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Abstract

Background: Measures of node centrality in biological networks are useful to detect genes with critical functional roles.
In gene co-expression networks, highly connected genes (i.e, candidate hubs) have been associated with key
disease-related pathways. Although different approaches to estimating gene centrality are available, their potential
biological relevance in gene co-expression networks deserves further investigation. Moreover, standard measures of gene
centrality focus on binary interaction networks, which may not always be suitable in the context of co-expression
networks. Here, | also investigate a method that identifies potential biologically meaningful genes based on a weighted
connectivity score and indicators of statistical relevance.

Results: The method enables a characterization of the strength and diversity of co-expression associations in the network.
It outperformed standard centrality measures by highlighting more biologically informative genes in different gene
co-expression networks and biological research domains. As part of the illustration of the gene selection potential of this
approach, | present an application case in zebrafish heart regeneration. The proposed technique predicted genes that are
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significantly implicated in cellular processes required for tissue regeneration after injury.
Conclusions: A method for selecting biologically informative genes from gene co-expression networks is provided,
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Background

The analysis of gene co-expression networks has become
an important approach to enabling fundamental and trans-
lational biomedical research. Such transcriptional associ-
ation networks have allowed the generation of novel
hypotheses about potential functional roles of genes or
about their involvement in phenotype-specific cellular pro-
cesses [1-5]. In these networks, genes and their co-
expression relationships are graphically represented as
nodes and edges respectively. Network edges are typically
estimated with measures of expression correlation, such as
the Pearson’s correlation coefficient, which have shown to
be powerful predictors of biologically interesting relation-
ships [6]. The resulting networks can be analyzed using
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different methods based on statistical and graph theory
concepts, which link network topological features to bio-
logically informative properties.

Among these techniques, different measures of node
centrality have been proposed to identify functionally-
critical network components. The degree of a node, de-
fined as the number connections associated with a gene,
is one such measure of centrality. The Methods section
introduces different traditional measures of node cen-
trality. In bioinformatics, centrality measures have been
applied to describe the global structure of networks
[4,5]. The potential utility of centrality indicators in gene
co-expression networks have been reported in various
application domains, such as cardiovascular and cancer
research [7-10]. For instance, genes exhibiting high de-
gree or high betweenness-centrality scores have been
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proposed as candidate targets in different human and
animal models [8-10].

Despite these promising advances, deeper investiga-
tions of node centrality applications in gene co-
expression networks are still needed. A key issue is that
standard measures of gene centrality are typically ap-
plied to co-expression networks that are defined with
binary interactions. In this traditional scenario, a net-
work edge indicates that the co-expression between a
pair of genes is observed above a pre-defined correlation
threshold. The definition of correlation thresholds is a
non-trivial task for which there is no standard approach
[11]. Estimators of gene connectivity have mainly been
applied to summarize and compare the global structure
of co-expression networks. Moreover, traditional ap-
proaches are limited by the notion of defining candidates
hubs by either counting the number of edges assigned to
a node or by estimating the total intensity of the connec-
tions without providing an indicator of statistical signifi-
cance (P value) for each candidate hub. Therefore,
although gene centrality approaches have shown to be
useful to extract novel knowledge, important insights
into the diversity of co-expression values and their stat-
istical relevance may be missed.

Key biological premises that motivate the analysis of
gene co-expression networks on the basis of centrality
measures are: a. Highly co-expressed genes are more
likely to be co-regulated, and b. Those genes that display
prominent connectivity patterns tend to play biologically
influential or regulatory roles in disease-related pro-
cesses. Here, I test these notions through various indica-
tors of node centrality in different gene co-expression
networks, which were generated from three research ap-
plication areas and two expression measurement plat-
forms. Furthermore, researchers traditionally detect
candidate network hubs by counting the number of
edges associated with a node. In the context of gene cor-
relation networks, a connection is typically defined if the
correlation between a pair of genes is above a predefined
cut-off value. Also there is a need to offer an automated
way to quantify (and rank) the resulting candidate hubs
according to the statistical significance of their observed
connectivity.

Here, I report a method that identifies biologically in-
formative genes, ie., candidate hubs, based on their co-
expression values and corresponding indicators of statistical
relevance. This strategy does not require the selection of
co-expression thresholds, and enables a characterization of
the strength and diversity of co-expression relationships in
the network. I show that it can outperform and comple-
ment standard centrality measures. I illustrate gains in
terms of the prediction of biologically meaningful genes.
This method can identify and rank gene sets with high stat-
istical confidence and with larger enrichments of cellular
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processes. Moreover, a deeper look into one of the net-
works, a case study on zebrafish heart regeneration, allowed
the identification of genes and pathways with known and
potentially novel driving roles in tissue regeneration after
injury, in vivo. The proposed method and resulting free
software will help researchers to focus their attention on
genes that may be biologically informative in their gene co-
expression network investigations.

Methods
Weighted node connectivity
One way to account for co-expression intensity consists of
assigning weights to each edge in the network. In the case
of gene co-expression networks, an edge weight, between
genes i and j, can represent the value of the expression cor-
relation coefficient between genes i and j. I studied a
weighted version of degree, which has previously been ap-
plied to the analysis of traffic control and social networks
[12,13]. In bioinformatics it has been applied to compare
the global structure of networks [1,5,14]. Previous investiga-
tions, however, have mainly addressed gene selection based
on the analysis of the observed connectivity values only,
without statistical significance inference at the level of indi-
vidual genes. The method reported here goes beyond this
by implementing a non-parametric statistical assessment
procedure.

The weighted node connectivity, WNC, score can be
specified as:

N
WC,‘ = ZWU (1)
j

where node i is connected to node j, and w;; reflects the
strength of the connection of node i with node j (input
information provided by the user). The algorithm is not
constrained by the correlation measurement used to
generate the input network. In this paper, w;; is com-
puted as the absolute value of the Pearson correlation
coefficient between genes i and ;.

Previous research, including those cited above, shows
that WNC is a reliable indicator of connectivity based on
co-expression information. More importantly, these in-
vestigations have shown that the score is useful to ex-
plore the potential biological significance of genes. For
instance, they showed that the score is a good indicator
of biological relevance when searching for possibly inter-
esting groups of interconnected genes, ie., network
modules [1,14].

For each gene, I calculated the WNC; score and support
each value with an indicator of its statistical significance.
This is needed for reducing noise and possible bias toward
many connections with weak w;; values, as well as for
ranking the selected genes. Thus, I estimated P values for
each WNC; score. This was done by implementing a
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permutation-based test that compares the observed WNC;
with an (empirical null) distribution of random WNC;,.,.0m
values. The latter was estimated by randomly swapping the
edges in the network, while preserving the distributions of
observed edges and weights in the network. Given two ran-
domly selected edges: e(x,;y) and e(vz) with corresponding
weight values w,,, and w,,;, where: x,),1;,z represent network
nodes and x =y #v =z, the edge weights w,, and w,, are
assigned to e(v,z) and e(x,y) respectively. Thus, the resulting
null distribution is both random and feasible. This edge
randomization procedure has been applied to estimate null
distributions in different network research applications
[15-17]. A P value is obtained by calculating the proportion
of WNC; > WNC,,.dom» Where the WNC,,,...00m Values were
obtained from 100E + 3 permuted samples. This permuta-
tion procedure is suitable to generate a null model because
the resulting networks are random and comparable with the
observed (original) network. In particular, this procedure
guarantees the preservation of fundamental properties of
the original network: size, degree distribution and weight
distribution [18]. Furthermore, each P value is adjusted with
a Bonferroni correction to account for multiple testing. This
correction provides sufficiently conservative estimates of
“significance” among the many statistically detectable scores.
Those WNC; with (adjusted) P < 0.05 are here reported as
relevant and considered for further analysis.

Ranking and selection of genes should be based on their
P values. This is because, in comparison with WNC scores,
P values provide a more reliable estimator of gene connect-
ivity. Indeed, it is possible to obtain genes with relatively
high WNC scores that are detected as statistically spurious
after P value calculation. This is reflected in the observation
that WNC scores and their corresponding P values are not
perfectly linearly correlated (Additional files 1, 2 and 3). In
this study, Pearson correlations between WNC scores and
P values range from —0.53 to -0.85 in different networks.
Moreover, P values represent more interpretable values to
bioinformaticians and experimental biologists alike, e.g.,
values between 0 and 1 with well-defined statistical
meaning.

Software and published work based on random per-
mutation methods, including network-based research,
typically define between 1 K and 10 K random samples
for networks of similar or larger size [17,19]. In the case
of my algorithm, when tested on different datasets, a
number of permuted samples above 10 K gives highly
consistent estimations of P values. Indeed, there are no
detectable differences in the datasets investigated here
when generating more than 50 K permutated samples.
Thus, although there is no guarantee that my test can
estimate the true exact P values, these observations at
least indicate that the selected number of permutated
samples is sufficiently large. Also it is important to high-
light that the accompanying software allows users to
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define this parameter according to their needs and com-
puting resources.

