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Abstract

Background: In this work a mathematical model describing the growth of a solid tumour in the presence of an
immune system response is presented. Specifically, attention is focused on the interactions between cytotoxic
T-lymphocytes (CTLs) and tumour cells in a small, avascular multicellular tumour. At this stage of the disease the CTLs
and the tumour cells are considered to be in a state of dynamic equilibrium or cancer dormancy. The precise
biochemical and cellular mechanisms by which CTLs can control a cancer and keep it in a dormant state are still not
completely understood from a biological and immunological point of view. The mathematical model focuses on the
spatio-temporal dynamics of tumour cells, immune cells, chemokines and “chemorepellents” in an immunogenic
tumour. The CTLs and tumour cells are assumed to migrate and interact with each other in such a way that
lymphocyte-tumour cell complexes are formed. These complexes result in either the death of the tumour cells (the
normal situation) or the inactivation of the lymphocytes and consequently the survival of the tumour cells. In the
latter case, we assume that each tumour cell that survives its “brief encounter” with the CTLs undergoes certain
beneficial phenotypic changes.

Results: We explore the dynamics of the model under these assumptions and show that the process of immuno-
evasion can arise as a consequence of these encounters. We show that the proposed mechanism not only shape the
dynamics of the total number of tumor cells and of CTLs, but also the dynamics of their spatial distribution. We also
briefly discuss the evolutionary features of our model, by framing them in the recent quasi-Lamarckian theories.

Conclusions: Our findings might have some interesting implication of interest for clinical practice. Indeed,
immuno-editing process can be seen as an “involuntary” antagonistic process acting against immunotherapies, which
aim at maintaining a tumor in a dormant state, or at suppressing it.

Reviewers: This article was reviewed by G. Bocharov (nominated by V. Kuznetsov, member of the Editorial Board of
Biology Direct), M. Kimmel and A. Marciniak-Czochra.

Keywords: Tumour growth, Immune response, Cytotoxic T-lymphocytes, Immuno-evasion, Mathematical models,
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Background
Cancer research, both experimental and theoretical, in
last 12 years has been deeply influenced by the paper
“The Hallmarks of Cancer” by [1]. In this paper six key
aspects (“hallmarks”) of cancer development and growth
were identified and examined. Their interplay with other
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cellular populations was mainly seen as cooperative, and
thus positive for the tumour. Recently, the same authors
have published an interesting follow-up paper, “Hallmarks
of Cancer: The Next Generation” [2], where their descrip-
tion of cancer development and growth was modified and
“up-dated”. In particular, among the various new topics
discussed, two important new aspects were added: the
role of epigenetic phenomena and the possibility of com-
petitive interplay with the innate and adaptive immune
systems. In particular, evasion from immune destruction
is explicitly listed as a new “hallmark”.
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Tumour cells are characterized by a large number of
genetic and epigenetic events leading to the appearance
of specific antigens (e.g. mutated proteins, under/over-
expressed normal proteins and many others) triggering
reactions by the both the innate and the adaptive immune
system [3-7]. These observations have provided a the-
oretical basis to the empirical hypothesis of immune
surveillance, i.e. that the immune system may act to elim-
inate tumours [8], only recently experimentally and epi-
demiologically confirmed [9]. Of course, the competitive
interaction between tumour cells and the immune system
involves a considerable number of events and molecules,
and as such is extremely complex.
Moreover, to describe fully these immuno-oncological

dynamics, one has to take into account a range of spatial
phenomena, which are of outmost relevance in deter-
mining the dynamics of both immunogenic and non-
immunogenic tumours [10-12]. In particular, the interplay
between tumour cells and the immune system is strongly
influenced by the spatial mobility of both tumour cells and
cells of the immune system i.e. effector cells [13]. Apart
from the random motion of both types of cell, a promi-
nent role is played by chemoattraction of effector cells
towards the tumour cells. Indeed, chemotactic motion of
immune system cells is a hallmark of the defence of the
human body against “non-self agents”, including tumours,
since cells belonging to both the innate immune system
(e.g. Natural Killers, Macrophages, Dendritic Cells, etc..
[3]) and adaptive immune system (e.g. Cytotoxic T Lym-
phocites, etc.. [3]) are able to reach their targets thanks
to the gradients of various kinds of chemicals [3,14],
e.g. inflammation-related substances produced by tumour
cells. Thus, chemotaxis is of paramount importance in the
interplay between tumours and the immune system, since
it influences the control of tumour growth and also the
immune surveillance.
However, besides temporal and spatial non-linearities,

