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Abstract

Background: Non-linear, parabolic (sub-exponential) and hyperbolic (super-exponential) models of prebiological
evolution of molecular replicators have been proposed and extensively studied. The parabolic models appear to be
the most realistic approximations of real-life replicator systems due primarily to product inhibition. Unlike the more
traditional exponential models, the distribution of individual frequencies in an evolving parabolic population is not
described by the Maximum Entropy (MaxEnt) Principle in its traditional form, whereby the distribution with the
maximum Shannon entropy is chosen among all the distributions that are possible under the given constraints. We
sought to identify a more general form of the MaxEnt principle that would be applicable to parabolic growth.

Results: We consider a model of a population that reproduces according to the parabolic growth law and show
that the frequencies of individuals in the population minimize the Tsallis relative entropy (non-additive information
gain) at each time moment. Next, we consider a model of a parabolically growing population that maintains a
constant total size and provide an “implicit” solution for this system. We show that in this case, the frequencies of
the individuals in the population also minimize the Tsallis information gain at each moment of the ‘internal time” of
the population.

Conclusions: The results of this analysis show that the general MaxEnt principle is the underlying law for the
evolution of a broad class of replicator systems including not only exponential but also parabolic and hyperbolic
systems. The choice of the appropriate entropy (information) function depends on the growth dynamics of a
particular class of systems. The Tsallis entropy is non-additive for independent subsystems, i.e. the information on
the subsystems is insufficient to describe the system as a whole. In the context of prebiotic evolution, this
“non-reductionist” nature of parabolic replicator systems might reflect the importance of group selection and
competition between ensembles of cooperating replicators.

Reviewers: This article was reviewed by Viswanadham Sridhara (nominated by Claus Wilke), Puushottam Dixit
(nominated by Sergei Maslov), and Nick Grishin. For the complete reviews, see the Reviewers’ Reports section.
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Background
Population heterogeneity is one of the key properties of
any evolving biological system. Heterogeneity amounts to
the existence of differences between individuals that could
be subject to natural selection and drift which can operate
only if the population is non-homogeneous. The dynamics
of distributions of individuals within heterogeneous
populations and some more complex systems with
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selection can be described by replicator equations (RE)
which capture the ‘basic tenet of Darwinism” [1,2].
A very high or even infinite system dimensionality is

one of the principal difficulties in the study of replicator
equations. An effective method for solving a wide class
of RE based on the reduction theorem has been recently
developed and applied to some well-known and new
problems concerning the dynamics of heterogeneous
populations and communities [3,4].
If the “free” growth of a population is exponential, then

the solutions to the corresponding REs have a general
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property: they minimize the Shannon information gain
at each point of the system’s evolutionary trajectory
[5]. Hence, the well-known principle of Maximum relative
entropy, MaxEnt, which is equivalent to Minimum
Information gain [6,7], and is the underlying law for
evolving replicator systems.
Szathmary and Maynard Smith [8] represented the

model of prebiological evolution of replicators by the
equation for the concentration of molecules dx/dt= kxq

(hereinafter SS-model). Three cases are distinguished:
the exponential case with q=1; the super-exponential
case with q>1; and the sub-exponential case with q<1.
The models imply “differential survival of the fittest”,
“survival of the common”, and “survival of every-
body”, respectively [9]. Well established examples of
non-exponential population growth apply to global
demography (super-exponential or hyperbolic case;
q=2 [10]) and some molecular replicator systems
(sub-exponential or parabolic case; q=1/2 [11]).
In fact, the populations of almost all experimentally

studied artificial replicators (typically, oligonucleotides
that replicate in vitro via binary ligation) grow under
the parabolic law [11-13]. The principal cause of the
sub-exponential, parabolic growth appears to be product
inhibition which slows down the reproduction process
compared to the exponential case [14]. Under parabolic
growth, dynamic coexistence of competing replicators
(survival of everyone) that precludes the action of natural
selection is observed under a broad range of parameters
[15-17]. However, under certain conditions, in particular,
when exponential decay of the replicators is included into
the model and/or spatial structures is incorporated, e.g. by
allowing the replicators to spread on a surface, selection
appears to be possible even under parabolic growth
[15,16,18,19].
Thus, parabolic growth appears to be an essential feature

of evolving populations of replicators that could be even
more directly relevant for biological and prebiological
evolution than the exponential growth case. Therefore,
understanding the laws governing this type of growth is of
potential interest for evolutionary studies. Here we
show that for the parabolic growth case, the fre-
quency distribution of the individuals (genotypes) in
the population minimizes the Tsallis relative entropy
(non-additive information gain) [20] at each time moment,
analogous to the maximization of Shannon entropy in the
classical, exponential case.

