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Description of plant tRNA-derived RNA fragments
(tRFs) associated with argonaute and
identification of their putative targets
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Abstract

tRNA-derived RNA fragments (tRFs) are 19mer small RNAs that associate with Argonaute (AGO) proteins in humans.
However, in plants, it is unknown if tRFs bind with AGO proteins. Here, using public deep sequencing libraries of
immunoprecipitated Argonaute proteins (AGO-IP) and bioinformatics approaches, we identified the Arabidopsis
thaliana AGO-IP tRFs. Moreover, using three degradome deep sequencing libraries, we identified four putative tRF
targets. The expression pattern of tRFs, based on deep sequencing data, was also analyzed under abiotic and biotic
stresses. The results obtained here represent a useful starting point for future studies on tRFs in plants.
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Findings
Small RNAs are usually ~20 nucleotides long. Regardless
of their genomic origin, small RNAs can regulate gene
expression by acting as siRNAs to direct DNA methyla-
tion [1] or by acting as microRNAs to direct post tran-
scriptional gene silencing (PTGS) [2]. microRNAs are
the most studied class of small RNAs [3]. Moreover, the
key enzymes related to small RNA biogenesis, such as
Dicer-Like (DCL) and AGO proteins, and their roles in
PTGS have been well described [2].
The recent development of high-throughput sequen-

cing technology has improved the identification of other
types of small RNAs [4], like tRNA-derived RNA frag-
ments (tRFs) [3]. The proposed nomenclature of tRFs is
based on the regions of tRNA cleavage, including 3' U
tRFs that are processed from pre-tRNAs and consist of
the sequence between the cleavage site and the RNA
PolIII run-off poly(U) tract [5]. Mature tRNA can gener-
ate two main types of tRFs: one processed from the 5'
end (5' tRFs) and another from the 3' end, harboring the
added CCA sequence (3' CCA tRFs) [5].
The tRFs were first discovered in cultured Hela cells

[6]. Subsequent work in other animal tissues showed
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that tRF biogenesis may involve RNAse Z [5] as well as
Dicer processing [6-8].
Recently, it has been suggested that there might be

cross-talk between tRFs and the canonical small RNA
pathway, which includes the microRNAs [5]. Another
exciting finding was that of the association of tRFs with
AGO proteins [6,7] and the demonstration of a RNAi-
type trans-silencing induced by a 3' CCA tRF using a re-
porter gene [7].
At present, only three works show the existence of

tRFs in plants. In Arabidopsis thaliana, the 5' tRF of
AspGTC and the 5' and 3' CCA tRFs of GlyTCC tRNAs
were found to be overexpressed in root tissues treated
with phosphate deprivation [9]. In rice, the 5' AlaAGC
and ProCGG tRFs demonstrated differential expression
in the callus and leaves [4]; in barley, the HisGTG tRF
was the most abundant of all the small RNAs [10]. How-
ever, the possible association of tRFs to AGO proteins
and their potential contribution to the RNAi pathway
were not analyzed in either of the previous studies.
The work described here was designed to identify pu-