another important point to stress is that the structure of
the above-mentioned interactions is also characterized by
a series of evolutionary phenomena. As is self-evident,
the immune system is not able to eliminate all neo-
plasms. In other cases, a dynamic equilibrium may also
be established, such that the tumour may survive in a
so-called “dormant state” [15-18], which is undetectable
(i.e. the tumour persists at a very low, undetectable level
of cells but is not completely eliminated by the immune
system). Until recently this was largely inferred from
clinical data, but [15] have been able to show experi-
mentally, through an ad hoc mouse model, that adaptive
immunity can maintain an occult cancer in an equi-
librium state. It is quite intuitive that this equilibrium
can be disrupted by sudden events affecting the immune
system. If disease-related impairments of the innate
and adaptive immune systems, or immuno-suppressive

treatments preceding organ transplantations occur, then
tumour regrowth occurs [9,19]. This has been shown
both by mouse models and through epidemiological
studies [9,19].
However, there is a major class of causes of disrup-

tion of the equilibrium that is not related to immuno-
suppression. Over a long period of time [9], a neoplasm
may develop multiple strategies to circumvent the action
of the immune system [5,9], which may allow it to recom-
mence growing [9,18] into clinically apparent tumours
[15], which theoretically can reach their maximum car-
rying capacity [18]. From an ecological point of view, we
could say that the tumour has adapted to survive in a
hostile environment, in which the anti-tumour immune
response is activated [9,18]. For example, the tumour may
develop mechanisms to grow and spread by reducing its
immunogenicity [5,9]. In other words, the immunogenic
phenotype of the tumour is influenced by the interac-
tion with the immune system of the host. For this rea-
son, the theory of the interactions between a tumour
and the immune system has been called immuno-editing
theory [9].
An impressive body of research is accumulating on

immuno-evasive strategies, and a recent monograph [20]
has been devoted to some aspects of this fascinating
subject and to its close relationship with the effective-
ness of immunotherapies. As far as the mathematical
modelling of tumour and immune system interactions is
concerned, there are many papers in the current litera-
ture which use deterministic models [13,17,18,21-30] or
stochastic models [31-35], as well as models introduced
by Bellomo based on the kinetic theories of nonlinear
statistical mechanics [36,37]. The general approach of
Bellomo’s theory is based on the concept of changes of
activities of both the tumour cells and the effector cells
of the immune system after encounters between them.
As far as spatial aspects are concerned, [38,39] devel-
oped a detailed spatio-temporal model focused on the
role of macrophages. They showed that the presence
of chemoattraction of macrophages towards the tumour
cells implies both the onset of traveling waves and a
heterogeneous spatial distribution of the tumour cells
(see also [40]). Matzavinos, Chaplain and Kuznetsov pro-
posed a spatiotemporal model of the interactions between
tumour cells and cytotoxic T-lymphocytes (CTLs) [13,16]
by including the spatial motility of both tumour cells
and CTLs, as well as chemotactic motion of the CTLs.
They focused mainly on the role of the immune system
in determining dormant states of the tumour, by show-
ing, through a series of simulations, that a dormant state
is reached, but the tumour cells are spatially distributed
in an irregular pattern, which also temporally oscillates
in a non-periodic fashion (see also [40]). In [18,28], the
immuno-editing phenomenon was empirically modelled
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by allowing the presence of slowly time-varying generic
parameters in deterministic models (with time-scales sig-
nificantly longer than those typical of the tumour-immune
system interaction). Recently, in the framework of the
above-mentioned kinetic approach, a generic model has
been proposed for the learning ability of effector cells and
for the hiding of tumour cells [41]. In this paper, based
on the concept introduced by [9] that the immune system
has the ability of “sculpting the phenotype” [9] of tumour
cells (i.e. promoting the change towards less imuno-
genic and more resistant phenotypes), we propose a cell-
centered semi-mechanistic approach aimed at describing
a possible immunologically realistic kinetic mechanism
through which immuno-evasion begins. Since there is
strong experimental evidence that type, density and loca-
tion of CTLs are predictive of the clinical outcome of some
tumours, such as colorectal tumours [42], and since we
are interested in the long-time dynamics, here we shall
deal with the interplay of a neoplasm with CTLs. In our
model, we suppose that the tumour cells that survive an
attack by CTLs have a probability of acquiring (through
mutations or even by epigenetic changes) a phenotype
that is more resistant to future attacks by CTLs. In turn,
at each new encounter with a CTL, this resistance can be
increased further, and after a finite number of encounters
a complete or maximal resistance to specific immunity is
acquired. Moreover, specific spatial effects may be linked
to the immuno-evasion of neoplasms. Indeed, recently
[43] showed experimentally that tumour cells can pro-
duce chemical CXCL12 that, for large concentrations, act
as chemorepellent for CTLs, whereas for low concentra-
tion it acts as a normal chemoattractor. We integrate -
with some simplifications - these experimental findings in
our model by permitting in the range of features defin-
ing the increasingly resistant tumour cell phenotypes an
increasing ability to produce such chemorepulsive sub-
stances, whereas in a future model we shall consider the
above described “nonmonotone” behavior of the taxis.
These two bio-theoretical hypotheses, although new, are
in line with the general schema of tumour cell escape
from the immune response. Indeed, as stressed by [19],
tumour cells may escape from immune control through
two general mechanisms: (a) mechanisms that involve
the secretion of soluble factors; (b) mechanisms that are
dependent on the contact between the tumour cells and
the effectors and that are aimed at reducing antigen recog-
nition/adhesion and apoptotic resistance. Given the cur-
rent experimental knowledge the abovementioned factors
are primarily aimed - apart from, in many cases, their
mitogenic action - at inducing the emergence of immuno-
suppressive networks [44]. In our present model, the fac-
tors, in line with the animal model by [43], are chemicals
that repel CTLs. Finally, in the concluding remarks, we
shall also discuss, from and evolutionary point of view,