Other indicators of gene centrality

I also investigated 4 standard indicators of node centrality,
which have previously been applied to diverse biological re-
search applications. These scores are applied to networks in
which edges are defined as binary interactions, i.e., an edge,
a;;, connecting genes i and j is represented with a value of 1
if the expression correlation between genes i and j is above
a predefined value, otherwise a; is equal to 0.

a. The degree, d;, of gene i in a network of N genes,
represents the number of nodes connected to gene i
[20]. Genes with large degrees are commonly referred to
as hubs. This indicator can be defined as:

N
d; = Zﬂzj (2)
j

Where a;; is 1 if gene i is linked to gene j, and 0
otherwise.

b. The closeness centrality, c;, encodes the capacity of
node i to interact with all the other nodes in the net-
work, including those that are not directly connected to
node i [21]. This measure is calculated as the inverse
sum of the shortest distances from i to all the other
nodes in the network:

S 3)

> h(i,j)

j

C; =

Where h(ij) represents the shortest distance between
genes i and .

Equation (3) will only return values for nodes that are
connected to other nodes. Also the closeness centrality
value of a node is calculated in relation to the connected
graph in which the node is located. This is a key limitation
of this approach, which also implies that nodes located in
small sub-networks (separated from the largest connected
sub-network) may report relatively high closeness centrality
values. In this investigation, all unweighted networks ana-
lyzed with this score consisted of a large connected graph
containing the vast majority of the nodes, and all of the
nodes had at least 1 edge and reported closeness centrality
values between 0 and 1.

c. The betweenness centrality, b;, encapsulates the prop-
erty of node i as a bridging node in the network, ie., a
measurement of the number of shortest paths connecting
any two nodes, j and k, which pass through node i [22].
Nodes with large b; values are often called “high traffic”
nodes.
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Where 7 is the total number of shortest paths con-
necting nodes j and k, and 7;,(i) is the number of short-
est paths that pass through node i.

d. The clustering coefficient, u;, indicates the edge
density in the neighborhood of node i. This is calculated
as the proportion of edges that exist between the nodes
contained in its neighborhood, divided by the total num-
ber of edges that can potentially be found between these
nodes [23]:

(5)

Where m;(j,k) is the number of edges connecting all
nodes j and k in the neighborhood of node i, and m; is
the total number of edges that could be seen if all the
nodes in the neighborhood of i were fully connected.

Implementation of scores

The WNC score was implemented in Java. Source code
and an executable program, WiPer, are freely available
(see Software Availability). The centrality measures spe-
cified in formula (2) to (5) were computed with the Net-
work Analyzer plugin [24] of Cytoscape [25].

Datasets

Gene expression datasets from published studies on:
glioblastoma treatment (GBM), kidney versus liver tissue
comparisons (KL) and heart regeneration after injury in
zebrafish (ZF) were analyzed [26-28] (see Table 1).

To minimize noise and facilitate interpretation of re-
sults, genes showing significant expression changes
across samples were selected for network generation. In
the GBM dataset, I focused on 198 genes displaying
| log,Fold-Change | >1 between treatment and control
samples. In the KL dataset, 211 genes showing high dif-
ferential expression between kidney and liver samples
were selected (those with adjusted P =0). In the ZF data-
set, I selected 221 genes, which showed statistically de-
tectable differential expression between 1- and 7-day
post-injury in relation to uninjured (control) samples
(adjusted P <0.05). “Adjusted P” refers to P values ob-
tained after correcting for multiple testing. In the GBM
dataset, log,Fold-Change was used to select genes,

Table 1 The gene expression datasets investigated
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instead of P values, because the latter detected relatively
low numbers of differentially expressed genes. In the
other datasets, the chosen P values allowed the selection
of gene sets consisting of hundreds of genes instead of
thousands. In all datasets, the latter was the main selec-
tion requirement. Microarray data analyses were imple-
mented with the limma package (MEV platform, v4.9.0)
[29,30]. DESeq tools (version 1.10.1) were applied to the
RNA-Seq dataset under the R platform (v. 2.15.3) [31].

Generation of gene co-expression networks

For all pairs of genes in the datasets, the Pearson correl-
ation coefficient, p, was calculated to define the strength of
the gene-gene connections in the network. In the analyses
of WNC scores, I considered all the obtained p values to
generate the networks (weighted networks). As both nega-
tive and positive correlations may be biologically interest-
ing, network edges were represented with absolute p
values, | p;; | . For the analyses of standard centrality mea-
sures (unweighted networks), I concentrated on gene co-
expression values sufficiently high to reduce the possibility
of including spurious associations and to focus on the most
likely relevant co-expression patterns. Here I report results
in which a network edge was established, between nodes i
and j, if | pi; | =0.95-percentile, ie., those | p;;| values
falling above the 95th percentile of the observed data. Al-
though this procedure is expected to reduce the number of
edges in comparison to the weighted network, the total
number of genes is not substantially affected. The charac-
teristics of the resulting networks are summarized in
Table 2. Gene co-expression values were computed with
the MINE application [32], and networks were visualized
with Cytoscape [25]. Note that the proposed WNC score
does not require the application of specific gene selection
criterion or correlation measures to generate the networks.
Here, to facilitate comparisons, the same gene selection cri-
terion (inputs to network generation) and correlation meas-
ure were applied to generate the weighted and unweighted
networks in each dataset.

To illustrate the application of the algorithm, other
co-expression cut-off criteria for network generation are
feasible as well. Here, changes in these thresholds natur-
ally will have the effect of generating different network
sizes and, therefore, different numbers of putative hubs.
Nevertheless, for conservative threshold selections, e.g.,
cut-offs above the 75th percentile, I have found that
hubs detected as highly significant will consistently

Dataset Biological problem Tissue origin No. genes No. samples Platform Source
GBM Glioblastoma resistance to treatment Brain 198 10 Microarrays [26]
KL Comparison of tissue types Kidney and liver 211 14 RNA-Seq [27]
ZF Zebrafish heart regeneration after amputation Heart 221 9 Microarrays (28]
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Table 2 The gene co-expression networks investigated

Dataset Network type No. nodes No. edges
GBM Weighted 198 19530
KL Weighted 211 22155
ZF Weighted 221 24310
GBM Unweighted 143 976
KL Unweighted 180 1109
ZF Unweighted 208 1216

appear as top-ranked genes in different network gener-
ation settings.

Exploration of potential biological relevance

Here, a group of genes are considered as biologically in-
formative if at least there are statistically detectable asso-
ciations between the genes and biological processes
relevant to the phenotype under investigation. The po-
tential biological relevance of the predicted genes can be
estimated using an independent information resource
that encodes associations between gene sets and bio-
logical processes.

The potential biological relevance of the genes identi-
fied as significant with the centrality scores was first esti-
mated through an enrichment analysis of Gene
Ontology (GO) terms. Using Fisher’s exact test and
multiple-test corrections, this procedure aimed to detect
biological processes that are statistically associated with
the genes selected. This was done for functional terms
in the biological process hierarchy of GO, from levels 3
to 9, and considered as significant when P <0.05. Ana-
lyses were implemented with Babelomics (v. 4.3) [33].
An independent estimation of GO biological process
enrichment (at all levels) was completed with DAVID
(v. 6.7), with those terms reporting FDR < 0.05 consi-
dered as statistically significant [34].

This analysis was extended in a deeper investigation of
the application case in zebrafish heart regeneration.
Based on the integration of independent datasets, I com-
putationally predicted biological processes that are statisti-
cally associated with the top-ranked genes (P <0.05).
These analyses were performed with the IMP (Integrative
Multi-species Prediction) system [35], and associations
with biological processes were deemed significant at
P <0.05. The IMP model is based on the integration
of multiple sources of biological information, includ-
ing protein-protein interactions and gene expression
profiles [35].

Results

WNC scores are statistically discernible

First, I examined whether WNC scores observed in real
co-expression networks can be distinguished from those
obtained from randomly permuted versions of these
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networks. This was done by comparing the distributions
of observed vs. permuted WNC values for all the genes
in the three weighted co-expression networks (Methods).
I found that real networks tend to display WNC scores
that are higher than those obtained from permuted net-
works. Figure 1 portrays the distribution of scores mea-
sured in the real and permuted networks. To facilitate
visualization, results from only 5 permuted networks
(per dataset) are shown.

These results indicate that it is possible to distinguish
between the WNC value distributions from real and ran-
dom networks. The distributions from real networks
contain more extreme lower and upper values, which
are also widely separated. In the permuted networks, the
WNC value distributions tend to be much flatter. This
was particularly clear in the ZF and KL datasets. In the
KL dataset, for example, the random WNC scores
ranged from 208 to 209. Taken together, this shows that:
a. real gene co-expression networks consist of larger
gene sets with extreme WNC scores than random net-
works, and b. WNC scores together with a random sam-
pling procedure could be useful to filter spurious
associations.

Identification of phenotype-related genes based on WNC
analysis

I developed an algorithm for computing WNC scores
and their corresponding P values based on a random
permutation test (Methods). An executable program is
freely available (Software Availability).

