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Abstract

Background: Hypermethylation of CpG islands is thought to contribute to carcinogenesis through the inactivation
of tumor suppressor genes. Tumor cells with relatively high levels of CpG island methylation are considered CpG
island methylator phenotypes (CIMP). The mechanisms that are responsible for regulating the activity of de novo
methylation are not well understood.

Results: We quantify and compare de novo methylation kinetics in CIMP and non-CIMP colon cancer cell lines in
the context of different loci, following 5-aza-2'deoxycytidine (5-AZA)-mediated de-methylation of cells. In non-CIMP
cells, a relatively fast rate of re-methylation is observed that starts with a certain time delay after cessation of 5-AZA
treatment. CIMP cells, on the other hand, start re-methylation without a time delay but at a significantly slower rate.
A mathematical model can account for these counter-intuitive results by assuming negative feedback regulation of
de novo methylation activity and by further assuming that this regulation is corrupted in CIMP cells. This model
further suggests that when methylation levels have grown back to physiological levels, de novo methylation activity
ceases in non-CIMP cells, while it continues at a constant low level in CIMP cells.

Conclusions: We propose that the faster rate of re-methylation observed in non-CIMP compared to CIMP cells in
our study could be a consequence of feedback-mediated regulation of DNA methyl transferase activity. Testing this
hypothesis will involve the search for specific feedback regulatory mechanisms involved in the activation of de novo

methylation.
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Background

Tumors are thought to emerge and progress through the
activation of oncogenes and the silencing of tumor sup-
pressor genes [1]. These processes can occur both by gen-
etic and epigenetic processes. Mutations clearly play an
important role in this context [2-4]. These range from
small-scale events, such as point mutations, to larger scale
events such as the loss of whole chromosomes or chromo-
some parts. Chromosomal loss is thought to be particu-
larly important for the deactivation of tumor suppressor
function by unmasking recessive mutations. Genetic
instability [5-19] can contribute to the accumulation of
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mutations. Microsatellite instability speeds up the ge-
neration of small-scale mutations, while chromosomal in-
stability speeds up the generation of larger scale
mutations. Collectively, such tumor cells are referred to as
“mutator phenotypes” [11]. Not only are such cells charac-
terized by higher levels of mutations, but it has been dem-
onstrated that such cells accumulate mutations with a
faster rate or speed [10] — two measures that need not ne-
cessarily correlate with each other.

Epigenetic events are thought to be equally important,
and perhaps more frequently involved in tumor initi-
ation and progression [20-24]. Tumor cell genomes are
often characterized by global hypomethylation. This has
been suggested to contribute to the emergence of karyo-
typic instabilities as well as to the activation oncogenes.
On the other hand, CpG islands are susceptible to
hypermethylation, and when it occurs in the promoter, it
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is associated with gene silencing and can promote the
deactivation of tumor suppressor genes. Similar to the
mutator phenotype concept, a “methylator phenotype”
concept has emerged to account for the tendency to ob-
serve patterns of hypermethylation in certain cell lines.
Tumor cell lines that are characterized by relatively high
levels of CpG island methylation have been called CpG
island methylator phenotypes (CIMP cells), which sets
them apart from non-CIMP cells that are characterized
by lower levels of CpG island methylation [25-28].

The term “methylator phenotype” implies that relevant
loci in such cells become methylated faster. A recent
study [29,30] demonstrated reduced fidelity in replicat-
ing methylation patterns of CpG islands in CIMP gastric
cell lines compared to non-CIMP lines, mostly caused
by de novo methylation. The methylated status of CpG sites
was more stably maintained than the unmethylated state.
This could lead to the methylation of entire CpG islands in
experiments that allowed clonal expansion of cells. These
experiments concentrated on the methylation kinetics in
situations when the genome was already highly methylated.

In order to obtain a more detailed understanding of
the differences between CIMP and non-CIMP cells, we
aimed to investigate the methylation kinetics in cells
that were partially de-methylated. This was achieved
by measuring the de novo methylation rate following
5-aza-2’deoxycytidine (5-AZA) treatment in 2 CIMP and
2 non-CIMP cell lines, using a combination of experimental
and mathematical approaches. The analysis was performed
in the context of 2 loci (ALU and LINE-1), and the 5 genes
APC1, RASSF2-1, HPP1, SERP2, and MGMT. We made
the surprising finding that CIMP cells lines were character-
ized by relatively slow rates of de novo methylation, while
non-CIMP cell lines were characterized by relatively fast
rates of de novo methylation. Further, while CIMP cells
lines accumulated methylation slower, they started the re-
methylation process relatively early and accumulated
methylation steadily following 5-AZA-treatment. On the
other hand, non-CIMP cell lines typically showed a time
delay after 5-AZA treatment before displaying a burst of
relatively fast methylation kinetics. We hypothesize that
these kinetics can be explained by feedback-mediated
regulation of de movo methylation activity, which is
corrupted in CIMP cells. A mathematical model shows
that these assumptions can give rise to our experi-
mentally observed methylation kinetics.

Results

Confirmation of CIMP status

Based on observed patterns of hypermethylation, cell
lines SW48 and RKO have been designated as CIMP
cell lines in the literature [31]. The cell lines HT29
and HCT116 are thought to be non-CIMP cell lines
[31]. We aimed to confirm these classifications in the
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context of our experiments. Hence, the baseline
methylation level of the four cell lines was measured
with respect to the 7 different sites: ALU, Line-1,
APC1, RASSF2-1, HPP1, SFRP2, and MGMT. Results
of these measurements are consistent with the previ-
ously established CIMP classification. The baseline
methylation levels of HCT116 and HT29 are generally
lower than those for SW48 and RKO.

Observed patterns of de novo methylation

The cells were treated with 5-AZA for the purpose of
demethylation. After treatment, we examined the tem-
poral process of re-methylation with respect to the 7
sites. At several time-points post-treatment, we mea-
sured the percentage of methylation for each site for
each cell line by quantitative pyrosequencing assays. The
results of these measurements are presented in Figure 1.
There, each of the 7 plots (a-g) corresponds to a differ-
ent site, which is marked on the corresponding graph.
The four lines on each graph correspond to the four cell
lines, which are color-coded. The measured methylation
level (as percentage) is plotted against time post-
treatment. The baseline methylation levels for the cell
lines are presented by horizontal lines of the corre-
sponding color.