the differences of our model with the current evolutionary
view of the immuno-editing.

Methods
The Mathematical Model
Following the kinetic scheme employed by [13], in
absence of immuno-editing mechanisms the interplay
between tumour cells and tumour-infiltrating cytotoxic-
T-lymphocytes can be modelled as shown in Figure 1 (see:
[13]), where T denotes a tumour cell, E denotes an effec-
tor cell (CTL), C denotes the complex formed, T∗ denotes
a dead tumour cell and E∗ denotes a dead effector cell. The
following assumptions are made:

• the complexes C consist of a tumour cell and a CTL
forming at a rate k+. The parameter k+ consists of
the encounter rate between a tumour cell and a CTL,
the probability that the CTL recognizes the tumour
cell as a “non-self” entity, and also the probability that
the tumour cell forms a complex with the CTLs

• the break-up of complexes can lead to a situation
where both the tumour cell and the CTLs are alive
with a rate k−

• the break-up of complexes can lead to a situation
where either the immune cell or the tumour cell
survives the encounter with a rate k

• the probability that a tumour cell is killed is p, and
correspondingly the probability that a CTL is killed
(i.e. the tumour cells survives) is (1 − p)

Using the Law ofMass Action, this leads to the following
system of differential equations describing these specific
kinetic interactions:

∂tC = k+ET − (k− + k)C
∂tT = −k+ET + k−C + k(1 − p)C (1)
∂tE = −k+ET + k−C + kpC

The key idea proposed in this paper which develops the
work of [13], is that a proportion of the tumour cells
that survive an encounter with a CTL are more resistant

Figure 1 Basic local lymphocyte-cancer cell interactions.
Schematic diagram of the basic local lymphocyte-cancer cell
interactions.
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to any future attacks by CTLs. Consequently, the phe-
notypic properties of these new “enhanced” tumour cells
will be different from those of the “naive” tumour cells.
Specifically, we make the additional assumptions:

• their probability of being killed (previously the
parameter p) is smaller

• their probability of being recognized and also of
forming a complex with a CTL (embedded in the
parameter k+) is smaller

