = xe, y = ye to P(x, y, z) we obtain:

P xe; ye; zð Þ ≡ H zð Þ ¼ d l 1−b 1−sð Þzð Þ− 1−b 1−sð Þz−eszð Þ 1−b 1−s−αð Þzð Þð Þ
b α 1þMð Þ 1−b 1−sð Þz þ eszð Þ þ M 1−sð Þ þ sð Þ −1þ l þ esz þ bz 1−sð Þð Þ:ð

Solving the equation H(z) = 0 we get two roots
ze1, ze2; supposing z = z0 + αhz and expanding H(z) in
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series by α we get the two roots up to o(α) in the
form:

ze1 ¼ z01 þ αh1z; ze2 ¼ z02 þ αh2z;

z01 ¼ 1
b 1−sð Þ ; h1z ¼ es

b 1−sð Þ2 bl 1−sð Þ þ esð Þ ;

z02 ¼ 1−l
b 1−sð Þ þ es

; h2z ¼ bl 1−lð Þ
b 1−sð Þ þ esÞðbl 1−sð Þ þ esð Þ :

ðM7Þ
Notice, that the root ze1 is positive, whereas ze2 is positive

only for 0 < l < 1. The coordinates x = xe(α), y = ye(α) of B
are both positive only for z = ze1.
Letting xe1 = x01 + αh1x, ye1 = y01 + αh1y, we get

x01 ¼ des
b M 1−sð Þ−sð Þ bl 1−sð Þ þ esð Þ ;

h1x ¼
−des e2s2 1þMð Þ þ b2el 1−sð Þ M 1−sð Þ−sð Þ þ bel 1þ 2M 1−sð Þs−2s2ð Þ� �

b M 1−sð Þ−sð Þ2 bl 1−sð Þ þ esð Þ3 ;

y01 ¼
dl 1−sð Þ

b M 1−sð Þ−sð Þ bl 1−sð Þ þ esð Þ Þ;

h1y ¼ dels es−b 1−sð Þ M−el 1þMð Þ 1−sð Þ þ sþMsð Þð Þ
b M 1−sð Þ−sð Þ2 bl 1−sð Þ þ esð Þ3 :

ðM8Þ
Thus, coordinates of the equilibrium Be can be presented

in the form (xe, ye, ze) = (x1e + αh1x, y1e + αh1y, z1e + αh1z), see
formulas (M7), (M8).
We apply the method of small parameter expansion to

verify stability of the equilibrium Be. Characteristic poly-
nomial of the system can be presented in the form

E μð Þ ¼ Det ðJ Beð Þ−μIð Þ ¼ d þ μ20
� �

b l þ μ0ð Þ 1−sð Þ þ esð Þ
b 1−sð Þ

−
α

b 1−sð Þ2 M 1−sð Þ þ sð Þbl 1−sþ esð Þ ÞZ μð Þ

where μ = μ0 + αhμ and

z μð Þ ¼ ð−ðb2lðd 1þ hμ 1−sð Þ� �þ μ0ðμ0 1−3hμ 1−sð Þ� �
þ2lhμ 1−sð ÞÞð 1−sð Þ2M 1−sð Þ−sð Þ
−es2 d þ μ0 μ0 þ 2hμ 1−sð Þ� �� �ð 1−sð Þ2 M 1−sð Þ−sð Þ
þbe 1−sð Þsðμ0ðμ0 −1−3hμ 1−sð Þ� �
−4lhμ 1−sð ÞÞðM −1þ sð Þ þ sÞ
þdð −1−hμ 1−sð Þ� �ðM −1þ sð Þ þ sÞ þ lðM −1þ sð Þ
−μ0 1þMð Þ −1þ sð Þ þ sÞÞÞÞÞ:

Let now μ20 ¼ −d: Substituting this value to Z(μ) and
solving equation Z(μ) = 0, we find

hμ ¼ bdels M þ μ0 1þMð Þ −1þ sð Þ−s−Msð Þð Þ
2 M −1þ sð Þ þ sð Þ bl −1þ sð Þ−esð Þ b d−lμ0ð Þ −1þ sð Þ þ esμ0ð Þð Þ
and Re( hμÞ ¼ eels
2 1−sð Þ3

es M 1þsð Þ−sð Þþb 1−sð Þ l M 1þsð Þ−sð Þ−d 1þMð Þ 1−sð Þð Þ
b2d M 1−sð Þ−sð Þ − 1−sð Þ2

esþbl 1−sð Þ
� �

< 0

for reasonable parameter values. Thus, equilibrium Be

is asymptotically stable for s < p.
The Proposition is proven.