Results and discussion
In what follows we consider the model of a population
composed of distinct individuals (replicators, genotypes
or sequences) and described by the SS-models; the
dynamics of the replication of each type of individuals
is given by the equation:
dxi
dt

¼ kix
q
i : ð1Þ

We show that the frequency distribution of individual
types in the population (1) minimizes the Tsallis relative
entropy (non-additive information gain) [20-22] at each
time moment. Next, we study the model of a parabolic
population that was originally developed by Szathmary
& Gladkih [17] (hereafter SG-model) that includes
efflux, keeping the total population size constant:

dyi
dt

¼ yi kiy
q−1
i −∑jkjy

q
j

� �
: ð2Þ

Varga and Szathmary [23] demonstrated that the system
(2) has a single internal, globally stable rest point with q<1.
This stable rest point corresponds to the “survival of every-
body”, in contrast to the Darwinian case where survival of
the fittest prevails, which is realized in standard exponen-
tial models with q=1. We give a constructive algorithm of
solving of system (2). The theorem of Varga and Szathmary
immediately follows from this solution. We further show
that the frequency distribution of individual types in the
population (2) minimizes the Tsallis relative entropy at
each moment of the “internal” time of the population.

Population of freely growing parabolic replicators
The dynamics of the size of a “freely growing” population
is given by equation (1). The solution to this equation is

xi tð Þ ¼ xi 0ð Þ1−q þ kit 1 − qð Þ� � 1
1−q

¼ xi 0ð Þ 1þ xi 0ð Þq−1kit 1 − qð Þ� � 1
1−q: ð3Þ

It can be conveniently written in the form

xi(t) = xi(0)expq(xi(0)
q−1kit)

where expq xð Þ≡ 1þ 1−qð Þxð Þ 1
1−q is the q-exponential func-

tion. Its inverse is given by the q-logarithm function

lnqx ¼ x1−q−1
1−q . These two functions tend to ordinary expo-

nential and logarithm functions, respectively, as q → 1
(see, e.g., [20], ch.3), for formulas and properties of the
so-called q-calculus).
The total population size is given by the formula

N tð Þ ¼ Σixi tð Þ ¼ N 0ð ÞΣi P0 ið Þ1−q þ kiN 0ð Þq−1 1−qð Þt� � 1
1−q

From now on we assume for simplicity that N(0)=1.
Then the frequency of i-th individual is

Pt ið Þ ¼ xi tð Þ
N tð Þ ¼

P0 ið Þ1−q þ ki 1 − qð Þt� � 1
1−q

Σ j P0 jð Þ1−q þ kj 1 − qð Þt� � 1
1−q

: ð4Þ
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Remark. It is evident now that

Pt ið Þ ¼ k
1

1−q
i

Σjk
1

1−q
j

as t→∞: ð5Þ

This formula reflects the survival of everyone: the
frequencies of freely growing “parabolic” replicators,
which compose the evolving population, tend to a
unique stable state, and each individual (clone) persists
and has a non-zero frequency in the limit state of the
population. We emphasize that in model (1) there is no
interaction between the individuals, and the growth of an
individual is bounded neither by its own density nor
by the size of the entire population or environment.
Formula (4) shows that individual frequencies follow
the Pareto distribution at each time moment. This
distribution appears as a generalized canonical distribution
in non-extensive statistical physics and non-classical
information theory [20].

Dynamical principles of minimal information gain
Classical information theory uses the Boltzmann-Gibbs
entropy which is equivalent to Shannon information:

SBG ¼ −
Xn

i¼1
pilog pi

Here {pi} is the probability distribution of a full set of
n events. Information theory developed by Shannon and
his successors focused on entropy as a measure of
uncertainty of subjective choice. Accordingly, the Principle
of Maximum Entropy (MaxEnt principle) is based on the
hypothesis that subject to precisely stated prior data, the
probability distribution that best represents the current
state of knowledge is the distribution with the maximum
entropy [6,7,24,25]. The relative Boltzmann-Gibbs entropy
was defined by Kullback and Liebler as the divergence
between the current distribution p and a reference
distribution r as:

DKL p : rð Þ ¼
Xn

i¼1
p ið Þlog p ið Þ

r ið Þ ð6Þ

Statistical mechanics can be constructed based on the
principle of minimum KL-divergence, or information
gain, known as the Principle of Minimum Cross-Entropy
(MinxEnt) [7]. Recently, it has been shown that within
the framework of classical replicator dynamics, the
MinxEnt principle is a rigorous mathematical assertion
that precisely describes the replicator dynamics [3,5].
The distribution that provides the minimum for the

relative BG entropy (KL-divergence) is the Boltzmann
distribution that belongs to the family of exponential
distributions. The instantaneous distribution of parabolic
replicators within a population is not exponential but
rather is a power-law distribution (4). Thus, the BG
entropy or its variants do not apply to this case. Therefore
we ask: can we consider the evolution of such a parabolic-
ally growing population similarly to the evolution of an
exponentially growing population under an appropriate
version of the MinxEnt principle?
The answer to this question is in the affirmative.