We can see that qualitatively, the majority of reme-
thylation curves start at a level lower than their base
methylation level, and then climb up with visibly different
slopes. Some of the curves reach saturation (which inter-
estingly may or may not coincide with the measured base-
line methylation level), while others continue to climb
during the whole duration of the experiment. Another no-
ticeable feature of some of the curves is the presence of a
time-delay. In fact, the majority of the experimental runs
can be assigned to one of two different groups, as shown
in Figure 1. In one group, the methylation level starts
climbing up immediately upon the cessation of 5-AZA
treatment. An example of such behavior is exhibited by
line SW48 (the green line in Figure 1(a)). In the other
group, there is a certain time-delay between the cessation
of 5-AZA treatment and the point where the methylation
process picks up. For example, the blue line (HCT116) in
Figure 1(a) climbs up between time-points approximately
10 and 25. For the first 10 days post 5-AZA treatment, the
process of remethylation is slow to gain momentum.

Quantifying the de novo methylation kinetics

In order to quantify these data and to extract information
about methylation rates, we performed fitting of these data
with the function f{t) =y, + y; tanh(mt — b). This function
is characterized by 4 parameters. Parameter m (days’l)
measures the methylation rate; the dimensionless param-
eter b characterizes the time-delay until the de novo
methylation process starts to gain momentum, as
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Figure 1 Methylation time-series for four cell lines, for 7 sites. The results of experimental measurements are presented by connected

points, and the fitted functions are given by dashed lines. The cell lines are color-coded, and the base methylation level for each cell line is
presented by a horizontal line of the appropriate color. The pannels (a-g) correspond to the 7 different sites.
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described above; parameters y, and y; are related to the
initial and target methylatin level, with y, — y; tanh() be-
ing the initial methylation level (after the 5-AZA treat-
ment), and y, + y; the target methylation level. The choice
of this functional form was dictated by the patterns seen
in the methylation time-series and described above. Func-
tion f{z) is one of many possible functions capable of ac-
counting for the two types of methylation patterns, with
and without delay. The exact mathematical form of this
function is unimportant, as long as the following re-
quirements are met: (a) the function has the ability to
capture a climb (gradual or step-like) from one level
to another level and (b) has parameters which can be
extracted to characterize the slope of the climb (the
de novo methylation rate) and the amount of time
delay. In the function f{z) chosen here, parameter m
measures the de novo methylation rate, and parameter
b characterizes the time-delay.

Figure 1 presents the results of fitting the function f{z)
to the data, which for each case is given by a dashed line
of the appropriate color. Out of the total of 4x7 =28
experimental runs, we were able to successfully fit 18:
these include all the cell-lines in the context of ALU,
LINE-1, HPP1, and SFRP2, as well as lines HT29 and
SW48 in the context of RASSF2-1. We will refer to
these experimental runs as “successful runs”. For gene
APC]1, the base methylation levels were too low to be in-
cluded in the anlaysis. For gene RASSF2 -1, cell lines
HCT116 and RKO failed to re-methylate upon 5-AZA
treatment (the measured methylation levels stayed more
or less constant for RKO, and they actually showed a de-
cline for HCT116). For gene MGMT, lines RKO and

HT29 did not have a significant base methylation level,
and lines SW48 and HCT116 did not exhibit a signifi-
cant climb which would allow us to assess the methyla-
tion rate with confidence (in the case of SW48, the 5-
AZA treatment did not lead to a significant decrease of
the methylation level compared to the base level, and in
the case of HCT116, the pattern of methylation was er-
ratic leading to the failure of the fitting procedure).
Therefore, we will proceed with the analysis of the data
from the 18 successful runs.

Fitting the function f{z) to the data yielded the numer-
ical values of the parameters m (remethyation rate) and
b (the dimensionless methylation onset). We will first
focus on the remethylation rate. The parameter m char-
acterizes the “steepness” of the slope of the methylation
time-series in the regions where de novo methylation
process takes place (and it does not capture other as-
pects of the methylation process). Figure 2(a) presents a
scatter plot of the measured re-methylation rates versus
the baseline methylation level for the 18 experients. We
performed a linear regression analysis of this scatter plot
and determined that the methylation rate negatively corre-
lates with the base methylation level, with the Pearson
rank correlation of —0.499 and the Spearman rank correl-
ation of —0.574 (for the sample size of n = 18). This correl-
ation is significant, with the p-value of 0.035 (or p =0.013
if using the Student’s t-distribution with the Spearman
rank correlation). This surprising result suggests that the
rate at which the methylation level climbs up after 5-AZA
treatment is the lowest for the cell lines with the highest
base-level of methylation. This can be clearly seen in
Figure 3(a), where we plot the mean average methylation
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Figure 2 Scatter plots of some methylation parameters extracted from the 18 successful experimental runs, and their correlations. (a)
A scatter plot of the methylation rate vs the base methylation level. (b) A scatter plot of the (dimensionless) methylation onset parameter, b, vs
the base methylation level. The linear model together with the p-value are marked on the plots.
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rate for the four cell lines against their mean base methy-
lation level. In the figure, we group the four cell-lines
investigated into two groups: lines HT29 and HCT116
comprise the non-CIMP group, while lines SW48 and
RKO are classified as CIMP. This grouping is consistent
with the characterization these cell lines received in the
literature [31], and also corresponds to the higher base
methylation levels for the CIMP cells. We can see that
lines HT29 and HCT116 (which exhibit lower base
methylation levels compared to their CIMP counter-
parts) are characterized by higher de novo methylation
rates. Thus, CIMP cell lines show slower rate of re-
methylation, while non-CIMP cell lines show faster
rates of re-methylation.