Figure 2 displays the distribution of adjusted P values
estimated in the three networks. In each case, relatively
small subsets of genes were detected as statistically sig-
nificant, as expected (Additional files 1, 2 and 3). The
GBM network reported the smallest set of significant
WNC values (55 genes), while the ZF network contained
the largest set (99 genes). In the KL network, 79 genes
showed highly significant WNC scores.

The main hypothesis is that genes exhibiting statistically
detectable WNC scores, i.e., those with low P values, are in-
formative to the phenotypes investigated. Such genes are
candidates for further studies, including analysis of their in-
volvement in diverse cellular processes. Figure 3 shows
examples of genes identified as highly significant. The dif-
ference between statistically strong and weak WNC values
is also illustrated. Genes detected as highly significant tend
to have many strong connections (Figure 3A). This is illus-
trated with the gene AURKA (aurora kinase A), which in-
cludes many strong (red edges) connections reporting a
WNC with P =0. Moreover, as desired, nodes displaying a
relatively large number of weak connections are not guar-
anteed to generate statistically detectable WNC scores
(Figure 3B). The latter is exemplified with COL6A3
(Collagen, Type VI, Alpha 3), which displays a large
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number of relatively weak connections (cyan edges) and  genes involved in the regulation of apoptosis: BLOC1S2,
reported a statistical significance of P=1. AURKA is a kin- CSTB, LGALS1, PRDX3 and RTN4, and in microtubule
ase known to be implicated in the regulation of cell cycle  cytoskeleton organization: ZWINT and BLOCI1S2 (David
progression and has been associated with different tumor  tool). This set of highly correlated genes also includes
types and treatment responses [36,37]. COL6A3 is a colla- IDH1 (Isocitrate Dehydrogenase 1), which has been pro-
gen protein that has been linked to different inherited posed as a potential therapeutic target in gliomas [39]. In
muscular disorders [38]. The AURKA network includes contrast, the COL6A3 network includes 120 associations
109 associations with absolute Pearson correlations above  with absolute Pearson correlations below 0.30. This low-
0.80, including 36 correlations above 0.90. They include correlated set includes genes linked to a variety of cellular
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processes ranging from protein translation (such as KARS
and COPS5), RNA processing (such as RBM3 and RPL14)
to metabolism (such as DERA and ATP5F1).

Next, I found evidence of the capacity of the algorithm
to detect biologically informative candidates. In the
GBM network, genes with known impact in key GBM-

related processes, such as metabolic perturbations and
signaling of cell division, were found in the set of top-
ranked predictions (Dataset S1). A prominent example is
AURKA (WNC with adjusted P =0), which has been re-
cently linked to tumorigenicity and cell self-renewal in
GBM [40]. Moreover, 8 of the top-ranked candidate
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Tissue specificity of top predicted genes

Shared

Brain Kidney and liver

Figure 3 Examples of top genes with highly significant WNC scores in the GBM network. Genes detected with WNC scores are shown as
central nodes with their respective co-expression relationships. Panel A shows an example of gene with significant WNC score (AURKA, P=0).
Example of a gene with a statistically spurious WNC (COL6A3, P =1) is shown in B. Edges are color-coded to reflect the intensity of the gene

observed associations.

co-expression values. C: top predicted genes from GBM and KL networks do not overlap, which suggest tissue specificity of the

genes in the GBM network were significantly associated
with cellular metabolism (generation of precursor me-
tabolites and energy, adjusted P = 8.9E-03).

The sets of highly significant genes identified in the
human networks did not overlap. None of the 55 genes
found as potentially interesting candidates in the GBM
network were found in the set of 79 top-ranked genes in
the KL network (Figure 3C, Additional files 1 and 2).
This indicates that these predictions are particular to
these two organ-specific networks. This may offer fur-
ther indication of the potential of the method to

pinpoint biologically informative, highly central genes. A
deeper look into the potential predictive value of this
technique in the context of the ZF network is presented
in the application case section.

Comparison with standard gene centrality methods

The standard node centrality measures were applied to
the three datasets (Methods), and comparisons with the
WNC-based results were implemented. In the case of
the standard measures, the genes were ranked according
to their score values, and those genes with the highest
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values were selected for the comparisons. Unlike the
WNC score, these indicators do not offer a straightfor-
ward statistical criterion to select the most relevant
genes. Here, for each network and centrality score, I fo-
cused on genes with centrality scores above the 0.95 per-
centile of the observed distribution in each network.
This has two advantages: a. the definition of “high score”
is network-specific, and b. this is less biased than the ap-
plication of an arbitrary score cut-off for all datasets.
The sizes of the gene sets obtained for each method and
dataset are shown in Table 3.

The different methods independently identified par-
tially overlapping gene sets. There was no gene set
shared by all the 5 methods. As expected, the WNC and
(unweighted) degree scores tended to detect genes in
common in all the compared networks. However, the
degree score did not consistently show the largest com-
monality of results with WNC. Betweenness centrality,
for example, shared common genes with WNC in the
KL (10 genes) and ZF networks (2 genes), which is com-
parable to the (unweighted) degree-derived results. In
the GBM network, the WNC, closeness and betweenness
centrality scores detected AURKA. In this network, the
largest overlapping gene set was shared by the WNC and
degree methods (5 genes). In the KL network, WNC,
closeness centrality and degree identified C19orf77
(chromosome 19 open reading frame 77) as a highly
central node. Betweenness centrality was followed by the
clustering coefficient as the method exhibiting the lar-
gest set of shared genes with WNC (3 genes). In the ZF
network, the degree score showed the largest overlap
with WNC (13 genes), followed by betweenness central-
ity (5 genes). These three methods together only re-
ported 2 (unannotated) genes in common as potentially
significant.

Thus, these results suggest that the WNC score can
select gene sets that standard methods may not identify.
At the same time, WNC can detect potentially relevant
genes that are also independently detected by other
methods. Figure 4A summarizes these comparisons. For
clarity, only the largest overlaps with the WNC method
are graphically depicted.

Table 3 Top-ranked gene sets included in the comparison
of gene centrality scores

Method GBM network KL network  ZF network
WNC 55 79 108
Closeness centrality 10 17 12
Betweenness centrality 10 17 18
Clustering coefficient 14 22 23
Degree 12 18 15

Number of genes are indicated for each method and dataset investigated.
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The enrichment of biological processes (Methods) of
the genes selected by the different methods was com-
pared. Figure 4B summarizes the results from the 3 data-
sets. In the GBM network, only WNC and the clustering
coefficient predicted genes with significant functional
enrichments. WNC detected a gene set strongly impli-
cated in metabolism (generation of precursor metabo-
lites and energy, P =0.009), and the clustering coefficient
offered an enrichment in signal transduction (phos-
phatidylinositol-mediated signaling, P =4.4E-2). WNC,
betweenness centrality and the clustering coefficient
achieved statistically detectable enrichments in the KL
network, with WNC providing the largest number (60
processes). In the ZF network, only the WNC-based
method reported statistically significant enrichments:
regulation of immune system process (P=2.4E-2),
humoral immune response (P = 1.3E-2) and protein pro-
cessing (P =2.9E-2). Although this comparison does not
provide conclusive evidence of the predictive power of
this technique in these datasets, it offers further evi-
dence of its hypothesis generation potential.

To further illustrate the importance of statistical as-
sessment in the WNC-based technique, a set of top
genes ranked exclusively on the basis of their WNC
values was selected from each network (Additional files
1, 2 and 3). Note that this method for selecting candi-
date nodes is equivalent to that available in the
Weighted Correlation Network Analysis (WGCNA)
method [41]. To select these genes, a cut-off number of
top genes was defined. To make this comparable to the
non- WNC-based methods, this number was equal to the
maximum number of genes retrieved from the standard
methods in the GBM, KL and ZF networks (Table 3).
Statistically significant associations with GO biological
processes (P <0.05) were not detected in any of these
settings.

Although the selection of gene sets from the trad-
itional methods is viable in a typical network analysis, it
is necessary to caution that a fairer comparison of per-
formance with the proposed method should be based on
size-matched datasets.

Therefore, to investigate the possibility that the per-
ceived advantages of the WNC-based predictions over
standard techniques is explained by the relatively larger
gene sets detected by the former method, an independ-
ent GO enrichment analysis that accounts for this differ-
ence was implemented. The statistical enrichment of
GO biological processes of top-ranked genes from each
technique was estimated (DAVID tool, statistical signifi-
cance at P <0.05), in which the numbers of genes ana-
lyzed were equal to those detected by the WNC score:
55 genes (GBM network), 79 genes (KL network) and
108 genes (ZF network). In the GBM network, only the
clustering coefficient predicted genes significantly
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Figure 4 Comparison of gene sets identified by WNC and standard centrality scores. A. Venn diagrams depicting overlaps between the
gene sets identified by the different methods. Only the largest overlaps with WNC are shown to facilitate visualization. B. Statistically significant
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enriched in biological processes (3 in total), which is
consistent with the results previously obtained. In the
KL network, the betweenness centrality score preserved
its capacity to detect significant enrichments (17 in
total). This time the genes identified by the clustering
coefficient did not report significant associations. The
degree-based method improved its predictive potential
(14 significant enrichments), which is still below the
number of statistically detectable associations that the
WNC score reported. In the case of the ZF network,
none of the standard methods reported significant en-
richments of biological processes. Although one cannot
conclusively claim the predictive superiority of the
WNC-based method on the basis of these observations,
this analysis provides additional evidence of the potential
predictive sensitivity and specificity of this approach.