The Shannon information is not by any account the
only possible information measure: a great variety of
functions potentially can be useful to measure the missing
information in different systems. Many new definitions of
entropy and information measures have been invented.
Typically, these functions are general entropy measures
that include the BG entropy (Shannon information) as a
special case [26]. This rich choice begs the question, which
information measure is best for a given application.
We submit that the information measure for dynamical

models and systems should be chosen in accordance with
the system dynamics. In the case of parabolically growing
populations, the distribution of the individual frequencies
is the Tsallis distribution at each time moment, and
accordingly, the Tsallis q-entropy is the appropriate
information measure. The Tsallis entropy is one of
the best known and most widely used among the
generalized entropy definitions, and is the basis of
non-extensive statistical mechanics [20]. The Tsallis
relative q-entropy (information gain) of a discrete
probability distribution {p(i)} given a reference distribution
{r(i)} is defined as:

Iq p : r½ � ¼ 1
q−1

Σip ið Þ p ið Þ
r ið Þ
� �q−1

−1

 !
¼ −Σip ið Þlogq

r ið Þ
p ið Þ
� �

: ð7Þ

It is also known as the generalized Kullback–Leibler
information gain or generalized cross-entropy (see Refs
[20-22] for definition, general properties and theorems).
The distribution that provides the minimum of the
Tsallis information gain (7) with respect to the con-
straint

Σiu ið Þp ið Þq ¼ < u>q ð8Þ

is the distribution

p ið Þ ¼ 1
Z

r ið Þ1−q− 1 − qð Þβu ið Þ� 	 1
1−q

¼ r ið Þ
Z

expq −r ið Þq−1u(i)β� �
: ð9Þ



Figure 1 Dynamics of the Tsallis information gain at different
values of q.
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Here Z is the normalization factor (the “partition
function”):

Z ¼ Σi r ið Þ1−q− 1 − qð Þβu ið Þ� 	 1
1−q

¼ Σir ið Þ expq −r ið Þq−1u(i)β� �
:

The Lagrange (i) multiplier β at a given constraint
<u>q can be found from the equation

∂
∂β

lnqZ ¼ − < u>q: ð10Þ

where lnqx ¼ x1−q−1
1−q and so ∂

∂β lnqZ ¼ Z−q ∂
∂βZ.

One can then calculate the minimum information
gain as:

Iq p : r½ � ¼ −lnqZ − β < u>q

¼ −lnqZ þ β
∂
∂β

lnqZ: ð11Þ

We can see that the distribution (9) exactly coin-
cides with the distribution (4) of individuals in the
population (1):

Pt ið Þ ¼
P0 ið Þ1−q þ ki 1 − qð Þt� � 1

1−q

Σj P0 ið Þ1−q þ kj 1 − qð Þt� � 1
1−q

¼ P0 ið Þexpq P0 ið Þq−1kit
� �

ΣjP0 ið Þexpq P0 ið Þq−1kjt
� � : ð12Þ

when r(i)=P0(i), u(i) = ki, −β=t.
Let us reformulate the above results using “inverse

logic”. We do not seek an unknown distribution that
would minimize the relative Tsallis entropy subject to a
particular set of constraints. Instead, we have the solu-
tion (3) of model (1) which produces the distribution (4)
at each time moment. Having this distribution, we can
compute at each moment t the q-mean of the
reproduction rate, ΣikiPt ið Þq≡ < k >t

q . Importantly, one

can compute this value knowing only the initial distribu-
tion P0(i), using the formula:

< k >t
q ¼ Σiki

P0 ið Þexpq P0 ið Þq−1kit
� �

ΣjP0 ið Þexpq P0 ið Þq−1kjt
� � !q

¼ ∂
∂t

lnqZ tð Þ:

ð13Þ

where Z tð Þ ¼ Σj P0 ið Þ1−q þ 1−qð Þkjt
� 	 1

1−q ¼ ΣjP0 jð Þexpq P0 jð Þq−1kjt
� �

.
The distribution (12) coincides with the distribution

which minimizes the Tsallis information gain subject
to the constraint (13). Hence, the following theorem
holds:
Theorem 1
Distribution of parabolically replicating individuals (1)
in a population provides the minimum of the Tsallis
information gain Iq[Pt:P0] at each time moment t among
all probability distributions that are compatible with
the constraint prescribing the current q-mean of the
population growth rate, <k> q

t .
The information gain Iq[Pt:P0] can be calculated as

Iq Pt : P0½ � ¼ −lnqZ tð Þ þ t < k >t
q

¼ −lnqZ tð Þ þ t
∂
∂t

lnqZ tð Þ: ð14Þ

Figure 1 shows the dynamics of the Tsallis information
gain at different values of the parameter q when the initials
distribution P0 is uniform.
Remark. The difference between the sign of β in the

distribution (9) and the sign of t in the distribution (12)
has an obvious explanation. Indeed, in thermodynamics,
the frequency of a state decreases with its energy level,
whereas in biological populations the fraction of individuals
with a higher value of the reproduction coefficient increases
with time.