To examine this phenomenon more closely, we
performed further data analysis. While parameter m only
provides information on how steeply de nmovo methyla-
tion curves climb up, it does not reflect the presence or
the absence of a time-delay in the onset of the re-
methylation process. To quantify these differences in a
systematic way, we look at parameter b, which yields the

dimensionless onset for remethylation. It turns out that
there is a significant negative correlation between the
base methylation level, and the onset parameter, b (the
p-value is 0.038), see Figure 2(b) and 3(b). There is also
a very strong (with p = 2x10°) positive correlation be-
tween the re-methylation rate, m, and the onset para-
meter, b (not shown). This suggests that the de novo
methylation rate and the onset parameter (as specified
by the function f) vary together, and a better description
of the observed phenomena is provided by a function
f(t) =y, + v, tanh(m(t-b')) , where parameter b’=b/m
measures the delay time in days. The time-delay 5" does
not show a significant correlation with the base methyla-
tion levels (not shown). The function f (t) assumes expli-
citly that re-methylation time-series that climb faster, tend
to experience a longer delay between the 5-AZA treat-
ment cessation and the onset of de novo methylation.

To summarize this analysis, we can say that the CIMP
phenotypes, which are characterized by higher base
methylation levels, tend to show a slower de novo
methylation rate, but experience a steady climb in
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Figure 3 Scatter plots of the mean characteristics presented in Figure 2 for each cell line across the loci (a). The mean methylation rate
vs the mean base methylation level. (b) The mean (dimensionless) methylation onset parameter vs the mean base methylation level. Each point
corresponds to one cell-line, marked in the plots. Also, the CIMP status of each cell line is indicated.
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methylation levels which starts soon after the cessation
of 5-AZA treatment. In contrast, non-CIMP cell lines
with a lower base methylation level tend to exhibit a
certain delay in re-gaining their methylation status,
followed by a relatively rapid increase in methylation
levels. Roughly speaking, non-CIMP phenotypes have a
spurt a of relatively rapid methylation increase following
a relatively long delay. The methylator phenotypes start
increasing their methylation levels relatively quickly and
steadily, albeit slowly.

To gain further insights, we also performed a system-
atic correlation analyses of several other characteristics
(see Appendix), which did not reveal any further statisti-
cally significant correlations. We also tested the hypoth-
esis that de novo methylation rates are correlated with
cellular kinetic parameters of the dividing cell lines, such
as their division and death rates. No significant patterns
have been found.

A mathematical model to explain observations

A key finding from our quantitative analysis was that
CIMP cells tended to start the methylation process imme-
diately upon cessation of 5-AZA treatment, but did so
relatively slowly, while non-CIMP cells showed a relatively
fast burst of re-methylation but only after a certain time
delay following treatment cessation. The existence of a
time delay before a phase of accelerated re-methylation
could indicate the existence of a negative feedback loop in
the regulation of the de novo methylation process. The
basic idea is as follows. If methylation levels in the genome
are around a certain homeostatic setpoint, de novo methy-
lation ceases to occur due to negative feedback, and only
maintenance methylation takes place. On the other hand,
if the methylation levels are significantly reduced, e.g. fol-
lowing 5-AZA treatment, release of negative feedback
induces appropriate DNA methyltransferase (MTase) ac-
tivity. The process of activation typically is not instantan-
eous but requires the interactions among several factors,
leading to a delay [32-34]. MTase activation leads to a
burst of de novo methylation, which is shut down
again through negative feedback as methylation levels
in the genome recover. On the other hand, it can be
hypothesized that in CIMP cells this feedback regula-
tory mechanism is corrupted and the appropriate
MTases are constantly active at a relatively low level,
leading to slow but continuous de novo methylation,
as reported experimentally [29,30]. According to this
scenario, re-methylation of CIMP cells would com-
mence without a delay following 5-AZA treatment,
and would proceed with a relatively slow rate because
of the continuous activity of MTase. The exact MTase
responsible for CpG island de novo methylation in
cancer cells is debated. In the context of non-
cancerous cells, it is thought that DNMT1 contributes
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mainly to maintenance methylation, while de novo
methylation activity is ascribed to DNMT3a and
DNMT3b [35,36]. Work in human cancer cell lines,
however, demonstrated that DNMT1 can exhibit de
novo methylation activity for CpG islands [37], and
DNMT1 has been shown to be up-regulated in differ-
ent tumor types [38-40].

To investigate whether this hypothesis is consistent with
the observed experimental patterns, we construct a math-
ematical model of de novo methylation in the context of
negative feedback regulation of MTases that are respon-
sible for de novo methylation. The model takes into ac-
count the following variables. The methylation level of the
loci in question is denoted by x. The methylation level of
loci that drive the negative feedback is denoted by w.
These remain hypothetical loci for now. The molecular
processes that regulate de novo methylation are not well
understood [33,41], although feedback mechanisms have
been implicated in the regulation of DNMT1 [42]. It has
been suggested that the methylation status of regulatory
elements of DNMT1 determines the activity of this
MTase, which could result in negative feedback. This
element has been shown to be highly methylated in som-
atic tissues, and unmethylated in a mouse adrenal carcin-
oma cell line [42], consistent with the notions explored
here. For simplicity, we will refer to such regulatory ele-
ments as “feedback sensors”, without assuming a particu-
lar mechanism that underlies feedback. Our model
generally assumes a “sensor” that reduces and shuts down
MTase activity if methylation levels in the genome rise to-
wards some homeostatic level. The model can be adjusted
as specific biological information becomes available.
MTase activity that is required for de novo methylation is
denoted by y,. It is assumed that activation of MTase re-
quires the interactions of different signaling components,
which are denoted by y; where i=1...n-1. The model is
given by the following set of ordinary differential equa-
tions, which describe the time-evolution of these variables.

dx x
pri Ay, <1— k_1> —-aix,

d_w_ 1K arw
a0\ )T

dy,

ddt = ﬂprod_th

Vi .

gl_tl =@, 1<i<n
)

Dn _ 4y by .