These comparisons suggest that, in principle, the
WNC measure can find gene subsets that underlie bio-
logically meaningful associations. However, a caveat in
this type of analysis is the dependence on the availability
of GO terms for the genes investigated. This may repre-
sent a critical constraint in relatively less well character-
ized genomes, such as the zebrafish genome. Because of
the current interest in generating novel hypotheses
about the regulatory mechanisms sustaining heart regen-
eration after injury in this organism, the following
section offers a deeper view into the ZF network
predictions.

Application Case: Heart Regeneration In Zebrafish
Unlike mammals, the zebrafish displays a remarkable ability
to regenerate heart tissue after substantial damage. Because
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of this and other clinically interesting attributes, this organ-
ism has become a promising model to understand adult
myocardial regeneration in vivo [42-44]. Moreover, the aim
is to translate such knowledge into novel therapeutic strat-
egies that can boost this heart healing property in humans.
To tackle this challenge, a combination of experimental
and computational approaches to identifying the biological
regulatory networks responsible for driving cardiomyocyte
proliferation is needed.

Here, I had a closer look at the genes detected as po-
tentially interesting by the WNC-based approach (Data-
set S3). These genes are not only statistically linked to
the regulation of immune responses (previous subsec-
tion), but also are known to be implicated in cell prolif-
eration and differentiation. Genes with highly influential
roles in adult zebrafish heart regeneration, such as jakl
and junba, were identified with high statistical confi-
dence (Figure 5A). Fang et al. [28] recently demonstrated
that Jakl/Stat3 pathway is a major regulator of cell
proliferation and regeneration after injury. Fang et al.
showed the regulatory capacity of jakl based on stan-
dard differential expression analysis followed by strin-
gent experimental validations [28].

The findings from Fang et al.’s study overlap with the
predictions based on top-ranked WNC scores: 26 genes
in total (Figure 5B). Furthermore, the WNC-based
method highlighted the potential driving roles of other
genes in tissue regeneration, such as those involved in
upstream signaling (tnfrsfl11b) and the Wnt signaling
network (rhoab). Although these findings merit further
investigation, they show the capability of WNC scores to
recognize known drivers of cardiac regeneration and
possible novel candidates.

To further illustrate the differences between the WNC
scores obtained from the input network and those ob-
tained from the randomized networks, a GO enrichment
analysis of top-ranked genes from 5 different random-
ized networks were performed. The selection of top-
ranked genes from the randomized networks was based
solely on the WNC scores obtained. The WNC scores
from these networks are plotted in Figure 1. This ana-
lysis focused on 108 genes, which is also the number of
genes identified in the input (real) network. None of the
selected gene sets from the random networks reported
statistically significant (P <0.05) enrichments of bio-
logical processes (DAVID tool).

To further investigate the potential relevance of the
top-ranked genes derived from the WNC-based method,
functional associations between these genes and bio-
logical processes were computationally predicted with
the IMP system (Methods). IMP found 45 biological pro-
cesses substantially associated with the WNC-detected
genes (P<0.05). These associations range from the
“regulation of anatomical structure morphogenesis” (P =
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6.9E-4) and “regulation of cell differentiation” (P =
2.52E-2), to “tissue regeneration” (P=3.3E-2) and
“wound healing” (P =4.E-2). Figure 6 illustrates examples
of statistically reliable predictions generated by this ana-
lysis. It also includes genes inferred by IMP to be func-
tionally associated with the WNC-predicted genes in the
ZF network.

Alternative methods for edge weight aggregation

To offer initial insights into suitable alternative ap-
proaches to aggregating edge weights, other two scores,
WNCB and WNCC, were implemented as follows (nota-
tion as defined above):

N
§ Wij

WNCB; = - (6)
N

representing the mean of the observed edge weights.

N
WNCC; = > wi/ (7)
j

corresponding to the sum of squared weights.

The motivation for its introduction here is to offer
connectivity scores in alternative scales, including a nor-
malized version of the score in the case of WNCB. In
principle, they are suitable alternatives because they are
based on the original WNC implementation. They have
not been yet investigated in the specific context of gene
co-expression networks.

A comparison of WNC, WNCB and WNCC indicates
that their estimated statistical significance and rankings
are highly consistent. For instance, in the case of the ZF
network, the P values obtained from the WNC-based
method are significantly linearly correlated with WNCB
(Spearman coefficient, p =0.98 with P=2E-7) and with
WNCCC (p=0.84 with P=2E-7). These results show
that these edge aggregation methods provide the basis
for concordant gene rankings. Although, in principle,
this should be expected in relation to WNCB, further
characterizations of the potential predictive power and
advantages of these and other methods deserve to be in-
vestigated independently as part of future work.

Software availability

An executable program (WiPer), user instructions, source
code and sample files can be downloaded, under the terms
of the General Public License, at: http://sourceforge.net/
projects/wipersoftware. The only user-defined inputs that
the tool requires are: the co-expression network, a list of
genes in the network to be analyzed and the number of
permutations to estimate statistical significance.


http://sourceforge.net/projects/wipersoftware
http://sourceforge.net/projects/wipersoftware
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Figure 5 Top-ranked genes detected by WNC score analysis. A. Examples of top predictions. B. Top genes (WNC scores with P < 0.05) that
were also found as biologically relevant components of heart regeneration in a recent study by Fang et al. [28]. Their approach was based on
gene differential expression analysis and independent experimental validations.

Discussion

Gene centrality scores of co-expression networks offer
complementary approaches to extracting biological
knowledge. They are useful to select genes with signifi-
cant connectivity patterns, which may be biologically
meaningful. This is done under the premise that genes
with many, strong network connections are: a. likely to

be co-regulated with their co-expressed genes, and b.
influential in phenotype-specific cellular processes.

Here I investigated the WNC score, a measure of gene
centrality for co-expression networks. WNC allows the
automatic selection and ranking of genes based on a
weighted version of node degree, together with a prob-
abilistic assessment of its significance. This study has
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Figure 6 Computational prediction of associations between the top candidates in the ZF network and diverse biological processes.
High-confidence associations with genes and cellular processes obtained from the IMP analysis. In the network, red nodes represent genes
predicted as top candidates in the ZF network using significant WNC scores. Grey nodes represent other genes predicted by IMP to be
functionally associated with the top ZF network genes. Color bar indicates the level of statistical confidence of the predicted gene-gene
associations. Examples of biological processes significantly enriched in this predicted network are indicated.

Chemotaxis (P = 3.2E-2)

Wound healing (P = 4.E-2).
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shown that, in relation to random networks, real
phenotype-specific co-expression networks generate lar-
ger WNC values. This method was compared to 4 stand-
ard measures of centrality, which can also be applied to
select candidate targets, such as candidate hubs and
high-traffic nodes. Using three independent gene co-
expression networks from different application domains,
the WNC-based method generated gene sets that tend
to be more enriched in cellular processes in comparison
to a selection of genes highlighted by standard scores.

The proposed method allows the ranking and selection
of candidate hubs based on an assessment of the statis-
tical significance of their connectivity scores. This is
done here with a randomized, permutation-based test.
The problem of generating meaningful null models in
weighted networks is still an open problem. Also previ-
ous research [45] have highlighted the limitations of
large-scale correlation screenings that rely on the defin-
ition of correlation thresholds. The critical problem is
that for datasets with more variables (genes) than sam-
ples, a relatively high number of false discoveries (false
relevant correlations) can be detected even in the case of
very high correlation thresholds. The method proposed
here does not define or require pre-defined correlation
thresholds.

Genes exhibiting statistically significant WNC values
are consistent with prior knowledge. This was observed
in two co-expression network models. The WNC-based

analysis found groups of genes involved in metabolism
and cell growth in the case of the GBM network. In the
second case, top-ranked predicted genes were strongly
associated with cell proliferation, differentiation and tis-
sue repair following heart injury in zebrafish. Similarly,
the method provided gene sets that overlap with recent
research that involved rigorous experimental validations.
These findings suggest that WNC-based gene centrality
analysis may help researchers to discover novel and inter-
esting genes. It represents a tool for exploratory analyses
and for making sense of complex co-expression networks.
Further investigations, including additional computational
comparisons and applications, are warranted. The method
is currently being applied to other domain-specific projects
followed by independent experimental validations. An easy-
to-use, platform-independent software implementation of
the method is provided to enable similar efforts elsewhere.
Currently we cannot conclude on the robustness of
the proposed technique against variations in different
application-driven design conditions, including: choice
of co-expression measure, co-expression threshold defin-
ition for unweighted network methods, selection of
method for multiple-testing corrections of the WNC-de-
rived P values, and the definition of gene prioritization
schemes for standard centrality scores. Furthermore, the
robustness of the different techniques available to each
choice category in different applications has not been
conclusively demonstrated elsewhere. As these issues
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can be mapped to a myriad of data-specific and
application-dependent conditions, the crucial question
may not be whether the proposed method is robust
against all these choices. But instead: Under which spe-
cific conditions, for each design choice, the method may
be robust? An answer to this question will require their
own comprehensive investigations.