Population of parabolic replicators with a constant total
size and the principles of minimal information gain
Consider now the SG-model [17] of a parabolically
growing populations of replicators, with a constant total
population size:

_yi ¼ yi kiy
q−1
j − Σ jkjy

q
j

� �
: ð15Þ

Without loss of generality, we can assume that Σiyi
(0) = 1.
Equation (15) is a non-linear, high-dimensionality

system of ODEs, and its analysis is a non-trivial prob-
lem. Varga and Szathmary [23] found an appropriate
Liapunov function and demonstrated that the system
(15) has a single internal, globally stable rest point.
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Figure 2 Evolution of the frequencies of individuals with
different growth rates in parabolically growing population. The
results are for n=100 and growth rates ki ¼ i

100; the three curves
correspond to i=50, 60, 70 (from bottom to top).
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The following Theorem 2 gives an “implicit” solution
to system (15) of an arbitrary dimensionality.
Define the deformed moment generating function

(q-mgf ) as:

Mq δð Þ ¼ Σiexpq δxq−1i 0ð Þki
� �

P 0; ið Þ

Theorem 2
The solution to the population model (15) is given by the
formula

yi(t) = yi(0)expq(yi(0)
q−1kiτ(t))/Mq(τ(t))

where τ(t) is the solution to the Cauchy problem

dτ=dt ¼ Mq τð Þ1−q; τ 0ð Þ ¼ 0: ð16Þ
The theorem reduces the high-dimensionality system

(15) to a single equation (16) for the “internal time” τ and
suggests the following algorithm for solving system (15):

1) Take the solution of equation (1):� � 1 � �
Figure 3 Evolution of the initial uniform frequency distribution
at n=100.
xi τð Þ ¼ xi 0ð Þ1−q þ kiτ 1−qð Þ 1−q ¼ xi 0ð Þexpq xi 0ð Þq−1kiτ ;
2) Given the initial distribution P(0,i), compute the

function Mq δð Þ ¼ Σiexpq δxq−1i 0ð Þki
� �

P 0; ið Þ;
3) Solve the Cauchy problem

dτ/dt = (Mq(τ))
1 − q, τ(0) = 0;

4) The solution yi(t) to problem (15) is given by the
formula
yi(t) = xi(τ(t))/Mq(τ(t)).

Theorem 2 immediately implies the Theorem of Varga
and Shazmary [23] which we formulate as follows:

Corollary. limt→∞yi tð Þ ¼ k
1

1−q
i

Σ jk
1

1−q
j

.

(see Methods for the proof of Theorem 2 and the
Corollary).
Theorem 2 reduces the model of Szathmary-Gladkih

to the free growing parabolic population model (1), so
that keeping a constant population size (2) results in
convergence of the trajectories to the same equilibrium.
In particular, for the Von Kiedrowski’s model with q=1/2,
we have limt→∞yi tð Þek2i .
Example. A population of “parabolic” replicators is

described by the equation (2) with q=1/2. The formulas
for the solution to this model are derived in the Methods.
The plots of the solutions to the model, for the case when
the population consists of n=100 individuals and the initial
distribution is uniform, yi(0)=0.01 for all i, depending on
the growth rate are shown in Figure 2.
Using equation (A3) in Methods, we can trace the

evolution of the initial uniform distribution (Figure 3).
The population quickly stabilizes and approaches the
equilibrium distribution for t~4. Note that the larger
the size of a population, the faster it approaches the
final equilibrium distribution (Figure 3). The plots in
Figures 3 and 4 are similar in shape but the population
with n=10,000 approaches the final distribution much
faster, at t~0.4.

Remarks

1) τ(t) increases much faster than t because d2τ
dt2 > 0 ,

hence yi(t) = zi(τ(t)) approaches the limit values very fast
(see Example 1 and Figures 2 and 3). Figure 5 shows the
values of the internal time τ(1) at the moment of real
time equal to 1 against the number of individuals n in
the population.
Overall, the dynamics of the SG- model of a para-

bolic population coincides with the dynamics of the
SS- model for a free growing parabolic population up
to replacing the “real time” t with the “internal time” τ .
Taking into account that τ(t) is a monotonic function of t
and τ(t)→∞ as t→∞, we conclude that the asymptotic
behaviors of both models coincide. For the same reason,
the following version of the MinxEnt principle holds for
the SG parabolic population.