Moreover, we shall also assume that the proliferation
rate of CTLs stimulated by the presence of the complexes
is also smaller. We denote the naive tumour cells by T0(t)
and the non-naive tumour cells by Ti, where i stands
for the number of previous encounters with the CTLs.
We assume that the fitness of tumour cells increases up
to a maximum number of encounters N, implying that
we consider in total 1 + N “classes” of tumour cells,
T0,T1, . . . ,TN .
The new kinetic relationships of our model are illus-

trated in Figure 2 and are characterized by the following
new groups of parameters:

• the rate of formation of complexes [ETi]: k+
i . We

assume that k+
i is constant or decreasing with index i,

with k+
N ≥ 0;

• the probability that a tumour cell of the i -th class is
killed: pi. We assume that pi is decreasing with index
i, with pN ≥ 0;

• the probability of transition Ti → Ti+1 to the state i :
θi. We assume that θi is increasing for 0 ≤ i ≤ N − 1.
Since we have assumed N classes of tumour cells,
θN = 0.

As far as the temporal dynamics of the tumour cells,
CTLs and complexes is concerned, once again using the
Law of Mass Action, the kinetic scheme of Figure 2 can be

Figure 2 Extended local lymphocyte-cancer cell interactions.
Schematic diagram of the extended local lymphocyte-cancer cell
interactions.

translated into the following system of ordinary differen-
tial equations:

∂T0
∂t

= −k+
0 ET0 + k−C0 + k(1 − θ0)(1 − p0)C0

∂Ti
∂t

= −k+
i ETi + kθi−1(1 − pi−1)Ci−1

+ (k− + k(1 − θi)(1 − pi))Ci

∂Cl
∂t

= k+
l ETl − (k− + k)Cl

∂E
∂t

= −E

⎛
⎝ N∑

j=0
k+
j Tj

⎞
⎠ +

⎛
⎝ N∑

j=0
k−Cj

⎞
⎠ +

⎛
⎝ N∑

j=0
kpjCj

⎞
⎠
(2)

where i = 1, . . . ,N , and l = 0, . . . ,N .
However, not only the temporal but also the spatio-

temporal properties of the “fitter” tumour cells are likely
to be different from those of the baseline tumour cells.
Namely:

• the production rates of chemoattractants stimulated
by a complex CTL+’non naive tumour cell’ is
assumed to be smaller than that of the naive cells

• since recently Vianello et al. [43] showed in an animal
model that tumours produce chemicals that repels
the CTLs, here we assume that those
chemorepellents are produced by the non-naive cells.
For the sake of the precision, Vianello’s findings
showed chemoattraction for low concentrations of
chemical CXCL12 emitted by tumour cells. For the
sake of simplicity here we shall only consider
chemorepulsion.

In the following, we provide the full equations for all
variables, including the spatial components. As men-
tioned in the previous section, we have assumed themodel
of [13] as our baseline model.

Spatiotemporal Dynamics of the Tumour Cells
Following [13], we assume that the tumour growth may
be described by a logistic law, and that the tumour
cells migrate randomly. Thus, it follows that the spatio-
temporal dynamics of the naive tumour cells T0 is as
follows:

∂T0
∂t

=
random motion︷ ︸︸ ︷
DT0∇2T0 +

logistic growth︷ ︸︸ ︷
r1T0

⎛
⎝1 − β1

N∑
j=0

Tj

⎞
⎠

−
local kinetics︷ ︸︸ ︷

k+
0 ET0 + (k− + k(1 − θ0)(1 − p0))C0
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and the dynamics of the non-naive cells Ti is given by:

∂Ti
∂t

=
random motion︷ ︸︸ ︷
DTi∇2Ti +

logistic growth︷ ︸︸ ︷
r1Ti

⎛
⎝1 − β1

N∑
j=0

Tj

⎞
⎠

−
local kinetics︷ ︸︸ ︷

k+
i ETi + (k− + k(1 − θi)(1 − pi))Ci + kθi−1(1 − pi−1)Ci−1

where i = 1, . . . ,N , and where r1 is the baseline exponen-
tial growth rate of the tumour (i.e. its theoretical growth
rate when it is ‘small’) and β1 is the inverse of its carrying
capacity (in absence of immune reactions).