dt V-1V,

The locus in question is methylated in the presence of
active MTase (y,) with a rate A. It is assumed that k; me-
thyl groups can be added. During 5-AZA treatment, de-
methylation occurs with a rate ;. Similarly, de novo
methylation of feedback sensors occurs with a rate y in
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the presence of MTase, y,, and 5-AZA treatment causes
de-methylation of these loci with a rate a,. The max-
imum methylation level of feedback sensors is given by
ko. Activation of MTase, y,, occurs via a signaling cas-
cade, y;. Regulation occurs in the first element of this
signaling cascade, y;, which is produced with a rate
Hproa- Details of this production term depend on the
nature of the cell line. For non-CIMP cells, we assume
the presence of negative feedback. Thus, if the methy-
lation levels of feedback sensors lie below a threshold,
¢, production occurs with a rate g(c-w). If the me-
thylation level of feedback sensors rises above this
threshold, the rate of production is set to zero. On
the other hand, for CIMP cells, it is assumed that pro-
duction of y; occurs at a constant rate . Once y; is
produced, it induces MTase activity through inter-
actions with elements of the signaling cascade, y;. Fi-
nally, MTase activity decays with a rate b.

We will concentrate on the parameter regime where
the MTase activity is relatively short-lived in the absence
of the activation signals in the model. That is, the pa-
rameter b is sufficiently large. This ensures that when
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the activation signal is switched off, de novo methylation
ceases without significant delay. Model properties will
be described first for non-CIMP cells and then for CIMP
cells under this assumption.

For non-CIMP cells, the methylation of feedback sen-
sors, w, always rises towards a level given by the para-
meter ¢, after which the negative feedback kicks in and
de novo methylation stops. Hence, the methylation of w
remains constant at this level. On the other hand, the
degree to which individual loci become methylated be-
fore de novo methylation is shut down by negative feed-
back depends on initial conditions, as explained below.
Figure 4a has been generated by starting the computer
simulation with a completely un-methylated cell and
allowing the genome to become methylated. In this case,
the individual methylation of locus x stabilizes around
75%. This stable state is shown in Figure 4a before the
start of 5-AZA treatment. Then, 5-AZA treatment is ini-
tiated in the simulation and maintained for 72 hours,
after which treatment stops. Following the simulated 5-
AZA treatment, both the site of interest, and the feed-
back sensors, become demethylated. However, the

-
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Figure 4 Computer simulation of the re-methylation kinetics in (a) non-CIMP and (b) CIMP cells, according to the mathematical model
described in the text. 5-AZA treatment is indicated by the arrow. The solid line represents the methylation level of an individual locus, x, while
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feedback sensors retain a higher level of methylation.
This is compatible with the notion that different sites in
the genome de-methylate at different rates in response to
5-AZA treatment. After cessation of 5-AZA treatment,
after a certain time delay, active MTase levels rise and de
novo methylation increases at a relatively fast rate, as seen
in the experimental data. Over time, the methylation level
stabilizes. In the simulation of Figure 44, it stabilizes at a
lower level compared to the base methylation level, as ob-
served in some of the experimental patterns described
here. This is a consequence of the assumption that the
methylation level of feedback sensors, w, was reduced to a
lesser degree than the methylation level of the locus under
consideration, x. Therefore, upon re-methylation, feedback
sensors reach their homeostatic set-point and shut down
MTase activity before methylation of the locus under con-
sideration has reached its pre-treatment base level. In gen-
eral, the degree to which given loci become re-methylated
following 5-AZA treatment depends on the exact state of
the cell after treatment is complete. It can become less
methylated, or it can achieve the same amount of methyla-
tion seen before treatment. Restoration of pre-treatment
methylation levels is likely either if the amount of methy-
lation of feedback sensors is reduced more during 5-
AZA treatment, or of the loci in question become de-
methylated to a lesser extend during treatment.

For CIMP cells, different dynamics are observed
(Figure 4b). Before 5-AZA treatment, the methylation
level of the locus x is not stable but rises at a slow
rate. This is the consequence of the assumption that
MTase activity is constantly on at relatively low levels
and that feedback regulation is corrupted. As before,
the simulation assumes 5-AZA treatment for 72 hours.
Re-methylation commences instantly and occurs at a
relatively slow rate, as observed in the experimental
data. Again, the reason is that MTase activity is con-
stantly on. Thus, after de-methylation, it does not
have to be activated and hence re-methylation starts
immediately. Similarly, because feedback regulation is
corrupted, low levels of methylation do not induce a
sharp rise in the methylation rate.

In summary, the mathematical model reproduces the
key phenomena found in the data: Following 5-AZA
treatment, non-CIMP cells re-methylate with a faster
rate following a certain time delay, while CIMP cells
start re-methylation immediately, although at a slower
rate. Moreover, in agreement with the data, the model
predicts that in non-CIMP cells, individual loci can re-
methylate to levels that are lower than those found be-
fore 5-AZA treatment.

Discussion
In this paper, the de novo methylation kinetics of different
loci were investigated in CIMP and non-CIMP colon
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cancer cell lines following 5-AZA induced de-methylation
of these cells. The analysis showed that while CIMP cells
start re-methylating immediately after cessation of 5-AZA
treatment, the rate of re-methylation is relatively slow. On
the other hand, non-CIMP cells tended to show a delay
before re-methylation commenced after 5-AZA treatment.
However, once the process started, re-methylation oc-
curred significantly faster than in the CIMP cells. Interest-
ingly, the methylation levels of the investigated loci did
not always return to pre-5-AZA levels, but converged to a
new, lower level in several cases.

The slower re-methylation kinetics observed in CIMP
cells comes as a surprise given the observed hyper-
methylation of CpG islands in these cells. It also appears
to be at odds with a recent study which investigated pat-
terns of de novo methylation in CIMP and non-CIMP
gastric cancer cell lines [29,30]. In this study, however,
cells were not de-methylated before measuring the kine-
tics. CIMP cells were characterized by a higher de novo
methylation rate than non-CIMP cells. This could lead
to the methylation of entire CPG islands during clonal
expansion.