Regarding choice of co-expression measures, one should
expect differences in network generation and gene
prioritization outcomes depending on the characteristics of
the data. A wide diversity of measures are available, and
previous research has shown the pros and cons of each op-
tion in different applications [6,46,47]. Deeper investiga-
tions of the effects of measure choice on the structure and
function of co-expression networks is necessary. Regarding
co-expression threshold definition for unweighted network
methods, Perkins and Langton [11] highlighted the com-
plexities associated with this task. Their investigation made
the case for conservative threshold selection approaches,
including one that is shown as more stringent than the se-
lection based on the top 1% of co-expression values [11].
This challenge, which is also unlikely to lead to stand-
ard solutions, will continue to be a subject of additional
investigations. Regarding the selection of method for
multiple-testing corrections of the WNC-derived P values,
one should expect that different techniques will report dif-
ferent numbers of statistically detectable WNC values.
Here I focused on the Bonferroni correction not only
because of its ease of implementation, but also because
it offers conservative estimates of statistical signifi-
cance. At least as a starting point in exploratory research,
the challenge of reducing potential false positives is a
more pressing concern than improving prediction power.
Future versions of the WiPer tool will incorporate alterna-
tive techniques for multiple-testing correction. Lastly, the
problem of defining approaches to selecting candidate
genes from standard centrality scores will require further
investigations. Here I showed that a conservative selection
of top-ranked genes (those above the 0.95-percentile) and
one that includes the same number of genes detected by
the WNC score are restricted in terms of their functional
enrichment detection potential. Despite these findings,
there is a need for additional independent comparisons.
To aid users in developing new applications and to facili-
tate other investigations that address these challenges, a
free and easy-to-use implementation of the proposed
method is available.

The analysis presented here focused on networks in
which between-gene co-expression was calculated with the
Pearson correlation coefficient. Although the proposed
method does not constrain the user in the selection of the
gene-gene similarity measure, it would be useful to further
investigate its application to different types of networks that
are defined by diverse measures, including non-linear
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association techniques. This is important because there is
no standard way to generate these networks, and because
the selection of gene similarity approach is a problem-
specific task [6].

Conclusions

This investigation makes three main contributions to the
analysis of co-expression networks. First, a statistical indica-
tor of gene centrality based on the size and strength of
co-expression connections was developed. Second, an
algorithm that selects statistically relevant genes was
implemented and compared with standard centrality
scores. This study shows that the proposed method
complements and expands the predictive capacity of
other techniques. And lastly, the potential of the pro-
posed algorithm to generate biologically meaningful
insights was illustrated in different application areas.

Reviewers’ comments

I thank the reviewers: A. Almudevar, D.P. Kreil, M.M
Kandula (working with D.P. Kreil) and C. Wells for their
constructive and thorough evaluations. A point-by-point
response to their comments follows. A full response, in-
cluding those comments indicated as “not for publication”
by the reviewers, were provided via the manuscript submis-
sion system.

Reviewer 1 (Dr A. Almudevar) - Round 1

“The paper is interesting, well written, and it addresses
an important open problem. The main concern I have is
with the definition of the null model, discussed largely
on page 6. Is there anyway to evaluate whether or not
whether the null model used is appropriate, possibly by
using simulated models? An inappropriate null model
can lead to spurious reports of significant connectivity.”

Major points:

“1. On page 6: “The latter was estimated by randomly
shuffling the edges in the network, while preserving the
number of observed edges for each gene.” This con-
straint can be sufficient to completely specify the graph
(for example, for N nodes, specifying N-1 edges for node
1 and one edge for the remaining nodes).”

Response: I realize that “shuffling” may not be the
most accurate term to describe the procedure.

A more suitable description is “swapping”, because for
each gene pair in the network its edge (weight) is ran-
domly swapped with the edge (weight) from another
gene pair in the network.

This guarantees not only that the global network size
and degree distribution are preserved, but also it ensures
that only viable connections (and their corresponding
weights) are used to build the null distribution. Thus,
the resulting null distribution is both random and
feasible.
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“2. No justification for the randomization procedure is
given, other than its use in cited papers [1,14-16]. Is it
possible to say more about the appropriateness of this
null model? My understanding is that this is very much
still an open problem. See, for example, Hero and Rajar-
atnam (2011) [45] “Large scale correlation screening”
JASA.”

Response: In the Section “Weighted node connectivity”,
the justification is now explicitly stated as:

This permutation procedure is suitable to generate a null
model because the resulting networks are random and
comparable with the observed (original) network. In par-
ticular, this procedure guarantees the preservation of funda-
mental properties of the original network: size, degree
distribution and weight distribution [18].”

Additionally, I agree with the reviewer that the problem
of generating meaningful null models in weighted networks
is still an open problem. Also I appreciate the recom-
mended reference by Hero and Rajaratnam [45]. Hero and
Rajaratnam’s article highlights the limitations of large-scale
correlation screenings that rely on the definition of correl-
ation thresholds. The critical problem is that for datasets
with more variables (genes) than samples, a relative high
number of false discoveries (false relevant correlations) can
be detected even in the case of very high correlation thresh-
olds. The method proposed in my article does not define or
require pre-defined correlation thresholds.

I've added this comment in the Discussions.

“3. Does the expression in equation (3) vanish if the
graph is not connected?”

Response: As the reviewer pointed out, equation (3) will
only return values for nodes that are connected to other
nodes. Also the closeness centrality value of a node is calcu-
lated in relation to the connected graph in which the node
is located. This is a key limitation of this approach, which
also implies that nodes located in small sub-networks (sep-
arated from the largest connected sub-network) may report
relatively high closeness centrality values. In this investiga-
tion, all unweighted networks analyzed with this score con-
sisted of a large connected graph containing the vast
majority of the nodes, and all of the nodes had at least 1
edge and reported closeness centrality values between 0
and 1.

This observation is included in the revised version.

Minor corrections

“Page 5, line —-3: “[w]here node ...

Corrected.

“Page 8, line -2 “betweness

Corrected.

“Page 9, Left side of equation 5 depends on “jk”. Is
this correct?”

Yes, but in the sense that all neighbors of i, i.e., nodes
j and k, are required for calculating the score. I have
clarified it as follows.

79

””
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_ Wl[(j,k)

;= —

m;

Where m,(j,k) is the number of edges connecting all
nodes j and k in the neighborhood of node i, and m; is
the total number of edges that could be seen if all the
nodes in the neighborhood of i were fully connected.

Reviewer 1 (Dr A. Almudevar) - Round 2
Additional comments were not received.

Reviewer 2 (Dr. D.P. Kreil) - Round 1

“The manuscript by Francisco ] Azuaje investigates the
significance of the connections in undirected gene net-
work graphs as predicted from gene coexpression. Empir-
ical pvalues are constructed for a sumscore (“Weighted
Node Connectivity’) by shuffling edge weights (coexpres-
sion measures). They are then used to select genes which
are presumably biologically informative. Assessments of
significance in such correlation graphs are certainly topical
and of interest to the field. The presented work, however,
raises a number of questions. ”

“For instance, in the section on ‘Weighted node con-
nectivity’ the author first states that an assessment of
statistical significance is needed for ranking genes. He
then observes that ranking by the introduced empirical
pvalues is equivalent to ranking by Weighted Node Con-
nectivity alone (except for ties that arise from the limited
number of shuffled samples). That suggests that the
structure of the network graph does not affect the sig-
nificance of a particular edge, and that the main purpose
of the exercise seems to be the determination of a more
principled cutoff for the edges to examine next. Thresh-
old selection for gene coexpression analysis is a nontriv-
ial task, and this should be emphasized in the
manuscript and prior work should be referenced (see,
e. g., Perkins & Langston, 2009 [11]).”

Response: My expression “the genes could be ranked
by using either the WNC scores or their corresponding
P-values” led the reviewer to this interpretation: “ranking
by the introduced empirical P values is equivalent to
ranking by Weighted node connectivity”. My explanation
was not clear enough. A more accurate, clearer state-
ment is:

In principle, the user could rank the genes by using ei-
ther the WNC scores or their corresponding P values.
This is because the larger the WNC score, the more
likely that the gene represents a candidate hub. However,
a ranking based on only P values should be used because
it provides a more reliable estimator of gene connectiv-
ity. Indeed, it is possible to obtain genes with relatively
high WNC scores that are detected as statistically spuri-
ous after P value calculation. This is reflected in the
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observation that WNC scores and their corresponding P
values are not perfectly linearly correlated (Additional
files 1, 2 and 3). Pearson correlations range between
—-0.53 (for the ZF network) to —0.85 (for the GBM net-
work). Moreover, P values represent more interpretable
values to bioinformaticians and experimental biologists
alike, e.g., values between 0 and 1 with well-defined stat-
istical meaning.