Spatiotemporal Dynamics of the CTLs
Considering the CTLs, as in [13], both random and
chemotactic motion of these cells is included. However,
as previously discussed, an additional type of motility is
included due to the postulated onset of “negative taxis”
due to the production of a chemorepellent ρ by the non-
naive tumour cells. This results in the following equation:

∂E
∂t

=
random motility︷ ︸︸ ︷

DE∇2E −
chemotaxis︷ ︸︸ ︷

χ(α)∇ .(E∇α)

+
chemorepulsion︷ ︸︸ ︷
A(ρ)∇ .(E∇ρ) +

supply︷ ︸︸ ︷
sh(x) +

proliferation︷ ︸︸ ︷
f

N∑
j=0

qjCj

g +
N∑
j=0

Tj

−
decay︷︸︸︷
d1E−

local kinetics︷ ︸︸ ︷
E

⎛
⎝ N∑

j=0
k+
j Tj

⎞
⎠+

⎛
⎝ N∑

j=0
k−Cj

⎞
⎠+

⎛
⎝ N∑

j=0
kpjCj

⎞
⎠

The proliferation of the CTLs, E, stimulated by the com-
plexes Cj is embedded in the rate constant qj, which,
as a consequence, must be decreasing with the index j,
with qN ≥ 0 (f, g are constant parameters). Note that in
absence of immuno-editing this proliferation term reads
fC/(g+T), and it has been has been introduced in [22,45].
It represents the experimentally observed enhanced
proliferation of CTLs in response to the tumour. This
functional form is consistent with a model in which one
assumes that the enhanced proliferation of CTLs is due
to signals, such as released interleukins, generated by
effector cells in tumour cell-CTL complexes. We note
that the growth factors that are secreted by lymphocytes
in complexes (e.g IL-2) act mainly in an autocrine fashion.
That is to say they act on the cell from which they have
been secreted and thus, in our spatial setting, their action
can be adequately described by a “local” kinetic term only,

without the need to incorporate any additional informa-
tion concerning diffusivity. The external influx of CTLs is,
for the sake of the simplicity, modelled as sh(x), where h(x)
is a Heaviside function, taken to be zero over a given sub-
region of the domain of interest cf. [13]. In other words,
we assume that there is a subdomain where lymphocytes
are not naturally present and which is penetrated by CTLs
only thanks to diffusion and chemotaxis.

Chemoattractant
The spatiotemporal dynamics of the chemoattractant α

produced by the complexes is given by

∂α

∂t
=

diffusion︷ ︸︸ ︷
D2∇2α −

decay︷︸︸︷
δ1α +

production︷ ︸︸ ︷⎛
⎝ N∑

j=0
πjCj

⎞
⎠

where we assume that the production rate constant πi is
decreasing with index i, with πN ≥ 0, since we assume
that complexes between CTLs and non-naive tumour cells
are less and less able to produce such a chemoattractant.

Chemorepellent
Adapting the experimental findings by Vianello to our
framework, we suppose that the non-naive tumour cells
produce a chemical that repels the CTLs and whose con-
centration ρ is governed by the equation

∂ρ

∂t
=

diffusion︷ ︸︸ ︷
D∗∇2ρ −

decay︷︸︸︷
δ2ρ +

production︷ ︸︸ ︷⎛
⎝ N∑

j=0
wjTj

⎞
⎠

where the production rate constants wi are such that:
w0 = 0 (absence of production for naive tumour cells) and

w1 < w2 < · · · < wN .

Tumour cell-CTL Complexes
Following [13], we assume that the motility of the com-
plexes is so small that it can be neglected:

∂Cl
∂t

=
local kinetic︷ ︸︸ ︷

k+
l ETl − (k− + k)Cl

where l = 0, . . . ,N .
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Modeling the transition rates and probabilities
Concerning the transitions Ti → Ti+1, we assume that
they are a linear function of i:

θi = θ0 + (θMAX − θ0)
i

N − 1
, i = 0, . . . ,N − 1

θN = 0, θMAX = 10θ0.

and that their baseline value is sufficiently small: 10−5 ≤
θ0 ≤ 10−3. In other words we assume that the probability
of acquiring the less immunogenic phenotype is small (in
analogy with the smallness of the probability of surviving
to an attack by a CTLs).
The probability pi that a tumour cell of classTi is lethally

hit is given by:

pi = p0 + (pN − p0)
i
N
,

where 0 ≤ pN < p0. Concerning the rates k+
i , we assume

either that they are constant or that they are linearly
decreasing with k+

N = 0:

k+
i = k+

0

(
1 − i

N

)
.