Three-component logistic model with constant immunity p
The logistic version of model (1) with p = s is reduced to
2-component logistic system (M1) with respect to variables
u = x + y, z. For s ¼ p < M

Mþ1 it has two equilibria, A(0, 1/a)

and B u ¼ d
b M 1−sð Þ−sð Þ ; z ¼ b M 1−sð Þ−sð Þ−ad

b2 1−sð Þ M 1−sð Þ−sð Þ

� �
: According to

Proposition 2, these equilibria are stable in different
parameter domains.
In variables x, y, z the equilibrium B(xe, ye, ze) of system

(1) has coordinates

xe ¼ des b M 1−sð Þ−sð Þ−adð Þ
b M 1−sð Þ−sð Þ b2l 1−sð Þ M 1−sð Þ−sð Þ þ es b M 1−sð Þ−sð Þ−adð Þ� � ;

ye ¼
bdl 1−sð Þ

b M 1−sð Þ−sð Þ b2l 1−sð Þ M 1−sð Þ−sð Þ þ es b M 1−sð Þ−sð Þ−adð Þ� � ;
ze ¼ b M 1−sð Þ−sð Þ−ad

b2 1−sð Þ M 1−sð Þ−sð Þ :

ðM9Þ
Let p be a constant, p > s > 0 . According to Statement 1,

the system has trivial equilibrium O(x = 0, y = 0, z = 0),
which is unstable for all parameter values, and the equilib-
rium A x ¼ 0; y ¼ 1

a ; z ¼ 0
� �

; which is stable if M < adþbs
b 1−sð Þ

and unstable if M > adþbs
b 1−sð Þ : The system has also a non-

trivial equilibrium B whose x, y − coordinates are expressed
via z -coordinate:

x ¼ −d þ bf � zð Þ M 1−sð Þ−sð Þ
b 1þMð Þ p−sð Þ ;

y ¼ d−bf � zð Þ M 1−pð Þ−pð Þ
b 1þMð Þ p−sð Þ ;where

f � zð Þ ¼
1þM−bz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM−bzð Þ2−4ad 1þMð Þz

q
2a 1þMð Þ

ðM10Þ
and z -coordinate solves the equation:

−1þ l þ af �
� �

d−bf � M 1−sð Þ−sð Þ� �þ ðdes−b2f � 1−pð Þ M 1−sð Þ−sð Þ
þb d 1−pð Þ−ef � M 1−pð Þ−pð Þs� �Þz ¼ 0:

ðM11Þ
Denote

h� zð Þ≡ d l−1þ af �
� �þ bf � M 1−af �−l 1−sð Þ� �þ ls

� �� �þ d−bf �M
� �

b 1−sð Þ þ esð Þz
bf � 1þMð Þ 1−af �− b 1−sð Þ þ esð Þz� �

then �z is a root of the equations p = h±(z). Solutions of
the latter equation are the points of intersection of the
line 0 < p ≤ 1 and the curves h±(z). Two cases with
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different values of the parameter M are presented in
Additional file 2. It demonstrates that at most two positive
values of �z are possible and hence the system may have at
most two positive equilibria, whose x, y ‐ coordinates are
expressed via �z by the equations (M9).
Let us define the critical value of the parameter M,

Mtc ¼ adþbs
b 1−sð Þ :

Proposition 4. For s≤p < M
Mþ1 and fixed positive values

of d, b < 1, l, e system (1) with a = 1 has a single stable
equilibrium A x ¼ 0; y ¼ 1

a ; z ¼ 0
� �

if M <Mtc and a sin-
gle stable equilibrium B(x0, y0, z0) if M >Mtc; here the co-
ordinates (x0, y0, z0) are defined by formulas (M10, M11)
if s < p and by (M9) if s = p. Transcritical bifurcation
“changing of stability” of the points A and B happens as
M =Mtc.
For p = s system (1) has nontrivial point B, whose

coordinates are expressed by (M9); it is easily to

verify that ue ¼ xe þ ye ¼ d
b M 1−sð Þ−sð Þ ; ze ¼ b M 1−sð Þ−sð Þ−ad

b2 1−sð Þ M 1−sð Þ−sð Þ ;

and 1 − a(xe + ye) − b(1 − s)ze = 0. Hence, ze > 0 if >Mtc; at
this condition the equilibrium A looses stability according
to Statement 1.
Characteristic equation at the equilibrium B for p = s is

of the form:

Det J Bð Þ−μIÞ ¼ − −1þ l þ μþ a xe þ yeð Þ þ b 1−sð Þze þ szeð Þ�ðð

μ2 þ b2 1−sð Þ M 1−sð Þ−sð Þ xe þ yeð Þze þ μ −1þ 2a xe þ yeð Þ þ bze 1−sð Þð Þ� � ¼ 0:

Accounting the equality 1 − a(xe + ye) − b(1 − s)ze = 0, we
obtain from the first term of the last equation: μ1 = 1 − l −
aue − b(1 − s)ze − esze = − l − sze < 0, and from the second

term μ2;3 ¼ 1
2 −au�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4 b M 1−sð Þ−sð Þ−adð Þue þ auð Þ2

q� �
: For =

Mtc μ2 = 0, μ3 = − au < 0. Hence, the transcritical (pitch-
fork) bifurcation happens with points A, B [41], ch.7.
When M >Mtc the eigenvalues μ2,3 have negative real
parts. So, the equilibrium point B is stable for p = s and
M >Mtc. Due to continuity arguments the point B is
also stable for p > s if p is close to s. A general case p > s
was verified by computation of eigenvalues of complete
characteristic equation in B.

Three-component Malthusian model with the immunity
p = p(z); proof of Statement 2
The coordinates of non-trivial equilibria are given by for-
mulas (M5) and (M6). Solving equation (M5) with respect
to p = p(z), we obtain the equation for z-coordinate:

p zð Þ≡ 1−sð Þe−kz þ s ¼ − 1−lð Þ þ b 2−l 1−sð Þ−sð Þ þ esð Þz−b b 1−sð Þ þ esð Þz2
bz 1− b 1−sð Þ þ esð Þzð Þ

≡ h zð Þ
ðM12Þ

Evidently, the z-coordinate of possible equilibrium
does not depend on the parameter M. Next, h(z)→ 1,
p(z)→ s < 1 as z→∞, so that two general cases of mutual
placing of p(z) and h(z) for l > 1 and l < 1 are possible,
which are shown in Additional file 3. Equation (M12)
has up to two (“small”) positive roots z = ze if l < 1 (see
Additional file 3a) and one (“large”) positive root ze if l > 1
(see Additional file 3b). Equilibrium values xe(z), ye(z)
defined by the formulas (M6) have different signs for
small values of ze and are both positive for large ze. Ac-
cordingly, the system can have only one positive equilib-
rium. Eigenvalues of this equilibrium can be computed
from the equation Det(J(xe, ye, ze) − μI) = 0. Using the
LOCBIF software [55], we show that one eigenvalue is
real and negative but two other are complex with a posi-
tive real part. Thus, this equilibrium is unstable. Statement
2 is proven.

Three-component logistic model with the immunity p= p(z)
Proof of Statement 3
Let BM(x, y, z) be a non-trivial stable equilibrium of

model (1), (3) whose coordinates (x(M), y(M), z(M))
depend on the parameter M and satisfy system (2); let
P(μ) ≡ Det(J(B) − μI) = 0 be the characteristic polynomial of
the system around BM. The supercritical Hopf bifurcation,
corresponding to changing of stability of BM accompanied
by appearance a stable limit cycle happens in the system
when for some M a pair of eigenvalues becomes imaginary
and certain conditions of non-degeneracy are fulfilled (see,
for example, [41]). The Hopf bifurcation is supercritical if
the first Lyapunov value becomes negative. The existence
of this bifurcation in logistic version of model (1), (3) was
verified using LOCBIF [55]. The program numerically finds
coordinates of equilibrium with imaginary eigenvalues
under variation of parameter M and one more parameter
of the model (e.g., e, l, or s) for fixed values of other pa-
rameters, checks the sign of the first Lyapunov value and
verifies the conditions of non-degeneracy formulated in
the Hopf theorem. Applying this software we have found
the parameter curves of Hopf bifurcation eH(M), lH(M); sH
(M) for fixed values of other parameters of the model
(see Additional file 4); it proves the assertions of the
Statement.