To explain our observed kinetics and to reconcile
them with the observed increased de novo methylation
rates found in CIMP gastric cancer cell lines [29,30], we
invoked the hypothesis of feedback-regulated activity of
de novo methylation. If methylation levels are relatively
low, maximal MTase activity is attained in order to re-
methylate the cell; de novo methylation stops if the de-
gree of methylation of feedback sensors reaches a de-
fined level. In addition, we hypothesize that this negative
feedback is corrupted in CIMP cells. In this case, low
level of CIMP activity occurs constantly. When these as-
sumptions are formulated into a mathematical model,
the key findings reported here can be reproduced, in-
cluding the differences in re-methylation kinetics and
the observation that maximal methylation levels can be
lower post 5-AZA treatment than before treatment. Fur-
ther, this hypothesis predicts fundamentally different ob-
servations in cells that have been de-methylated and in
cells characterized by physiological levels of CpG island
methylation. In de-methylated cells, the release of nega-
tive feedback gives rise to the result that methylation
rates are significantly faster in non-CIMP compared to
CIMP cells. With physiological levels of methylation, de
novo methylation rates are faster in CIMP cells than in
non-CIMP cells, in which feedback has largely shut
down the process of de novo methylation.

The mechanisms that are responsible for regulating
the activity of de novo methylation are not well under-
stood. Data suggest a dynamic interplay between differ-
ent posttranscriptional modifications [33], and the
occurrence of negative feedback has been suggested in
the context of DNMT1 [42]. Since specifics are currently
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lacking, our model tried to capture this complexity by
the presence of a multi-component signaling cascade
that participates in the induction of de novo methylation
activity when methylation levels are reduced.

The proposed model is not the only possible explan-
ation of the observed behavior. Different combinations
of feedback loops, e.g. such as proposed in [43] could be
consistent with the behavior exhibited by the cell lines.
The purpose of the present model is to demonstrate that
feedback loops can be accountable for the observed
counter-intuitive behavior. Further investigation of the
mechanisms of methylation kinetics will inform the
exact topology of the feedbacks. Other approaches such
as stochastic Markov models (e.g. [44-46]) can be very
useful, especially given a very high degree of heterogen-
eity in the cell lines’ behavior. As more specific informa-
tion becomes available regarding regulatory processes,
the models can be updated and modified to provide a
less phenomenological description of these intra-cellular
dynamics.

Another factor that needs to be taken into consider-
ation is the possibility that the 5-AZA treatment signifi-
cantly altered the properties of the cells, and that this
could have contributed to the slower re-methylation
rates observed in CIMP cells. In fact, we found the trend
that lower re-methylation rates were observed when the
degree of 5-AZA-induced de-methylation was stronger.
The correlation, however, was not statistically significant.
The overall effect of de-methylation on the gene expres-
sion profile of cells is likely to be highly complex and
needs further investigation. There is an indication that
DNA methylation status alone cannot account for gene
expression patterns, but that a coordination of DNA
methylation and histone modifications can determine
transcriptional status [47].

Conclusions

In conclusion, the faster rate of re-methylation observed
in non-CIMP compared to CIMP cells in our study
could be a consequence of feedback-mediated regulation
of MTase activity. Thus, in non-CIMP cells, release of
feedback causes a burst of de novo methylation activity.
In CIMP cells, this burst does not occur. Instead, the re-
methylation kinetics are governed by the constant low
level activity of MTase. According to this hypothesis, the
situation is reversed once the genome has accumulated a
certain amount of methylation. In this case, de novo
methylation ceases to occur in non-CIMP cells, while it
persists at some level in CIMP cells. Testing this hypoth-
esis will involve the search for specific feedback regula-
tory mechanisms involved in the activation of de novo
methylation. A better understanding of the differences
between CIMP and non-CIMP cancer cells is relevant
both from a basic scientific point of view, and also from
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a treatment perspective. Our data and previously pub-
lished work [29,30] indicate that CIMP and non-CIMP
cells do not show a straightforward and easy to interpret
difference in methylation rates, i.e. CIMP cells are not
simply characterized by a faster rate of methylation,
analogous to the faster mutation rate seen in mutator
phenotypes. The relationship between CIMP status and
the rate of methylation is complex, seems to depend on
the exact methylation status of the cell, and is likely
driven by complex regulatory mechanisms. This in turn
has implications for understanding the definition of the
CIMP status. Understanding those mechanisms will be
important to assess the consequences of treatment con-
cepts which aim to reduce hypermethylated states in
cancer cells, thus possibly reversing some of the malig-
nant phenotypes displayed by those cells [48].

Methods

Cell culture

Four human colorectal cancer (CRC) cell lines including
HCT116 (microsatellite unstable or MSI), HT29 (micro-
satellite stable or MSS), RKO and SW48 (CpG Island
methylation phenotype or CIMP) were obtained from the
American Type Culture Collection (ATCC, Manassas,
VA). Cells were cultured in IMDM medium (Invitrogen,
Rockville MD) under standard conditions with 10% fetal
bovine serum with 5% CO, at 37°C and the negative status
for mycoplasma infection was repeatedly confirmed.

5-aza-2'deoxycytidine (5-AZA) treatment

All cell lines were treated with 5-AZA in order to
allow global CpG demethylation in four different can-
cer cell lines. Briefly, 5-AZA was dissolved in PBS
(pH 7.5) to 5 mM concentration and small aliquots
were kept frozen at -20°C. Twenty four hours after
seeding equal number of cells in 10 cm petri dishes, all
four cell lines were treated with 2.5 pM 5-AZA
(Sigma-Aldrich, MO, US) for 72 h. After the completion
of 72 hour treatment, each dish was replaced with fresh
culture medium without 5-AZA and the cells were cul-
tured and harvested at specified time points. The cells
were subsequently trypsinized, carefully counted and sub-
sequently subjected to DNA extraction for methylation
analysis.