The section on ‘Weighted node connectivity’ now in-
cludes this revision. Also, in the Introduction, now I
refer to Perkins & Langston (2009), as recommended.

Perkins AD, Langston MA. Threshold selection in
gene co-expression networks using spectral graph theory
techniques. BMC Bioinformatics. 2009;10 Suppl 11:54.

“Critically, however, the actual improvements over
established approaches that could be achieved by the
proposed method are not sufficiently clear. The sensitiv-
ity of the method is assessed by GeneOntology enrich-
ment analysis. There is no assessment of specificity
though. In particular, the question arises if the observed
differences in GeneOntology results are not entirely or,
at least, largely caused by differences in the numbers of
genes selected. The results presented in the section
“Comparison with standard gene centrality methods” ac-
tually indicate that this may well be the case, as a reduc-
tion in the number of genes obtained by applying
stricter thresholds in the presented method yields worse
results. Benchmarks should thus directly assess perform-
ance as a function of the number of genes selected, pa-
rameterized by threshold stringency. Comparisons of
different methods of network construction, including the
various unweighted centrality measures discussed, thus
need to be parameterized to yield similar numbers of
genes, to avoid confounding effects of gene set size and
network construction. In particular, with the results
from the proposed method with more genes selected ap-
parently giving better GeneOntology enrichment, these
comparisons should be made for methods parameterized
to yield this higher number of genes. It is not meaning-
ful to just show that the new and the established
methods perform badly when selecting too few genes.

The current work does not provide these separate ana-
lyses, which are required to support the main claims of
the paper.”

Response: To address this comment, I performed an
independent GO enrichment analysis of larger sets of
genes that were top-ranked by the standard methods.
For each network and standard measure, the number of
genes analyzed was equal to the number of genes de-
tected by the WNC score. The results of this analysis are
now included in the revised article, as follows:

To investigate the possibility that the perceived advan-
tages of the WNC-based predictions over standard tech-
niques is explained by the relatively larger gene sets
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detected by the former method, an independent GO en-
richment analysis that accounts for this difference was
implemented. The statistical enrichment of GO bio-
logical processes of top-ranked genes from each tech-
nique was estimated (DAVID tool, statistical significance
at P=0.05), in which the numbers of genes analyzed
were equal to those detected by the WNC score: 55
genes (GBM network), 79 genes (KL network) and 108
genes (ZF network). In the GBM network, only the clus-
tering coefficient predicted genes significantly enriched
in biological processes (3 in total), which is consistent
with the results previously obtained. In the KL network,
the betweenness centrality score preserved its capacity
to detect significant enrichments (17 in total). This time
the genes identified by the clustering coefficient did not
report significant associations. The degree-based method
improved its predictive potential (14 significant enrich-
ments), which is still below the number of statistically
detectable associations that the WNC score reported. In
the case of the ZF network, none of the standard
methods reported significant enrichments of biological
processes. Although one cannot conclusively claim the
predictive superiority of the WNC-based method on the
basis of these observations, this analysis provides add-
itional evidence of the potential predictive sensitivity
and specificity of this approach.

“Finally, although a framework is suggested for a more
principled selection of the number of edges/genes, it is
unclear how robust this number is in relation to a multi-
tude of ad hoc design choices of the presented empirical
algorithm:

i. Choice of coexpression measure. This can affect re-
sults: See, e.g., the discussion in Simon & Tibshirani
(2011) [46] who recommend the distance correlation
measure proposed by Székely & Rizzo (2009).

ii. Arbitrary threshold used for selecting a graph edge
(correlation > 95%) in the unweighted methods. Al-
though the author mentions trying alternatives above
the 75% ile, results are not shown, and prior work on
threshold selection has not been taken into account
(e. g., Perkins & Langston, 2009).

iii. Bonferroni correction method for multiple testing,
5% FWER threshold.

iv. 95% ile threshold of centrality measures for com-
parisons of other methods.

Moreover, arbitrary thresholds are used for selecting
genes from the examined data sets, and the procedure
seems to be different for each data set, with little motiv-
ation or justification, nor is the robustness of results to-
wards these choices examined.”

Response: First of all, I agree with the reviewer that
these 4 factors are critical in the evaluation of this and
any related approach. At the same time, I'd like to stress
that I am not (cannot) claim that my method is robust
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to all these choices and the variety of options that are in
principle available to each choice. Furthermore, the ro-
bustness of the different techniques available to each
choice category for different applications has not been
conclusively demonstrated elsewhere either. Also I think
that the crucial question may not be whether my
method is robust against all these choices. But instead:
under which specific conditions, for each design choice,
the method may be robust? An answer to this question
will require their own comprehensive investigations.
Also note that a more detailed response to Point iv. was
provided above.

In the Discussion, now I address this concern, includ-
ing a point-by-point comment on the 4 choices, as
follows:

Currently we cannot conclude on the robustness of
the proposed technique against variations in different
application-driven design conditions, including: choice
of co-expression measure, co-expression threshold defin-
ition for unweighted network methods, selection of
method for multiple-testing corrections of the WNC-de-
rived P values, and the definition of gene prioritization
schemes for standard centrality scores. Furthermore, the
robustness of the different techniques available to each
choice category in different applications has not been
conclusively demonstrated. As these issues can be
mapped to a myriad of data-specific and application-
dependent conditions, the crucial question may not be
whether the proposed method is robust against all these
choices. But instead: Under which specific conditions,
for each design choice, the method may be robust? An
answer to this question will require their own compre-
hensive investigations.

Regarding choice of co-expression measures, one
should expect differences in network generation and
gene prioritization outcomes depending on the charac-
teristics of the data. A wide diversity of measures are
available, and previous research has shown the pros and
cons of each option in different applications [6,46,47].
Deeper investigations of the effects of measure choice
on the structure and function of co-expression networks
is warranted. Regarding co-expression threshold defin-
ition for unweighted network methods, Perkins and
Langton [11] highlighted the complexities associated
with this task. Their investigation made the case for con-
servative threshold selection approaches, including one
that is shown as more stringent than the selection based
on the top 1% of co-expression values [11]. This chal-
lenge, which is also unlikely to lead to standard solu-
tions, will continue to be a subject of additional
investigations. Regarding the selection of method for
multiple-testing corrections of the WNC-derived P
values, one should expect that different techniques will
report different numbers of statistically detectable WNC
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values. Here I focused on the Bonferroni correction not
only because of its ease of implementation, but also be-
cause it offers conservative estimates of statistical signifi-
cance. At least as a starting point in exploratory
research, the challenge of reducing potential false posi-
tives is a more pressing concern than improving predic-
tion power. Future versions of the WiPer tool will
incorporate alternative techniques for multiple-testing
correction. Lastly, the problem of defining approaches to
selecting candidate genes from standard centrality scores
will require further investigations. Here I showed that a
conservative selection of top-ranked genes (those above
the 0.95-percentile) and one that includes the same
number of genes detected by the WNC score are re-
stricted in terms of their functional enrichment detec-
tion potential. Despite these findings, there is a need for
additional independent comparisons. To aid users in de-
veloping new applications and to facilitate other investiga-
tions that address these challenges, a free and easy-to-use
implementation of the proposed method is available.

“In order to convincingly show the value of the pre-
sented approach, the author needs to address the above
questions, especially regarding a separation of the effects
of gene set size on the downstream GeneOntology ana-
lysis used to gauge performance.”

Response: A detailed response, including new results,
regarding gene set size effects on the GO analysis is pro-
vided above.

Reviewer 2 (M.M. Kandula, working with Dr. D.P. Kreil) -
Round 2

“We appreciate the correction of the original statement
claiming that the P-values and WNC scores were
linearly correlated, when there are clear differences as
reflected in correlation coefficients as weak as -53%.
Consequently, the revised text seems misleading: It is
then not irrelevant whether genes are ranked by WNC
scores or P-values. On the contrary, the permutation
procedure suggested by the author to compute these P-
values seems to be a key step in the proposed algorithm,
and we think that this should be made clear in the
manuscript. Alternatively, if it really made no difference
then why would the author introduce that elaborate
step?”

Response: This point is now clarified in the article as
follows: “Ranking and selection of genes should be based
on their P values. This is because, in comparison with
WNC scores, P values provide a more reliable estimator
of gene connectivity.”

“We appreciate the additional GO enrichment analysis
of larger, size-matched sets —supporting the claims
made. We maintain that the comparisons with deviating
set sizes were not meaningful and are actually mislead-
ing by giving the wrong impression that there were
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additional independent evidence. Those results from un-
matched data sets should thus be removed from the
presentation.”

Response: Although I agree with the reviewers that
the results from unmatched datasets do not offer sufficient
evidence, 1 believe that the findings from both size-
matched and —unmatched sets are relevant in this publica-
tion. To further address the reviewers’ concern, I have
added the following statement (following results from
unmatched sets): “Although the selection of gene sets
from the traditional methods is viable in a typical net-
work analysis, it is necessary to caution that a fairer
comparison of performance with the proposed method
should be based on size-matched datasets.”