Reviewers’ reports
Reviewer 1: Sandor Pongor
Comment: The CRISPR-Cas system is of high theoretical
and practical interest. On the practical side it is important
for designing genome engineering tools, on the theoretical
side, it provides a noteworthy example of Lamarckian evo-
lution. By inserting virus-derived spacers into CRISPR re-
peat cassettes, microbes preserve in their genomes the
signature of viruses that attack them, which in turn they
pass on to their offspring. The evolution of this system is
practically intriguing and has been the subject of several
agent based modeling studies. As the authors point out,
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agent systems can be used to model various levels of
complexity, however they do not permit a full and rigor-
ous mathematical analysis of all possible behaviors.
Berezovskaya and associates present here a differential
equation based model of the evolution of CRISPR-Cas
based immunity. They use Lotka-Volterra type models
that allow the analysis of Malthusian and logistic regimes
and show that the models display complex quasi-chaotic
oscillations. Such complex behaviors have not been found
either by experiment or by the previous agent based
mutations. The results are well underpinned and clearly
discussed. The results are especially interesting example
of how unexpected complexity emerges in a seemingly
simple system. The text is very well written however the
authors may want to check it for minor typos, e.g.:
Page 3 challenge (a virus), “in contrast as opposed” to the

random, undirected mutations in the Darwinian evolution-
ary framework - one of them is superfluous.
Page 4 after eqn 1 host reproduction is Malthusian if

a = 0 or logistic if a > 0, and in both cases. – sounds
like an unfinished sentence.
Authors’ response: We appreciate these comments. The

proposed corrections have been made.

Reviewer 2: Sergei Maslov
Comment: The manuscript addresses a very interesting
topic of the emergence of chaotic oscillations in popula-
tion dynamics of phages and their bacterial hosts. To my
knowledge, this topic is relatively unexplored in the litera-
ture except for “Bifurcation analysis of bacteria and bac-
teriophage coexistence in the presence of bacterial debris”
by Ira Aviram, Avinoam Rabinovitch [44]. Authors should
cite this paper and compare and contrast their results to
findings of Aviram et al.
Authors’ response: As far as we can see, the work of

Aviram and Rabinovitch is relevant only in a very generic
sense. In the revision, we cite this paper along with a more
recent publication of the same authors, and comment on
the emergence of complex behavior in these models.
Comment: I found the paper very hard to read and

understand. In its present form it is unnecessarily heavy
on mathematical details and terminology and light on
biological insights. I would strongly recommend a *near
complete rewriting* of the text of the manuscript that
would delegate unnecessary mathematical details and
theorems to supplementary materials and explaining the
biological consequences of main findings. For example,
on page 5 authors refer to their model as “conserva-
tive”. It is not at all obvious to the majority of even so-
phisticated computational biology readers that in a
conservative system small deviations from the steady
state solution do not decay back to the steady state
but persist indefinitely. Whenever possible authors
should avoid using mathematical jargon and explain in
plain English what their parameters/assumptions mean
biologically.
Authors’ response: As per this comment and analogous

comments of Dr. Kimmel (see below), the entire description
of two-dimensional (or two-component, using the modified
terminology), which included most of the mathematical
detail, was moved to the Methods. There, we considered it
appropriate to formally mathematically define “conserva-
tive systems” and other concepts that might be unfamiliar
to non-specialist readers. In the main text, biological inter-
pretations of the parameters and assumptions were pro-
vided on several occasions. We believe that these changes
made the paper considerably more straightforward, and
we appreciate these suggestions of the reviewers. In general,
however, one has to face the fact that this is a mathemat-
ical biology paper. Further, we beg to disagree that this
paper is “light on biological insights”. We think that the re-
vealed complex behavior of the co-evolving virus-host sys-
tems is a potentially important biological instant, and the
reviewers do not seem to disagree. What is somewhat lack-
ing, are direct connections to experimental results. Such
relevant results could come, first, from quantitative mea-
surements of virus diversity and CRISPR-Cas prevalence in
various habitats, and second, from laboratory co-evolution
experiments. We expect that such results are indeed forth-
coming and hope that the present facilitates their inter-
pretation but at this time, there is little data for direct
comparison.
Comment: Another example of the same point: on