DNA Extraction, Bisulfite Modification and methylation
analysis

DNA extraction was performed with the DNeasy Blood
& Tissue kit (Qiagen, Valencia, CA) according to manu-
facturer’s instructions. DNA was modified with sodium-
bisulfite using the EZ Methylation Gold Kit (Zymo
Research, Orange, CA) as previously described [49].
Thereafter, the methylation status of various tumor sup-
pressor genes including MGMT, APC, SFRP2, RASSF2
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and HPP1 was analyzed using quantitative bisulfite
pyrosequencing in a PCR reaction containing bisulfite
modified DNA, HotStarTaq polymerase, forward primer,
biotinylated reverse primers and water. In addition,
the methylation status of Long interspersed nuclear
element-1 (LINE-1) methylation was used as a surro-
gate marker for genome-wide methylation. Previous
studies have shown that LINE-1 methylation correlates
with global DNA methylation [50,51]. Following PCR
amplification, four microliters of PCR product were added
to 38 pl of binding buffer (Biotage, Uppsala, Sweden), 2 pl
streptavidin  sepharose high-performance beads (GE
Healthcare, Buckinghamshire, England) and 36 pl of sterile
water. Single-stranded biotinylated templates were isolated
using the PyroMark Vacuum Prep WorkStation (Biotage).
The products were dispensed into 96 well plates
containing 0.36 pl 10 pM sequencing primer and 11.64 pl
annealing buffer (Biotage) at 80°C for 3 min, and then
placed at room temperature for 10 min. Pyrosequencing
reactions were carried out in the Pyro-Mark MD (Qiagen,
Hilden, Germany) using PyroGold reagents and results
were analyzed using pyro Q-CpG Software (Biotage).

Systematic correlation analysis

To search for correlations in the observed remethylation
patterns, we split measurable parameters into two
groups. The first group comes from the fitting procedure
of the function f{¢), and the corresponding parameters
are related to the four values m (the rate of de novo
methylation), b (the delay), y, , and y; (connected to the
initial and final methylation level where the fitted func-
tion levels off). The second group contains those values
that can be read directly from our measurements, with-
out fitting the model. These are the base methylation
levels (denoted here by B); the methylation level to
which the cell lines drop upon the 5-AZA treatment
(denoted by A); the percentage of methylation reduction
as a result of 5-AZA treatment, (B-A)/B; the level of
methylation on the last day of the experiment (L) as well
as its relative value (L/B), etc. We performed linear
regression analyses for all pairs of these parameters
within and between the two groups. Figure 5 presents
the results of this analysis. There, we show a table of p-
values revealed by the correlation analysis for all pairs of
parameters. Lighter squares correspond to smaller values
of p. For example, all the diagonal elements have p = 0.
The p-values that correspond to statistically significant
correlations are marked on the upper right half of the
diagram (the lower left half is a mirror image of the
upper right half). Whether the correlation is positive or
negative is marked by a plus or a minus sign above the
p-value. This systematic analysis revealed the three cor-
relations described above, which are denoted by circles
in Figure 5. Some other correlations can be observed,
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Figure 5 Results of the correlation analysis for pairs of
parameters. The lighter color corresponds to lower p-value of the
corresponding correlation. The p-values for the strongest correlations
are indicated, together with a (+) for positive correlations or () for
negative correlations.

which are expected. These include: (1) the positive correl-
ation between m and L/B, which is a combination of two
effects: (i) the negative correlation between m and B, and
(ii) the fact that functions with a faster growth rate will re-
cover more of their base methylation level by the last day
of the experiment; (2) a positive correlation between the
predicted (y; +y,) and the observed (L) final level of the
re-methylation process; (3 and 4) the positive correlation
between the base level (B) and the final level of methyla-
tion, both predicted (y; +7y0) and observed (L); (5) the
negative correlation between A and (B-A)/B; (6) the posi-
tive correlation between L and L/B (the last two correla-
tions simply follow from the definitions of the relative
values, (B-A)/B and L/B). No other statistically significant
correlations are found.

Finally, we tested the hypothesis that de novo methyla-
tion rates are correlated with cellular kinetic parameters of
the dividing cell lines. This was accomplished in the fol-
lowing way. For the four cell lines under investigation, we
performed cell counts of both live and dead cells at several
time-points. The experiment was then repeated with cells
treated with 5-AZA. We subsequently extracted the infor-
mation on the rates of cell divisions and deaths from the
data. To do this, we first fitted the function x(f) = Ae® to
the time-series of the live cell counts, to determine the net
growth rate, g, by means of the standard least square pro-
cedure. The net growth rate is comprised of the division
rate, b, and the death rate, d. To tease out these two rates,
we used the dead cell counts. Namely, we assumed that
between times ¢; ; and ¢, the live (x) and dead (y) cells sat-
isfy the following equations,

x(ti_l) = Aegt“-l,
y(tia) =0.

x = gx,
y = dx,



Wodarz et al. Biology Direct 2013, 8:14
http://www.biology-direct.com/content/8/1/14

The initial condition for the number of dead cells cor-
responds to the fact that the dead cells are removed after
counting at each time-step. The parameters A and g are
known from the previous fitting procedure. The solution
for y is then given by y(¢;) = %A (e8'i—esti1), and the un-
known value of d can be found from the time-series of
the dead cell counts by the usual least squared proced-
ure. Finally, the division rate is given by b = g + d. Results
of these calculations are presented in Figure 6, which
shows the division and death rate of the four cell lines as
a function of their base methylation level. Results are
presented both for control cells and for 5-AZA-treated
cells. No discernable pattern can be seen.

Reviewers’ reports

Reviewer 1: Georg Luebeck and Bill Hazelton

This manuscript presents interesting data and a model
for the time course of methylation of five genes and two
retrotransposons in each of four colorectal tumor cell
lines following demethylation by 5-aza-2’deoxycytidine
(5-AZA). Two of the four tumor cell lines were classified
as CpG island methylator phenotypes (CIMP)s, and the
other two cell lines as non-CIMP, which typically have
lower levels of CpG island methylation. The data come
from measuring the initial level (percentage) of methyla-
tion in 28 experiments (7 genes X 4 cell lines), then
demethylation using 5-AZA, following by repeated mea-
surements of the time course of methylation over 40—
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50 days. Significantly, but contrary to initial expecta-
tions, methylation generally increased sooner but at a
slower rate among CIMP cells compared with non-
CIMP cells.