tative AGO-associated tRFs in Arabidopsis thaliana by
analyzing public small RNA deep sequencing libraries,
including those from AGO immunoprecipitation (AGO-
IP) assays. Putative tRF target sequences were also found
by examining Arabidopsis public degradome sequencing
libraries. The expression patterns of tRFs under abiotic
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Figure 1 (See legend on next page.)
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Figure 1 tRNA-derived RNA fragments (tRFs) from Arabidopsis thaliana associated with AGO. A) Schematic representation of ArgTCG tRNA
showing the 5' tRF in green, the 3' CCA tRF in red and the anti-codon in yellow. The D and TΨC loops are also shown. B) tRF class diversity of
AGO-associated tRFs and unassociated ones. C) Length diversity of AGO-associated tRFs and unassociated ones. D) tRF length diversity of AGO1,
2, 4 and 7 IP deep sequencing libraries. E) Logo representation of the first 20 nucleotides of tRNAs, AGO1-IP tRFs, AGO2-IP tRFs, AGO4-IP tRFs,
AGO7-IP tRFs and the A. thaliana microRNAs (miRBase v. 18). The black arrowheads indicate the first nucleotide at the 5' end. F) Expression
pattern of AlaAGC, ArgCCT, ArgTCG and GlyTCC 5' tRFs in control (untreated), drought (40-50% relative water content), cold (5�C for 24 hours),
and salt (200 mM of NaCl for 5 hours) conditions. The expression patterns are shown in reads per million, where the tRF frequency was divided
by the total number of reads and multiplied by one million. G) Expression pattern of AlaAGC, ArgCCT, ArgTCG and GlyTCC 5' tRFs in biotic stress.
The expression patterns are also shown in reads per million. The leaves were inoculated with mock solution (10 mM MgCl2) or Pseudomonas
syringae (2 x 107 cfu/ml). The inoculated leaves were collected 14 hours after inoculation.
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and biotic stresses were also analyzed. The present work
focused on 5' and 3' CCA tRFs in A. thaliana, but
sequences derived from the central regions of the tRNA
were also searched (see methods) (Figure 1A).
We inspected AGO1, 2, 4, 6, 7 and 9 IP libraries [See

Additional file 1: Table S1] and found tRFs in the
AGO1, 2, 4 and 7 IP libraries (Figure 1B,-D) [See
Additional file 2: Table S2]. Both, 5' and 3' CCA Arabi-
dopsis tRFs were associated with AGO, mirroring previ-
ous results in mammalian systems [6,7]. Interestingly,
tRFs from the central part of the tRNA were also
detected (Figure 1B,-D), although 5' tRFs formed the
most abundant class [4,6,9] and showed the highest se-
quence diversity (Figure 1B,-D).
Examining the AGO-associated and unassociated tRFs

(Figure 1C) [See Additional file 3: Figure S1] revealed a
bias in size distribution, with the AGO-associated tRFs
being predominantly 18-22 (nt) in length (Figure 1C)
and the AGO-associated 5’tRFs being predominantly 19
mers (Figure 1D) [See Additional file 3: Figure S1]. This
is very similar to the situation in Hela cells [6].
The predominant 5' terminal nucleotide of microRNAs

is a uracil [11], and this first base is thought to be a
major determinant for loading onto AGO1. AGO2 and
AGO4 preferentially recruit small RNAs with a 5' ter-
minal A [12,13]. However, the most common 5' nucleo-
tide of 5' tRFs is G (Figure 1E). Takeda et al. (2008)
suggested that Arabidopsis may have an AGO gene with
a preference for microRNAs starting with guanine [12];
however, it does not seem to be applicable to tRFs.
Further, to investigate if the 5' tRFs associated with

AGOs act in the RNAi pathway in plants, as has been
suggested in animals [7], we looked for tRF targets in
Arabidopsis using a well-known plant microRNA target
prediction tool coupled with degradome analyses. This
analysis identified four possible target genes [See
Additional file 4: Table S3]. However, this method
assumes that the mechanism and characteristics of tRF
target recognition are similar to those for microRNAs,
which remains to be demonstrated. Indeed, it is possible
that tRFs may play a role in DNA and chromatin modifi-
cation because we found that tRFs associated with
AGO4 (Figure 1D), which is known to be involved in
this process [12].
In order to inspect the expression pattern of tRFs in

abiotic stress treatments, we conducted an analysis of
the AlaAGC, ArgCCT, ArgTCG and GlyTCC 5' tRFs,
using the available deep sequencing data (Figure 1F).
Drought conditions enhanced the expression of the four
tRFs, including the GlyTCC 5' tRF, which is already
known to be up-regulated in response to phosphate
deprivation [9]. Hsieh et al. (2009) discussed that tRFs
accumulate in a developmentally regulated manner and
become dominant in specific tissues or under specific
stress conditions [9]. Thus, the 5' GlyTCC seems to be
dominant in both phosphate deprivation and drought
treatment.
The expression pattern of tRFs under biotic stress in