page 5 authors introduce two steady state solutions A
and B but do not explain what they mean biologically:
phages co-exist with bacteria in A but die off in B. And
this is just one example of the lack of biological inter-
pretation of mathematical results happening throughout
the manuscript.
Authors’ response: This specific statement has been

moved to the Methods as per the suggestion of Dr. Maslov
and Dr. Kimmel. The interpretation of these steady solu-
tions given by Dr. Maslov is quite correct and thus, we
presume, is obvious from the presentation. Especially in
the Methods section, further clarifications seem unneces-
sary. On several other occasions (see below), however, we
did include additional biological interpretations.
Comment: On the same page authors cite earlier studies

with empirical results confirming that the fraction of im-
mune bacteria p directly depends on the phage population
z and not on the bacterial population x. A more detailed
discussion of what the empirical data actually say would
be beneficial here.
Author’s response: This discussion has been expanded

and made more specific.
Comment: In particular, I don’t expect p(T) to instantan-

eously trace rapidly growing phage population z(T), which
seems to be a prerequisite for chaotic behavior reported in
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this manuscript. What would happen when a delay or time
averaging is added to the model? That is to say, what would
happen if p(T) is a function of z(T-t_delay) or (in a separate
ariant of the model) p(T) is determined by the time-
averaged value of z(T) over T:T-t_average time interval? I
would be particularly interested to see if chaotic dynamics
would disappear for large enough values of t_delay or
t_average. What is a realistic value of t_average compared
to a single generation of lytic phage growth?
Authors’ response: These are interesting and important

questions that, however, are beyond the scope of the present
paper.
Comment: I also request a small yet important change

in notation: authors repeatedly refer to three-dimensional
version of their model which I understood as a model with
3 spatial coordinates. Indeed, special inhomogeneity is
known to play an important role in phage-bacterial inter-
actions (see e.g. [56,57]. However, what authors meant is
simply a three-species or three-component model with
phages, immune hosts, and susceptible hosts. To avoid
confusion the term “three-dimensional model” while
mathematically correct needs to be changed to “three
component model” throughout the manuscript.
Authors’ response: We adopted this change in the

revision.
Comment: Are figures of plots in Figure 1, 2, 3, 4, 5

necessary? I personally did not learn anything from them.
Figure 6, Additional files 1, 2, 3 and 4 nicely illustrate cha-
otic dynamic of the system. Perhaps they can be collected
as multiple panels of just one figure?
Authors’ response: We agree, figures 1, 2, 3, 4, 5 have

been moved to the additional files.

Additional comments made in the second round of review
Comment: On the other hand, steady state and simple
time-dependent solutions to Lotka-Volterra equations
for bacterial-phage systems have been studied for quite
some time. Some classic references such as [22,23] have
been overlooked and need to be cited in the manuscript.
Authors’ response: We agree, these are relevant refer-

ences that are cited in the revised version of the present
article.
Comment: Population cycles and fixed points in modi-

fied Lotka-Volterra equations have been also considered
in [58,59]. Would authors predictions of chaotic (or quasi-
chaotic) behavior persist in these systems?
Authors’ response: We do not see how to directly link

these models with our approach (at least not without
additional, extensive analysis) and therefore currently
cannot make such predictions.
Comment: Spatial (see e.g. [56]) and temporal [57]

inhomogeneity of the environment is known to play an
important role in phage-bacterial interactions. How much
would it affect chaotic dynamics. These are not idle
questions since they go to the heart of the question of
how generic is the chaotic behavior reported in the
manuscript. If authors believe they are beyond the
scope of the current paper, perhaps, these questions
should be mentioned in the discussion section as model
generalizations/modifications that need to be performed
in future studies.
Authors’ response: we fully agree that these are among

desirable generalizations of the present approach. It is
another matter whether, with the addition of these non-
homogeneities, the model remains tractable. On very
general grounds, given that here we have shown that
the pseudo-chaotic oscillations only emerge in a system
with certain minimal complexity (distinguishing suscep-
tible and immune hosts is essential), we would expect that
such oscillations only become more prominent in even
more complex models. However, this is obviously only a
conjecture at this point, we cannot be confident before the
actual analysis is done.
Comment: Throughout the manuscript authors consider