Figure 4 Evolution of the initial uniform frequency distribution
at n=10000.
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Let P�
t ið Þ ¼ yi tð Þ=Σjyj tð Þ be the current distribution of

populations in the SG-model (2). By definition of yi tð Þ;
P�
t ið Þ ¼ xi τ tð Þð Þ

Σjxj τ tð Þð Þ ¼ Pτ tð Þ ið Þ where Pτ(i) is the current dis-

tribution of model (1), so

P�
t ið Þ ¼ P0 ið Þexpq P0 ið Þq−1kiτ tð Þ� �

Σ jP0 jð Þexpq P0 jð Þq−1kjτ tð Þ� � : ð17Þ

The following theorem directly follows from Theorem 1:

Theorem 3
The Principle of minimum of non-extensive information
gain
Distribution Pt

* (17) of the parabolic populations under the
SG model provides the minimum of the Tsallis information
gain Iq P�

t : P0
� 	

at every time moment t among all
probability distributions compatible with the constraint
prescribing the current q-mean of the individual growth
rates,∑i kiP�

t ið Þq , which is equal to the q-mean growth rate
of a population of free-growing replicators at the moment

τ(t), ∑i kiP�
t ið Þq ¼ ∑i kiPτ tð Þq ¼< k >

τ tð Þ
q .
Figure 5 Internal time τ(1) at the moment of real time equal to 1
against the number of individuals n in the population.
There are many other entropy functionals which also
may result in different observed distributions. The rich
choice from the family of non-classical entropies
seems to imply the MaxEnt “anarchism” which was
criticized many times as a “senseless fitting” [27,28].
As emphasized above, the main justification for using
q-entropies instead of the Gibbs-Boltzmann-Shannon
entropy is that the distribution of the variable of
interest does not belong to exponential family but belongs
to the Pareto distribution family.
An important statement was formulated by Zanette and

Montemurro [29]: For any given distribution p(x), intro-
ducing the appropriate function as a constraint < φ >q
exactly yields the distribution p(x) which provides max-
imum to the Tsallis q-entropy. In particular, maximization
of the Shannon entropy under the constraint <φ> where φ
(x) = Alnp(x)+ φ 0 yields the distribution p(x). Here the
constants A and φ0 fix the origin and units of measure for
the average.
Simply put, the result of Zanette and Montemurro

[29] states that any distribution can be obtained by
maximization of any q-entropy under the appropriate
constraint. Hence, the problem of choosing a particular
q-entropy (including the Shannon entropy) is reduced
to the choice of the “most natural” constraints for the
system under consideration [24]. What constraint should
be imposed in order to derive the Tsallis distribution by
maximization of the Shannon entropy? Let us consider
this problem on the example of distribution (4),

Pt ið Þ ¼
P0 ið Þ1−q þ ki 1 − qð Þt� � 1

1−q

Z tð Þ :

Following Zanette and Montemurro,
φt(i) = A ln[P0(i)

1 − q + ki(1 − q)t], A = const, and the
constraint is equal to the prescribed mean value of the
function φt(i),

< φt>
t≡ΣiPt ið Þφt ið Þ ¼ AΣiPt ið Þln P0 ið Þ1−q þ ki 1 − qð Þt� 	

:

ð18Þ

On the other hand, we can obtain the same distribu-
tion (4) by maximization the Tsallis entropy under the
constraint equal to the prescribed q-mean value of
the growth rate

< k >t
q¼ ΣikiPt ið Þq: ð19Þ

The mean value of the growth rate is a natural,
biologically relevant quantity as opposed to the constraint
(18) which has no natural interpretation. That is why we
favored the Principle of minimum of Tsallis information
gain against the Shannon information gain when we deal
with the Pareto distribution.
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Conclusions
It follows from Theorems 1 and 3 that Tsallis entropy is
the adequate information measure for the distribution of
individual frequencies in the SS and SG models of popula-
tion evolution with parabolic growth. The quantities Iq[Pt:
P0] and Iq[Pτ(t):P0] represent the information gain in the
population up to the moment t in the SS and SG models,
respectively. The Tsallis entropy and distribution include
the standard Shannon entropy and the Boltzmann-Gibbs
distribution as a special case when q→1.
A fundamental property of the Tsallis entropy is that it

is non-additive for independent subsystems: Iq[S
(1) * S(2)] =

Iq[S
(1)] + Iq[S

(2)] + (1 − q)Iq[S
(1)]Iq[S

(2)], where S(1),S(2) are
two independent partitions of the complete system S.
The entropy index q characterizes the degree of non-

additivity. Thus, for parabolic systems with q < 1 such as
typical systems of molecular replicators, the information
about two exhaustive independent subsystems is insuffi-
cient to obtain the information about system as a whole
(the opposite is true for hyperbolic replicator systems
with q > 1 that contain less information than the
sum of the information contents for independent
parts). In the above expression, the term (1−q)Iq[S

(1)]
Iq[S

(2)] may be considered an interaction term. With
respect to prebiotic evolution, this “non-reductionist”
character of parabolic replicator systems might reflect
the importance of the interaction between genetic elements
that could encode complementary functions and form
ensembles of “selfish cooperators” subject to group
selection [30,31].
On a more general note, the results of this analysis

indicate that the MaxEnt (MinxEnt) principle is a
general optimization principle that governs the evolution
of populations of replicators regardless of the specifics of
the growth dynamics. Only the choice of the appropriate
entropy (information) function depends on the growth
law of a particular class of systems.