The production rate of the chemoattractant is also
assumed to vary linearly:

πi = π0

(
1 − i

N

)

with [16]: π0 = 20 − 3000 molecules cells−1 min−1, We
suppose that the chemorepellent is produced via a mech-
anism of “threshold generation”, i.e. only after a sufficient
number of encounters, yielding:

wi =
⎧⎨
⎩
0, if 0 ≤ i ≤ N∗,

wMAX
i − N∗
N − N∗

, N∗ < i ≤ N
(3)

where we assumed: wMAX ≈ π0 (i.e. the maximum
production rate of the chemorepellent is equal to the
production rate of the chemoattractant in absence of
immuno-editing phenomena).

Boundary and initial conditions
We initially consider the model in a fixed 1-dimensional
domain [ 0, xa] and close the system by applying appro-
priate boundary and initial conditions. As far as the
boundary conditions are concerned, zero-flux boundary
conditions are imposed on all state variables (apart from
C): E, α, ρ and Ti, i = 0, . . . ,N . These boundary condi-
tions are appropriate for the tumour-immune dynamics
we are considering. For example, in BCL1 lymphomas
of the spleen tumour cells are spatially contained in the
lymph tissue of the spleen, an elongated organ that, in
mice, is characterized by a very strong basement mem-
brane, which is only broken when the tumour cells switch
to an “invasive phenotype”. Since here we are concerned

with earlier stage dynamics of tumour cells in a dor-
mant state evading the CTLs, it follows that the zero-
flux boundary conditions are adequate for our particular
model. As far as the initial conditions are concerned, we
assume an initial front of naive tumour cells encountering
a front of CTLs, resulting in the formation of C0 com-
plexes. We suppose that initially there are no non-naive
tumour cells and hence no complexes involving them. No
chemicals are initially present in the spatial domain. These
assumptions yield:

E(x, 0) =
{
0, if 0 ≤ x ≤ l,
Ea(1 − exp(−1000(x − l)2)), if l < x ≤ xa.

T0(x, 0) =
{
Ta(1 − exp(−1000(x − l)2)), if 0 ≤ x ≤ l,
0 if l < x ≤ xa.

C0(x, 0) =
{
0, if x /∈[ l − ε, l + ε] ,
Ca exp(−1000(x − l)2), if x ∈[ l − ε, l + ε] .
Ti(x, 0) = 0, Ci(x, 0) = 0, ∀x ∈[ 0, xa] .
α(x, 0) = 0, ρ(x, 0) = 0, ∀x ∈[ 0, xa] .

where

Ea = s
d1

, Ta = 1
β1

, Ca = min(Ea,Ta), 0 < ε 
 1,

i = 1, . . . ,N .

Note that Ea is the baseline homogenous steady-state
value of CTLs in the absence of tumour cells, and that Ta
is the the baseline homogenous steady-state value of the
naive cells in absence of CTLs, whereas Ca is the maxi-
mum possible density of complexes resulting from initial
values of E and T.

Results and Discussion
We simulated our system after nondimensionalizing it
as shown in the Appendix, where one can also find the
numerical values of the parameters. In addition to the
baseline parameter set detailed in the Appendix, in the
following sections all our simulations were performed
assuming the following values for key parameters associ-
ated with the encounter of CTLs and tumour cells:

θ0 = 10−4, pN ∈ {0, 0.5, 0.75, 0.9997}.
Moreover k+

0 = 1.3 × 10−7 [13] and k+
i may be either

constant or linearly decreasing, with k+
N = 0.

Since the average lifespan of a chimeric mouse is three
years, and since we are interested in assessing the possibil-
ity (and spatio-temporal modality) of the onset of immu-
noevasion of a tumour, all simulations (unless stated)
represent an interval of length 1100 days ≈ 3 years.