only virulent (lytic) phages. Would there be any interesting
modification of predicted dynamical patterns for temperate
phages?
Authors’ response: As such, temperate phages, by defin-

ition, do not kill the host, and therefore, even if lysogeniza-
tion is prevented by CRISPR-Cas, as indeed has been
reported [60], this seems to be irrelevant for the modeling
approach described here. The situation certainly changes
when it comes to prophage induction, against which
CRISPR-Cas protects as well [60]. This case does not
appear to be distinguishable from lytic infection within the
approximations of the model.
Comment: I appreciated authors following my request

and renaming two/three dimensional model into two/three
component model. However, on page 11 and several other
places in the manuscript old notation is still being used. I
recommend authors do global search for “2D”, “3D”,
and “ dimensional” in the manuscript.
Authors’ response: This has been taken care of.

Reviewer 3: Marek Kimmel
This paper addresses the issue of co-evolution of a virus
an and the immune system of a host, taking into account
the dynamics of the virus and two types of immune
systems: susceptible and resistant. The model is in-
spired by a type of immune response (CRISP-Cas) in
archaea and some bacteria. The dynamics is summa-
rized by a system of 3 nonlinear ordinary differential
equations (ODEs). The system seems to exhibit various
dynamical regimes including some that are chaotic.
This, according to the authors, provides some analogy
to the known examples of the CRISP-Cas system
behavior.
The paper should be reorganized before it is publishable.
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Major issues
Comment: 1. The paper is written in a way which makes

understanding it very difficult. A large portion of the
paper is devoted to models which are inadequate in
that they do not include sensitive and resistant im-
mune systems, are therefore limited to two ODEs and
cannot exhibit complicated dynamics. To make the paper
readable, it should proceed directly to the point. The aux-
iliary models can be moved to an appendix.
Authors’ response: This reorganization of the manuscript

has been implemented as suggested.
Comment: 2. Dynamics of the really interesting 3-ODE

models is explored mostly numerically, if I understand
correctly. In my opinion, more illustrative material might
be provided, using the space available after removal of the
2-ODE models.
Authors’ response: We carefully considered this sugges-

tion but found that the comparison of Figures 2, 3, 4, 5
and 6 was highly illustrative of the results for the 3-ODE
models. The transitions between the outcomes depending
on the parameters was made fully explicit in the revised
description.
Comment: 3. I am missing a detailed discussion of

how the model is similar to experimental observations.
What type of data are available? Time series are prob-
ably most desirable. Is there any information in the data
regarding sensitivity to parameter change and initial
conditions, which are characteristic of chaos?
Authors’ response: As pointed out in our response to

Dr. Maslov’s comments above, the experimental data are
simply not ready for detailed comparison. We would be
more than happy to analyze time series or cite an appro-
priate analysis but such experiments belong in the future.
Comment: 4. Finally, why would this quite generic

mathematical description be specific to the CRISP-Cas
systems?
Authors’ response: We never claimed that this de-

scription was specific to CRISPR-Cas. It is inspired by
CRISPR-Cas but is applicable to any system of adaptive
immunity with sufficiently long term memory, as pointed
out both in the abstract and in the Conclusions.
Detailed remarks
Comment: 1. Page 9. It seems x and y are each composed

of a number of different “immuno-types” of host individ-
uals. The structure will be continuous and not two-point as
it is now. What will be the consequences for the dynamics?
Will it not be more regular because of smoothing effect of
continuity?
Authors’ response: To the best of our understanding, x

is just one type. However, y indeed can be represented as
numerous “immuno-types” if immunity to different viruses
is considered separately. This situation has been explored
within the framework of agent-based models [28,32]. Under
the analytic approach used here, continuous distribution
of “immune-types” would inevitably make the model
intractable.
Comment: 2. Page 15. Computational analysis usually

cannot “show” that an equilibrium is stable. It may be at
best consistent with stability.
Authors’ response: The revised version of the manuscript

includes a comprehensive test for stability using LOCBIF.
Thus, “show” (which does not mean “proven”) seems
appropriate.
3. “Proposition 4” does not seem to be mathematically

demonstrated. So, it is a Conjecture.
Authors response: A sketch of the proof is given in the

revision.
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