Methods
Proof of Theorem 2.
Let us consider the equation

dxi τð Þ=dτ ¼ kix
q
i τð Þ; xi 0ð Þ ¼ yi 0ð Þ; ðA1Þ

which coincides with (1) up to the notation of independent
variable; the “internal time” τ will be defined later.
Define the frequencies zi(τ) = xi(τ)/N(τ) where N(τ) =

Σixi(τ). Then

dzi=dτ ¼ kix
q
i =N−

xi
N2 Σ jkjx

q
j

¼ Nq−1zi kiz
q−1
i − Σ jkjz

q
j

� �
:

Let us recall that the solution to (A1) is known,

xi τð Þ ¼ xi 0ð Þ1−q þ kiτ 1 − qð Þ� � 1
1−q

¼ xi 0ð Þexpq xi 0ð Þq‐1kiτ
� �

and hence N(τ) and zi(τ) are also known.
Given the initial values xi(0), define the function

Mq δð Þ ¼ Σiexpq δxq−1i 0ð Þki
� �

xi 0ð Þ:

Let us emphasize that Mq(δ) is a well determined
function as the initial values {xi(0)} are known. The
current community size for model (A1) is then

N τð Þ ¼ Mq τð Þ: ðA2Þ
and

zi τð Þ ¼ xi τð Þ
N τð Þ ¼

expq xq−1i 0ð Þkiτ
� �
Mq τð Þ xi 0ð Þ: ðA3Þ

The “internal time” τ (t) was defined as the solution to
the Cauchy problem (16)

dτ=dt ¼ Mq τð Þ1−q; τ 0ð Þ ¼ 0:

Define yi(t) by the formula yi(t) = zi(τ(t)); then {yi(t)}
solve the system (15):

dyi tð Þ
dt

¼ dzi
dτ

dτ
dt

¼ Nq−1 tð Þzi τ tð Þð Þ
�
kiz

q−1
i τ tð Þð Þ

−Σjkjz
q
j ðτ tð ÞÞN1−q tð Þ

¼ yi tð Þ kiy
q−1
i −Σjkjy

q
j

� �
:

The theorem is proven.

Corollary. limt→∞yi tð Þ ¼ k
1

1−q
i

Σjk
1

1−q
j

:

It follows from formula (A2) and equation (16) that
dτ
dt ¼ N τð Þ1−q . Equations (A1) implies that dN τð Þ

dτ > 0; so
N(τ) is a monotonically increasing function of τ and
hence τ(t) → ∞ monotonically as τ increase. Next,
yi(t) = zi(τ(t)) = xi(τ(t))/N(τ(t)), so

limt→∞yi tð Þ ¼ limτ→∞
xi τð Þ
N τð Þ ¼

k
1

1−q
i

Σjk
1

1−q
j

according to formula (5).

Reviewers’ reports
Reviewer 1: Viswanadham Sridhara (nominated by Claus
Wilke, University of Texas, Austin)
In this manuscript, the authors studied the distribution
of frequencies of individuals (genotypes) in parabolic
(sub-exponential) population growth. They claimed that
this distribution of individual frequencies follow the
Pareto law and minimize the Tsallis information gain, in
contrast to minimization of Shannon information gain
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for exponential population growth models, although it is
to be noted that one variant of Tsallis distribution gives
rise to Boltzmann-Gibbs distribution (i.e., as q->1). The
authors used previously published models on para-
bolic population growth (SS [8], SG [17]) in combin-
ation with their methods to verify their proposed
claims.
The authors were able to show that, indeed such

distribution of individual frequencies minimize Tsallis
information gain. This work is a good extension to the
previously published work by the same authors on
solving Replicator Equations (Karev et. al. [3,4]). In
summary, minimum information gain is hence shown to
be the underlying law for sub-exponential, exponential
and super-exponential population growths.
I have no specific requests for changes.

Reviewer 2: Puushottam Dixit (nominated by Sergei
Maslov. Brookhaven National Laboratory)
In this work, the authors generalize their previous re-
sult on the relationship between the Gibbs-Boltzmann-
Shannon entropy and the exponential growth replicator
equation [3] by analyzing parabolic and hyperbolic growth
models. They show that the frequency distribution of
species growing with a modified exponential dynamics is
best described by a Tsallis q-exponential distribution. I
find the mathematical results of the work interesting
but I think that the physical conclusions are not
clearly delineated. I would like the authors to considerably
extend their discussion about the biological implications
of their results before I can recommend the article to be
published in Biology Direct.

Response: we certainly realize the value of biological
implications. However, this paper primarily aims at
presenting mathematical/information-theoretical
results that apply to a biologically most realistic
replicator system, that is a parabolically growing one.
Hence the biological relevance. We do discuss what we
think is an interesting biological implication, namely
the applicability of this non-additive formalism to
cooperative behavior of prebiotic replicators; this part
was reworded in the revision to clarify. We tend to
believe that further biological speculation would be
excessive at this stage.