plants is currently unknown. In order to identify tRFs
that respond to biotic stress, we conducted an expres-
sion analysis of the same four 5' tRFs in AGO1 and
AGO2 immunoprecipitated deep sequencing libraries
from Arabidopsis infected with Pseudomonas syringae or
mock solution (Figure 1G). The four 5' tRFs showed
increased expression in infected AGO2-IP libraries
(Figure 1G). AGO2 is a protein of unknown function
[2]; however, this protein was recently characterized as
being strongly induced by P. syringae infection [14]. This
work also investigated the microRNA pathway and
showed that the expression levels of miR393*, which
associated with AGO2-IP and targets a transcript related
to exocytosis, was enhanced in P. syringae infection
assay [14]. Here, we found an increase in expression of
5' tRFs in the AGO2-IP, indicating a possible role for 5'
tRFs in P. syringae infection. However, more experi-
ments should be performed.

Conclusions
Small RNAs are important regulators of gene expression,
and recent advances in sequencing and bioinformatics
techniques have stimulated the discovery of new classes
of small RNAs. Here, we report for the first time that
tRNA-derived RNA fragments (tRFs) associate with
AGO proteins in plants. The first nucleotide does not
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seem to determine which 5' tRF is directed to which
AGO protein, as observed in microRNAs. However,
there is some enrichment of uridine at the 5' end. More-
over, we identified putative tRF targets and analyzed the
expression of tRFs under abiotic and biotic stresses. The
results presented in this study can be considered as valu-
able support for future studies on the complex networks
involved in tRF-mediated gene regulation in plants.

Methods
In order to find tRFs associated with AGO, 34 deep se-
quencing libraries were retrieved from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/) [15], including 25 li-
braries of AGO-IP and three degradome libraries [See
Additional file 1: Table S1]. We identified a third tRF
class, corresponding to tRFs originating from the in-
ternal sequences of the tRNA. These reads did not map
to the very first nucleotide of 5' tRFs or the very last nu-
cleotide of 3' CCA tRFs.
The bioinformatics approaches used to identify tRFs

associated with AGO were shown in Additional file 5:
Figure S2. Briefly, reads from a control (GSM647184) li-
brary were mapped against all mature Arabidopsis
tRNAs previously obtained from the TAIR database
(http://www.arabidopsis.org), resulting in putative tRFs.
Further, the putative tRFs were used as a query to in-
spect the AGO-IP libraries. The putative tRFs, which
were found in the AGO-IP and had a frequency of more
than 10 reads, were retrieved and considered AGO-
associated tRFs. Later, the AGO-associated tRFs were
used for target prediction against all Arabidopsis tran-
scripts using the psRNATarget tool (http://plantgrn.
noble.org/psRNATarget/). The degradome libraries were
used to confirm possible target cleavage, lowering the
false positive rate in the tRF target prediction.

Additional files

Additional file 1: Table S1. Details of the deep sequencing libraries
used in the present analyses.

Additional file 2: Table S2. List and details of the tRFs identified in the
present work.

Additional file 3: Figure S1. Raw read frequencies of AGO1, 2, 4 and 7
immunoprecipitated libraries. Raw frequency of the tRFs is also shown.
The most expressed reads or tRFs of each AGO-IP library are underlined.

Additional file 4: Table S3. Report the predicted tRFs targets validated
by degradome analyses.

Additional file 5: Figure S2. Fluxogram showing the bioinformatics
approaches for identification and tRF target prediction of AGO-associated
tRFs. The putative targets were used as a reference to screen degradome
libraries. The degradome reads, which were mapped to the approximate
central portion of the tRF target recognition site and show at least one
match and one wobble in tRF:target pairing, were retrieved. So far,
putative targets were validated by degradome analyses.
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