“While we find it disappointing that the author has
made no attempt to test for robustness of the proposed
new approach by examining the stability of results under
varying algorithm choices and parameters, the revised
manuscript now includes an appropriate disclaimer.”

“While we appreciate the extensive disclaimer added,
we respectfully disagree with the view that an assess-
ment of robustness of results were out of scope: At least
initial attempts at establishing that a new approach does
not only work for a particular arbitrary set of algorithm
choices and parameters would give other scientists some
evidence that the illustrated performance improvements
should apply more generally and are really due to the
presented new ideas.”

“While we appreciate that the source code has been
made available we find it disappointing that not even
some basic investigations into the robustness of the pre-
sented approach are presented by the author.”

Response: Although I agree with the reviewer that an
analysis of the robustness of the algorithm against differ-
ent user-defined input choices is relevant, it is also im-
portant to clarify that the reviewers’ concern mainly
refer to user choices and parameters that are not defined
by the proposed algorithm per se. Rather, they refer to
conditions related to input data selection.

[Regarding the previous author’s response on gene set
size effects on the GO analysis, the reviewer states:]
“Thank you for the new analysis supporting the claims”.

“If the author does not wish to demonstrate robustness
under threshold selection then the used thresholds
added should at least be motivated/justified. It is entirely
unclear why, for onedata set, ‘|log2 fold change| > 1 was
used for calling ‘significant expression change’ while, for
another, an ‘adjusted P-value = 0" and, for yet another, an
‘adjusted P-value = 0.05.”

Response: In the GBM dataset, log,Fold-Change was
used to select genes, instead of P values, because the lat-
ter detected relatively low numbers of differentially
expressed genes. In the other datasets, the chosen
P values allowed the selection of gene sets consisting of
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hundreds of genes instead of thousands. In all datasets,
the latter was the main selection requirement. This clari-
fication is now included in the manuscript.

“Moreover, these statements are imprecise: One can
either apply a P-value threshold = some value or select
genes with P-value < some threshold. It is moreover not
clear what the author means with ‘adjusted P-value=0" -
perhaps a typing error?”

Response: Corrections made: P < threshold (In KL
dataset). In the ZF dataset: only those genes with ad-
justed P=0 were selected. “Adjusted P’ refers to P
values obtained after correcting (adjusting) for multiple
testing. The latter is also clarified in Methods.

Reviewer 3 (Dr C. Wells) - Round 1

“Building informative biological networks from systems-
scale datasets is an area of increasing importance, as
data becomes more accessible, and more complex. There
is a clear need to reduce complex networks to the most
essential and informative core. The author has identified
the connectivity of nodes in a network as a common
method to highlight biologically relevant areas. The as-
sumption, quite reasonably, is that ‘important’ network
elements will be highly connected, thereby allowing re-
searchers to focus on elements also likely to be highly
functionally related.

I liked the concept of being able to select biologically
relevant genes in a network very much, and I liked the
idea that the ‘strength’ of a correlative score could be
further filtered with some quantitative, reproducible and
comparative metric. However I don’t think that the au-
thor has adequately addressed this goal in the manu-
script in its current form.

An over-arching criticism that I have of the manu-
script is the tendency to superficial generalization by the
author. The introduction lacked depth of critical analysis
on the problem at hand, rather suffering from too many
soft introductions to generic network structures, and not
enough specifics about the types of networks needing
improvement (or why). Instead the author relies on gen-
eralizations like ‘coexpression networks’ of which there
are many flavors. I would have appreciated a more de-
tailed understanding of the author’s motivations, particu-
larly with regard to the deficiencies in commonly used
network approaches. The two main points made by the
author ‘biological relevance’ and ‘binary thresholding’
remained undefined and essentially untested in this
manuscript. I was intrigued by the idea that one might
build a coexpression network without applying a thresh-
old (and here I'm assuming the binary reference refers
to Steve Horvath’s original weighted gene co-expression
network model, which is by definition binary).”

Response: The main rationale is that traditionally
users detect candidate hubs by counting the number of
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edges associated with a node. In the context of gene cor-
relation networks, a connection is typically defined if the
correlation between a pair of genes is above a predefined
cut-off value. Here, I aimed to provide an approach to de-
tecting candidate hubs without the need to pre-specify a
correlation threshold to define edges in the network. Also
there is a need to offer an automated way to quantify (and
rank) the resulting candidate genes according to the statis-
tical significance of the observed connectivity.

To address the reviewer’s concern, I have clarified my
motivation in the Introduction.

“What does the author mean by “Moreover, the pre-
dictions of gene centrality generated by these measures
are not commonly supported by probabilistic assessment
at the level of individual genes, which is crucial for gene
selection and prioritization”? In the first instance, this
statement needs context to be understood and in the
second instance I'm not sure it can be correctly stated,
certainly not in this blanket way — there are many ways
to build a network and few rely on a single measure of
co-expression between network elements.

Response: I agree that this sentence does not clearly
represent the intended message. Here I do not refer to
the construction of the co-expression network or the es-
timation of between-gene correlations. I refer to a key
current limitation: the idea of defining candidates hubs
by either counting the number of edges assigned to a
node or by estimating the total intensity of the connec-
tions without providing an indicator of statistical signifi-
cance (P value) for each candidate hub.

To address this point, I've modified this sentence
accordingly.

“The method itself builds on a method originally de-
scribed by reference [14] - Zhang and Horvath (Stat
Appl Genet Mol Biol. 2005;4:Article17) which discretizes
a fairly well established linear correlation (Pearson) cor-
relation methods. It’s not clear how the other two refer-
ences included here build the argument of the author, or
demonstrate modifications to the method that the au-
thor is relying on. Furthermore there have been very
strong arguments made by Steve Horvarth, amongst
others, that improved correlation networks may also re-
quire nonlinear measures to assess connectedness be-
tween nodes. This makes the method feel somewhat
redundant from the outset.”

Response: Please note that my method does not
discretize or dichotomize the correlations between
genes. The method is proposed to overcome  this
constraint.

I agree that meaningful co-expression networks may re-
quire non-linear measures of correlation. However, an in-
vestigation of the selection of suitable correlation measures
for different biological network applications is beyond the
scope of my study and has been addressed elsewhere,
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including by Horvarth et al. [6]. The method that I propose
does not constrain the user in the selection of gene similar-
ity measure. In this context, the user is responsible for pro-
viding the network to be analyzed.

I have made clarifications in the sections: Weighted
node connectivity, Generation of gene co-expression
networks, and Software Availability.

Also, in Discussions, I have stated that:

The analysis presented here focused on networks in
which between-gene co-expression was calculated with
the Pearson correlation coefficient. Although the pro-
posed hub detection method does not constrain the user
in the selection of the gene-gene similarity measure, it
would be useful to further investigate its application to
different types of networks that are defined by diverse
measures, including non-linear association techniques.
This is important because there is no standard way to
generate these networks, and because the selection of
gene similarity approach is a problem-specific task [6].

“I'm assuming that the absolute value of the Pearson
correlation wi,j means that the network does not dis-
criminate between positive or negative correlations. I'm
not sure that the WNC would cope with negative values,
but ignoring these means that valuable information
about the type of relationship that an edge may repre-
sent is lost.”

Response: Yes, the absolute correlation values are
used to estimate the connectivity scores (WNC scores).
This is actually done to not exclude any type of correl-
ation. This means that the user can identify candidate
hubs defined by either strong positive correlations,
strong negative correlations, or a combination of both.
Once candidate hubs have been detected, the user can
directly inspect in his/her data the type of correlations
associated with each hub.

“The method next builds a distribution model of
weighted network connectivity scores WNC and per-
mutes a significance value by comparing a shuffled-edge
network (of random values) with the original network.
The motivation is to reduce edges between poorly corre-
lated nodes. In essence, introducing a threshold. I need a
better explanation about why this threshold is an im-
provement over an arbitrary correlation threshold. In
point of fact, the supplementary tables demonstrate that
very few genes pass the Bonferroni-corrected P-values,
so one must ask whether this threshold is less appropri-
ate than the traditional correlation value or discretized
approach.”

Response: This statistical test allows users to automat-
ically detect and rank candidate hubs. The traditional
method based on defining cut-off correlation values does
not address this problem directly. It simply offers a sim-
plified way to represent the network, and it still requires
the definition of criteria for identifying candidate hubs.
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I agree that the Bonferroni-corrected P values are con-
servative, and that additional potentially interesting
genes may be loss in this selection. However, I think
that, at least in an exploratory analysis phase, a reduc-
tion of potential false positive predictions is preferable
that an increase in predictive power. Also note that al-
though in this paper I focused on results significant at
(corrected) P=0.05, the method allows the user to de-
fine her/his own statistical significance criteria. The out-
put of the tool includes the connectivity scores, together
with nominal and corrected P values, for all genes in the
network.

To address the reviewer’s observation, in the Discus-
sion I have included this clarification and stated the im-
portance of considering alternative multiple-testing
correction techniques.