My specific questions are below.
In the current work, the connection between system

dynamics and the information theoretic quantities such as
entropy and mutual information (either Gibbs-Shannon
or Tsallis) arises solely because the solution of the growth
equation takes a certain form (either exponential or
q-exponential). Apart from serving as a quantifier of
the variability, in a deterministically growing population
the connection between the entropy/mutual information
computed here and the notion of belief/probability is
not clear (after all, we are talking about a completely
deterministic process).

Response: Yes, both Szathmary-Smith and
Szhathmary-Gladkih models are completely
deterministic. Having a solution of these multi-
dimensional processes, xi(t), we can define the
frequencies of different species, xi(t)/N(t), where N(t)
is the total population size. Then, it is a standard
approach to identify the frequencies of species with
probabilities (to get an individual from a given species
after randomly choosing an individual from the total
population). We do not elaborate and even do not use
here any connection between the entropy/mutual
information and the notion of belief/probability apart
from the mathematical definition of the relative
q-entropy as a measure of information contained in
a given probability distribution.

I would suggest that the authors replace the somewhat
confusing information theoretic terms and adopt
something along the lines of ‘population variability’.
Or, the authors may provide a justification for using
the information theoretic glossary in terms of earlier
work in ecology in estimating species frequencies. See
for example, Dewar and Porté [32].

Response: The information theoretical terms used here
are standard, so we do not see the necessity to justify
them here from first principles; there is a huge
literature on the basic concepts of the theory and its
applications in different areas including the interesting
paper of Dewar and Porté [32] as well as the vast
body of work by Jaynes and his followers on which we
capitalize here [6,7].

Q-entropies should be used only when there is a good
reason to expect non-extensivity in the system. The
authors first derive the frequency distribution from a
deterministic equation and then show that it can also be
obtained by maximizing the Tsallis entropy under suitable
constraints. I think this is a fascinating result and I would
really like the authors to extend their very short discussion
to include a justification of the use q-entropies for
prebiotic growth instead of the usual Gibbs-Boltzmann
entropy. This justification should not invoke the under-
lying modified exponential dynamics, which lead to the
Tsallis entropy in the first place.

Response: Indeed, the use of q-entropy has to
be justified by properties of the system such as
non-extensivity (more precisely, non-additivity [20])
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when it is employed to derive an unknown probability
distribution. However, when it is already known that
the system is described by power law/Pareto
distribution, it follows that these distributions can
be obtained from maximization of the Tsallis q-
entropy. It is well known (theorems of Jaynes and
Kullback) that maximization of the relative
Boltzmann-Gibbs-Shannon entropy results in
distributions that belong in the exponential family. In
other words, the MaxEnt principle in this case is
merely a restatement of the fact that the distribution
belongs in the exponential family. Similarly, the
Principle of maximum of the relative q-entropy is
merely a restatement of the fact that the given
distribution belongs to the Pareto (or Tsallis) family.
Hence, q-entropy and the corresponding variational
principle may be used in each case where the Pareto
(or Tsallis) distribution is observed; the applicability of
these approaches does not depend on the assumption
on the non-additivity of the system.

In other words, assuming that we did not know the equa-
tions governing the population dynamics, what unusual
properties of the prebiotic world serve as a rationale for
using Tsallis entropy (instead of the usual Gibbs-Shannon
entropy) to estimate the frequencies of species? Perhaps the
answer lies in the following observation by Plastino [33]: A
system interacting with a small bath of ideal gas particles
(as opposed to a large thermodynamic bath) behaves
as if its Tsallis entropy is maximized. In short, Tsallis
entropy is a special case of the Gibbs-Shannon entropy if
baths are small.

Response: Actually, as indicated in the present article,
the parabolic growth of replicator systems follows from
a feature that cannot be considered unusual but is
manifest in most chemical systems, namely product
inhibition of the reaction, in this case replication
[11,15]. In more general terms, as emphasized in the
literature including the quoted work of Plastino and
Plastino [33], non-extensive thermostatistics (NEXT) is
based upon the following two postulates:

1) The entropy of a system is given by the q-entropy;
2) Experimental measurement of an observable variable

yields the q-expectation value.

In practice, it is difficult to expect that these postulates
can be verified directly for different complex systems of
interest. In most cases, the validity of the postulates
should be decided exclusively on the basis of the
conclusions to which they lead and their comparison
with experiment. The main point is that the variable of
interest in the system follows the Pareto-distribution,
and this is the case for models of prebiotic evolution
where the frequencies of species follow the Pareto
distribution and growth rate is the observable
variable.

Moreover, the frequencies of species have the Pareto
distribution (1+ax)-b at each time moment with the
parameter a proportional to time. We further expand
on these issues in the revised discussion.

The physical interpretation based on the small
thermodynamic bath is certainly of interest and
probably worth exploring in future models of prebiotic
replicator systems but this is beyond the scope of the
present article [27-29].