Somatic maintenance of DNA methylation in dividing
cells has been shown to be dependent on a system of
Dnmt methyltransferases, which are processive, inter-
active, and are linked to DNA replication. Stochastic
Markov models of this system have been developed previ-
ously and can be found in the literature (e.g., see Otto and
Walbot, 1990; Genereux et al., 2005). Along these lines,
Sontag et al. (2006) developed an interactive Markov state
model which embraces the full set of states (un-methy-
lated, hemi-methylated upper (lower) strand, fully methy-
lated) to study the interplay between maintenance
(Dnmtl) and de novo methyltransferases (Dnmt3a/b) in
maintaining stably both un-methylated and methylated
CpG-rich regions. There are two intriguing findings from
these models: (1) the fidelity of maintenance methylation
is poor (~95%) and without the presence of a significant
contribution of random de novo methylation leads to de-
methylation. (2) DNA methylation patterns appear to be
bi-modal, ie., CpG islands in individual genomes are ei-
ther grossly unmethylated or more or less fully methylated
at the genome level. An exploration of the effect of 5-
AZA on these dynamics (post-replicative CpG methy-
lation via Dnmt’s and natural de-methylation during
DNA replication) would be very interesting but may
require advanced sequencing technology to resolve
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regions-specific methylation states in individual cells,
providing information that cannot be obtained from
studying methylation across cells in the form of aver-
ages. Because 5-AZA acts via suppression of Dnmtl
(likely through enhanced degradation), the first gener-
ation daughters that end up hemi-methylated after 5-
AZA treatment are likely to remain in the cell pool. It
is not clear how selection figures into this. For ex-
ample, does recovery after treatment select the
hemimethylated daughter cells, which arguably seem
more intact than unmethylated progeny?

Authors’ response: Thank you for this comment, we
have discussed these references in the text of the revised
manuscript.

In the original version of the paper, methylation levels
were modeled using a phenomenological approach. Spe-
cifically, a hyperbolic tangent function, f(t) = y0 + y1 tanh
(mt-b), was used to describe the methylation level fol-
lowing 5-AZA treatment at time t. m is the methylation
rate, yO + y1 is the target (final) methylation rate, y0 - y1
is described as the initial methylation level (after 5-AZA
treatment), and b is described as the time delay (in days,
as stated at the bottom of p 9) until the de novo methy-
lation process starts to gain momentum. This descrip-
tion and/or function requires some clarification which
the authors provide in their revision. Briefly, setting t =0
in the original equation, the initial methylation level at
the time of 5-AZA treatment is f(0) =y0 + yl tanh(-b),
which is not equal to the stated initial level, yO — y1 , un-
less the ‘time delay’ b approaches infinity.

Authors’ response: Thank you, we corrected this in the
text.

Second, the product mt in the argument of tanh(mt-b)
is dimensionless (as required) since it is the product of a
rate with time, and likewise quantity b must also be di-
mensionless. However, b is repeatedly called the time
delay, and on p 9 is stated to be “the time until methyla-
tion onset (in days)”. This problem with units could be
corrected by writing the function as f(t) = yO + y1 tanh(m
(t-b’)), where now b’ does have dimensions of time, the
argument of tanh is properly dimensionless, and the ac-
tual time delay is b’ = b/m showing that b in the formula
as written is a scaled time. This may appear to be a triv-
ial point, but not recognizing b as a scaled time appears
to have led to two problems, the first being that the plot
of b (on the y-axis of Figure 2b, labeled “Methylation
onset”) ranges between about 1-6, and does not match
the time delays plotted for the actual data in Figure 1,
where the time delay (time to maximum slope of the
hyperbolic tangent) ranges from about 1-30 days. These
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differences are reconciled through scaling by dividing b
by the factor m, which is typically in the range of 0.01 —
0.40. The second place this causes problems is that it
introduces a strong correlation between methylation
rate m and “onset time” b. This very strong correlation
is noted at the top of p 10, without explanation. Use
of the actual delay time b’ would appear to markedly
decrease this correlation, although it may not remove
it completely.

Authors’ response: This is a very important observa-
tion, which was incorporated in the new version of the
manuscript. The parameter b’ (measured in days) turned
out to be un-correlated with the base methylation rate.
Moreover, the very strong (p=10°) correlation between
the dimensionless onset parameter b and the methylation
rate m suggests that they vary together, and the process is
best described by the function the referees suggested. In
the new version of the paper, we actually start with the
old formulation of the fitting function, and arrive at the
corrected formulation following the correlation analysis.
The confusion regarding the dimensionality of the par-
ameter b has been cleared.

There are several interesting features evident in these
data. Several such features, as noted in the manuscript,
include non-CIMP cells undergoing a relatively fast rate
of methylation following a time delay, while CIMP cells
methylate slower with smaller or no delay; and that the
rate at which methylation climbs up after 5-AZA treat-
ment is lowest for cell lines with the highest base-level
of methylation. However, although these observations
hold on average and are significant statistically, there is
still a remarkable degree of heterogeneity in the methy-
lation patterns of the different genes in the different cell
lines, with CIMP cells frequently showing hyperbolic
trajectories, unlike the model predictions shown in
Figure 4b. Another mark of heterogeneity in these data
is evidenced by 10 of the 28 experiments not being
modeled because they acted contrary to expectations,
such as by following a decreasing pattern of methylation
over time after 5-AZA treatment. The best example of
this is a decrease in methylation of RASSF2-1 in the
hct116 cell line, where it follows a smooth hyperbolic
trajectory, but in the ‘wrong direction’. The curve for
APC1 in the same cell line also goes in the wrong direc-
tion (although these data are very unstable). It almost
suggests that a stochastic model might be useful that
could allow a new target level for methylation after 5-
AZA treatment, with the new target level for methyla-
tion not necessarily the same as the initial methylation
level. A lack of close correspondence between initial
and final methylation is seen in many of the other
experiments.
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Authors’ response: We agree that a stochastic model is
a useful tool given the degree of heterogeneity exhibited
by the cell lines. Once more data becomes available, a
stochastic description can be formulated and explored.