“I'm also confused that the motivation for the study
was phrased in terms of improving ‘biological interpret-
ation” but the choice of ranking and thresholding net-
work members was on a statistical basis (p-value)
because this was supposedly more understandable to bi-
ologists and statisticians. I'm especially confused given
that the ZF-network in Figure 1 appears to offer no im-
provement over the randomized background.”

Response: In the revised version, I've rephrased the
“improving biological interpretation” statement as “to
help researchers to focus their attention on genes that
may be biologically informative”. Here this is the case
because now the user has access to a ranking of genes
on the basis of their connectivity in the network and
corresponding statistical significance support.

I have modified Figure 1 to show the connectivity
scores obtained from different random datasets. As this
figure and the subsequent results demonstrate, there are
indeed gene sets with (observed) connectivity scores that
are significantly high and unlikely to have been obtained
by chance (at P = 0.05).

“The author then makes the statement that “WNC
scores and their P-values are linearly correlated.” In fact
the P-values appear to discretize the data into not sig-
nificant (close to 1) or highly significant and few ele-
ments sit in between. I don’t share the author’s
interpretation of figures 1 and 2. Please justify this
statement.”

Response: Although not highly correlated in all net-
works, WNC scores and corrected P values are indeed
linearly correlated. Their (Pearson) correlations range
between -0.53 (for the ZF network) to -0.85 (for the
GBM network).

I have made this clarification in the section on
Weighted node connectivity. These data are also included
as supplementary files.

“Figure 3 allows the reader to visualize the number of
connections of a gene with a ‘strong’” WNC score, and
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contrasts it to one with a large number of ‘weak’ con-
nections. However an independent measure is needed to
assess the relevance or validity of these ‘weak’ or ‘strong’
interactions. And given the emphasis on biological rele-
vance, is there any indication that the genes connected
with a high WCA are more informative, and the genes
connected with a weak value more spurious? The
geneset-enrichment analysis wasn’t particularly convin-
cing, and little detail was provided on the Col6A3 net-
work in comparison to the Aruka network, and this
section was altogether too anecdotal in nature.”

Response: The proposed algorithm offers statistical in-
dication of the differences between those genes with
weak and strong interactions, i.e., the estimated P values.

Regarding the examples shown in Figure 3, I have in-
cluded a more detailed discussion as follows:

AURKA is a kinase known to be implicated in the
regulation of cell cycle progression and has been associ-
ated with different tumor types and treatment responses
[36,37]. COL6A3 is a collagen protein that has been
linked to different inherited muscular disorders [38].
The AURKA network includes 109 associations with ab-
solute Pearson correlations above 0.80, including 36 cor-
relations above 0.90. They include genes involved in the
regulation of apoptosis: BLOCI1S2, CSTB, LGALSI,
PRDX3 and RTN4, and in microtubule cytoskeleton
organization: ZWINT and BLOC1S2 (David tool). This
set of highly correlated genes also includes IDH1 (Isoci-
trate Dehydrogenase 1), which has been proposed as a
potential therapeutic target in gliomas [39]. In contrast,
the COL6A3 network includes 120 associations with ab-
solute Pearson correlations below 0.30. This low-
correlated set includes genes linked to a variety of cellu-
lar processes ranging from protein translation (such as
KARS and COPS5), RNA processing (such as RBM3 and
RPL14) to metabolism (such as DERA and ATP5F1).

“What does the author mean in regards to tissue spe-
cificity, in regards to the gene rankings. How was this
assessed in terms of actual expression restriction
(assessed, for example, against the BioGPS datasets).”

Response: I agree that this point requires clarification.
I did not perform an analysis of tissue specificity of ex-
pression data per se. I only showed that there is no over-
lap between the set of candidate hubs from the brain
and kidney networks. This only indicates that these pre-
dictions are particular to these two organ-specific net-
works. This clarification is now included in section
“Identification of phenotype-related genes based on
WNC analysis”.

“I'm not convinced that examining gene overlaps be-
tween different methods (Table 3) is a reasonable com-
parison, and surely the size of the dataset (dominated by
the authors method) will have an impact on GSEA. You
are comparing gene lists of 10-20 members with
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genelists of 55-100 members. It’s hardly surprising that
you didn’t see GO term enrichments for the majority of
these methods.”

Response: To assess the potential influence of this fac-
tor, I performed an independent GO enrichment analysis
of larger sets of genes that were top-ranked by the
standard methods. For each network and standard meas-
ure, the number of genes analyzed was equal to the
number of genes detected by the WNC-based score. The
results of this analysis are now included in the revised
article, as follows:

To investigate the possibility that the perceived advan-
tages of the WNC-based selection over standard tech-
niques is explained by the relatively larger gene sets
detected by the former method, an independent GO en-
richment analysis that accounts for this difference was
implemented. The statistical enrichment of GO bio-
logical processes of top-ranked genes from each tech-
nique was estimated (DAVID tool, FDR < 0.05), in which
the number of genes analyzed was equal to that detected
by the WNC score: 55 genes (GBM network), 79 genes
(KL network) and 108 genes (ZF network). In the GBM
network, only the clustering coefficient predicted genes
significantly enriched in biological processes (3 in total),
which is consistent with the results previously obtained.
In the KL network, the betweeness centrality score pre-
served its capacity to detect significant enrichments (17
in total). This time the genes identified by the clustering
coefficient did not report significant associations. The
degree-based method improved its predictive potential
(14 significant enrichments), which is still below the
number of statistically detectable associations that the
WNC score reported. In the case of the ZF network,
none of the standard methods reported significant en-
richments of biological processes. Although one cannot
conclusively claim the predictive superiority of the
WNC-based method on the basis of these observations,
this analysis provides additional evidence of the potential
predictive sensitivity and specificity of this approach.

“Likewise I find the ontology enrichments in the
zebra-fish case study too anecdotal to be convincing. I
would like to have seen a comparison with the random-
ized network, for example, to convince me that the biol-
ogy associated with the top ranked genes were generally
emergent with the method.”

Response: Please note that observed and randomized
networks are compared when estimating the P values for
each gene. To address the reviewer’s comment I have added
the following to the section “Application case: Heart regen-
eration in zebrafish”.

To further illustrate the differences between the WNC
scores obtained from the input network and those obtained
from the randomized networks, a GO enrichment analysis
of top-ranked genes from 5 different randomized networks
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were performed. The selection of top-ranked genes from
the randomized networks was based solely on the WNC
scores obtained. The WNC scores from these networks are
plotted in Figure 1. This analysis focused on 108 genes,
which is also the number of genes identified in the input
(real) network. None of the selected gene sets from the ran-
dom networks reported statistically significant enrichments
of biological processes (DAVID tool at P = 0.05).

“Overall, the ideas put forward have merit, and could
offer a valuable adjunct to more traditional weighted correl-
ation measure networks. However the author hasn't suffi-
ciently benchmarked his method relative to existing
approaches, including the original Horvath method. The
anecdotal nature of the manuscript provides little hard evi-
dence that the method offers improved biological context
either.”

Response: [ agree that Horwath’s Weighted Correlation
Network Analysis (WGCNA) can be used to select candi-
date hubs. However, unlike the method proposed in my art-
icle, WGCNA does not explicitly address the statistical
uncertainty of the observed scores, ie., their statistical sig-
nificance is not assessed. Because of this, my method can
be seen as an extension of WGCNA’s hub identification
method. Both methods estimate connectivity scores as the
sum of edge weights, but the WGNA’s method does not es-
timate their corresponding P values. Also note that in
the section “Comparison with standard gene centrality
methods”, I presented a comparison between the gene
selections reported by my method and those obtained
from the standard score as implemented in WGCNA:

“To further illustrate the importance of statistical as-
sessment in the WNC-based technique, a set of top
genes ranked exclusively on the basis of their WNC
values was selected from each network (Additional files
1, 2 and 3 for the GBM, KL and ZF networks respect-
ively). Note that this method for selecting candidate
nodes is equivalent to that available in the Weighted
Correlation Network Analysis (WGCNA) method [41].
To select these genes, a cut-off number of top genes was
defined. To make this comparable to the non-WNC-
based methods, this number was equal to the maximum
number of genes retrieved from the standard methods in
the GBM, KL and ZF networks (Table 3). Statistically
significant associations with GO biological processes (at
P =0.05) were not detected in any of these settings.”

I hope that the clarifications and new results included
in this response can persuade the reviewer that, despite
the limitations of the study and the need for further in-
vestigations, its conclusions are grounded in harder evi-
dence than initially appreciated.

Reviewer 3 (Dr C. Wells) - Round 2
“I appreciated the care that the author took in revising
this manuscript, and agree that it is much improved in
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terms of clarity and caveat. I had no further major con-
cerns regarding the motivation or implementation of the
methods described in this paper. I had a very minor
comment on the Figure legend for Figure 1, where “ran-
dom” is spelt “radom”. I am satisfied that the method of-
fers a useful addition to the toolkit of bioinformaticians
wishing to evaluate and rank the connectivity of genes
within a network.”
Response: Figure legends have been corrected.

Additional files

Additional file 1: Results from GBM network.
Additional file 2: Results from KL network.
Additional file 3: Results from ZF network.
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