Reviewer 3: Nick Grishin, University of Texas
Southwestern Medical Center, Dallas
This study elaborates on a known fact that Tsallis
distribution originates upon maximization of Tsallis
entropy under appropriate constraints and discusses the
relevance of this to biological systems. The constraint used
is a constant generalized mean (“q-mean”) which generates
a family of q-Exponential distributions. When q=1, regular
Shannon entropy, which produces Boltzmann distribution
under the constraint of constant mean (i.e. conservation of
energy in a system) is a special and well-known case.
While mathematical part of the paper is more like a
review (e.g. the main results can be seen on Wikipedia
pages and papers and books they reference), I have
not seen elaboration of these theories using biological
systems.

Response: The aim of the paper is not elaboration of
the theory of non-extensive entropies neither its using
for derivation of distributions of biological systems. We
gave a short review of this theory, but the math part of
the paper is devoted mainly to solving of non-
exponential models of inhomogeneous populations.
Then we gave an interpretation of this solution from
the point of view of the Principle of minimum of
Tsallis information gain. These math results are new,
to the best of our knowledge.

It would be very interesting if the authors could elaborate
on biological meaning of such theories. One obvious
property (non-additivity) was mentioned, but what
could be a broader picture of maximum Tsallis entropy
application to derive evolutionary laws? Is this just a cute
trick to obtain phenomenological equation that Szathmary
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& Smith introduced, or there is more meaning and
usefulness to it in deriving some more mechanistic
and predictive models? Such discussion could very
significantly increase the value of this study.

Response: We do not derive evolutionary laws
from maximization of the Tsallis entropy. We
move in the opposite direction: we prove that
the distribution of clones in non-exponential
population model is the Tsallis (or Pareto-like)
distribution. Hence, under appropriate constraint,
the system dynamics obeys the Principle of
minimum Tsallis relative entropy independently on
if we accept (believe in) this Principle or not and
independently on any particular properties of the
population. Non-additivity of information gain is
not a property of the system under consideration
postulated a priory, but is the last element in the
logical chain:

non-exponential dynamics -> Tsallis distribution of clones
at each moment -> minimum of the Tsallis information
gain at each moment -> Tsallis relative entropy as a
measure of information gain consistent with the system
dynamics -> non-additivity of the information measure.

There exists a huge literature devoted to the derivation
of particular (including experimental) distributions
from variational principles. The MaxEnt principle and
the Tsallis formalism have been already applied to
many problems in widely different areas (physics:
astrophysics, cosmology, turbulence phenomena;
mathematics: Lèvy flights, superdiffusion, non- linear
Fokker-Planck equations, economy: analysis of market
trends; biology and medicine, etc.; see some references
at http://tsallis.cat.cbpf.br/biblio.htm).

It seems that the only common property of all these
systems is non-additivity of the entropy functional;
actually it is a formal mathematical assertion,
which follows directly from the axiomatic for the
Tsallis entropy (see [34] and references therein
(for Generalized Shannon-Khinchin axioms).

With regard to the biological meaning, as pointed
out in the manuscript and in our response to
reviewer 2, it stems from the fact that Tsallis
q-entropy naturally applies to biologically
realistic parabolic replicator systems unlike the
Shannon-Boltzmann entropy which only applies to
idealized exponential systems. We also offer a
biological interpretation of the non-additivity of
the q-entropy. We believe that at this stage these
are the necessary and sufficient biological
implications.

On the other hand, I am interested to learn what
conditions imposed on the system yield sub- or
super-exponential behavior after maximization of
Shannon's entropy? The results do not have to exactly
match the Szathmary & Smith growth equation, of
course, but be qualitatively similar. E.g. maximization
of Shannon entropy while keeping the mean constant
results in Boltzmann distribution, and when the variance
is kept constant, Gaussian distribution emerges. Maybe
such conditions, if found, could shed some light on
biology and evolution of these systems.

Response: It is known that maximization of the
Shannon's entropy under prescribed geometrical mean
results in the Pareto distribution [35]. In general, any
distribution can be obtained by maximization of the
Shannon's entropy under appropriate constraints
[29], and hence the problem is in the choice of the
constraints that are “most natural” for the system
of interest.

Some more technical issues:
1. It seems that starting background section of the

abstract with a sentence that contains two words in
quotes and two sets of parenthesis does not help in
communication and might turn perspective readers
off. It would be better to have a more accessible and
friendly background section.

Response: we removed the quotes that were not strictly
necessary in this case. As for the terms in parentheses,
they clarify the meaning of the preceding terms and as
such, we think, are helpful and hopefully not too
annoying.

2. It would be nice to carefully proofread the text for
grammar. I saw quite a few trivial lapsi, e.g. the first
sentence in the abstract or “We sought to identifiable”
also in the abstract.

Response: we regret these unfortunate and indeed
trivial errors. These were corrected to the best of
our ability.
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