The model used in this manuscript is called a negative
feedback model (which leads to a final asymptote for
methylation level) but a crucial part of the model (for
non-CIMP cells) is the cascade of signaling molecules
denoted by vyi that through the kinetics of this cascade
causes an initial delay in the increase of methylation. Al-
though this model is plausible, there appears to be no
data supporting these signaling components. Other
models may be imagined that could produce a hyper-
bolic trajectory, such as a model with combined positive
and negative feedback, e.g. see Pfeuty and Kaneko
(2009). Still, the proposed model provides a reasonable
hypothesis that can be tested by experiments that target
the mechanisms which control DNA methylation levels
in CIMP vs non-CIMP cells.

Authors’ response: We agree with the referees that
the proposed model is not the only possible explanation
of the observed behavior. A separate study could look
at the following general question: what combinations of
feedback loops are comsistent with the behavior
exhibited by the cell lines. In the new text of the
manuscript we included a discussion of these points,
and added references.

References: Otto SP, Walbot V., 1990. DNA methyla-
tion in eukaryotes: Kinetics of demethylation and de
novo methylation during the life cycle. Genetics. 124 (2),
429-437.

Genereux DP, Miner BE, Bergstrom CT, Laird CD.,
2005. A population-epigenetic model to infer site-
specific methylation rates from double-stranded DNA
methylation patterns. Proc Natl Acad Sci USA. 102 (16),
5802-5807.

Sontag, L.B., Lorincz, M.C. & Georg Luebeck, E., 2006.
Dynamics, stability and inheritance of somatic DNA
methylation imprints. Journal of Theoretical Biology,
242(4), pp.890—899.

Pfeuty B, Kaneko K. The combination of positive and
negative feedback loops confers exquisite flexibility to
biochemical switches. Phys Biol. 2009 Nov 12;6
(4):046013

Reviewer 2: Tomasz Lipniacki

The Authors investigate experimentally and theoretically
dynamic CpG islands methylation in CIMP and non-
CIMP colon cancer cells. CIMP (CpG island methylator
phenotype) cells are characterized by higher level of
CpG regions metylation than non-CIPM cells. The
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authors choose to study two CIMP lines (SW48 and
RKO) and two non-CIMP lines (HT29 and HCT116) in
which they focus on remethylation (following 5-AZA
demethylation treatment) kinetics in 7 different sites.
This gives 4 x 7 = 28 sites overall, which number is fur-
ther reduced to 18 sites in which the remetylation kinet-
ics follows assumed time profile.

The key observation is that (paradoxically) non-CIMP
cells have faster rate of methylation recovery, although
the remetylation process is delayed. In contrast in CIMP
cells remethylation starts immediately but proceeds
gradually at slower rate than for non-CIMP cells. The
observation is in my opinion important.

Specific comments

1. My main objection is that the conclusions are based
on very small data-set. For example from visual analysis
of Figure 2 one can expect direction coefficients would
be much different after removing single point corre-
sponding to smallest base-level of methylation. Similarly
in Figure 3 the non-CIMP and CIMP cells are grouped
in a rather arbitrary way; again visually the htc116 could
be easily assigned to CIMP group. I think the experi-
mental part would be much stronger if the authors in-
crease number of analyzed cells.

Authors’ response: We agree with the referees that
having more experimental data would make the conclu-
sions stronger. We however claim that the trends reported
here are statistically significant (we checked both Pearson
rank correlation and the Spearman rank correlation, as
reported in the text). Visual inspection in this particular
case proves counterintuitive, because even after removing
the point with smallest base-level of methylation, the re-
sults remains statistically significant. Further, the group-
ing of cell lines into CIMP and non-CIMP classes was
not decided on the basis of the data presented here, but
on the basis of previous research reported in the litera-
ture . The cell lines sw48 and rko are characterized as
CIMP in the literature, while hct116 and ht29 are widely
regarded as non-CIMP; a larger dataset would not alter
this grouping. This is an important point, which has now
been clarified in the text.

2. It is very fair that Authors present and mention the
lack of significant correlations between other character-
istics of cells with respect to cell type (Figure 6, death
rate, division rate etc.). However, this observation may
suggest that “clusterization” shown in Figure 3 is not
very meaningful.

Authors’ response: Please see our previous remark
with regards to (i) cell lines grouping and (ii) statistical
significance of the correlation between the methylation
rate and the base methylation level.



Wodarz et al. Biology Direct 2013, 8:14
http://www.biology-direct.com/content/8/1/14

3. In order to interpret experimental data Authors
propose mathematical model. The main assumption is
that remetylation in non-Cimp cells is subject to
negative feedback (suppressing methylation) and time
delay introduced by a sequence of events, finally re-
leasing the feedback. In contrast, it is proposed that
remetylation in CIMP cells starts without delay and
proceeds at steady slow rate due to continuous activ-
ity of DNA methyltransferase. The above assumption al-
lows to build a simple model “fitting” qualitatively the
observed remethylation kinetics. In my opinion, however,
the model structure is not supported (or contradicted)
by presented data, and thus it is hard to make firm
conclusions regarding the biological mechanisms of
remethylation in CIMP and non-CIMP cells. For example
one could also expect (purely by dynamical analysis) that
the delay in remethylation is associated with the positive
(not negative) feedback. Such systems frequently exhibit
postponed activation.

Authors’ response: We agree with the referees that the
proposed model is not the only possible explanation of
the observed behavior. A separate study could look at the
Sfollowing general question: what combinations of feed-
back loops are consistent with the behavior exhibited by
the cell lines. The purpose of the present model is to dem-
onstrate that feedback loops can be accountable for the
observed counter-intuitive behavior. Further investigation
of the mechanisms of methylation kinetics will inform the
exact topology of the feedbacks. In the new text of the
manuscript we included a discussion of these points, and
added references to alternative models.

Reviewer’s response: 1 am satisfied by the modifica-
tions and explanations provided by authors.

Reviewer 3: Anna Marciniak-Czochra
This reviewer provided no comments for publication.
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