Spatially Homogenous Case
In this first set of simulations, we set all the spatial compo-
nents of the model to zero and consider only the reaction
kinetics in order to ascertain whether the primary mech-
anism of evasion can be purely temporal. All simulations
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suggest that our model, with the parameter assump-
tions and values we used, is able to reproduce the onset
of immunoevasion in a biologically realistic time-frame.
Figure 3 shows the plots of the growth of the tumour cell
population over time where the killing probability at the
last stage is zero, i.e. pN = 0, and k+

i = constant =
1.3 × 10−7. We observe that if N = 4 the onset of eva-
sion is at t ≈ 200 days, i.e. the tumour remains dormant
for 200 days, which is a long period of time for a mouse.
On the contrary, if N = 10 then the immunoevasion is
delayed even further, with onset at t ≈ 500 days.
Figure 4 shows the plots of the growth of the tumour cell

population over time where the killing probability at the
last stage is not zero but it is only halved, i.e. pN = 0.5,
and as in the previous figure, k+

i = constant = 1.3×10−7.
Also in this case the immunoevasion is reproduced and
takes place, respectively, at t ≈ 425 days for N = 4 and at
t ≈ 950 days for N = 10.
Figure 5 shows the plots of the growth of the tumour cell

population over time where the killing probability at the
last stage is pN = 0.75, and as in the previous figure, k+

i =
constant = 1.3 × 10−7. These results are different from
the previous two cases. Here the immunoevasion takes
place in the lifespan of the mouse only for the case N = 4.
This suggests that in absence of changes in the parameter
k+
i : i) the late stages Ti are the most important to deter-
mine the onset of the evasion; ii) due to the finite lifespan
of chimeric mice and to the slow rate of the transitions,
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Figure 3 Growth of the tumour: nonspatial case 1. Plots showing
the growth of the tumour cell population over time in the case where
the spatial components of the model (i.e. all diffusion, taxis terms)
have been set to zero. The plots show that the tumour can evade the
immune system for either approximately 200 days or approximately
500 days depending on the parameter N. Parameter values: pN = 0
and k+i = constant = 1.3 × 10−7 and: N = 4 (solid line) and N = 10
(dashed lines). The red lines represent the population T0, the blue lines
represent the summed populations T1 + . . . + TN , and the black lines
represent the summed populations T0 + . . . + TN . Time t is in days.
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Figure 4 Growth of the tumour cell population: nonspatial case
2. Plots showing the growth of the tumour cell population over time
in the case where the spatial components of the model (i.e. all
diffusion, taxis terms) have been set to zero. The plots show that the
tumour can evade the immune system for either approximately 400
days or approximately 950 days depending on the parameter N.
Parameter values: pN = 0.5 and k+i = constant = 1.3 × 10−7 and:
N = 4 (solid line) and N = 10 (dashed lines). The red lines represent
the population T0, the blue lines represent the summed populations
T1 + . . . + TN , and the black lines represent the summed populations
T0 + . . . + TN . Time t is in days.

the immunoevasion process requires that the maximum
ability of genetic or epigenetic changes in a tumour cell
upon forming a complex with a CTL (embedded in the
transition probability whose maximum, we recall, is at
i = N − 1), is reached in a small number of encounters.
Figure 6 shows the growth of the tumour cell popula-

tion over time where the parameter pN = 0.75, but in
this case the parameters k+

i are linearly decreasing with
k+
N = 0. We notice the following differences from the
previous case: i) here the onset of immunoevasion is for
N = 4 at t ≈ 250 days, i.e. it is considerably accelerated; ii)
there is the onset of immunoevasion (at t ≈ 550 days) also
for N = 10. Thus, this simulation suggests that the role
of the decrease of the probability that a tumour cell is rec-
ognized by a CTL is important for the timing of the onset
of immunoevasion. Moreover, the decrease of the param-
eters k+

i alone is sufficient to induce immunoevasion, as
suggested in the simulations shown in Figure 7, where
pi = constant = 0.9997 and k+

i are linearly decreasing.
However, as shown in Figure 8, if pN = 0, then the

addition of the mechanism of decreasing k+
i does not

accelerate the onset of immunoevasion to such a degree
with respect to the baseline case of constant k+

i shown in
the previous Figure 3.
Finally, comparing the results of our simulations, in the

cases where k+
i is decreasing we note that the maximum

size of the naive tumour cells compartment is smaller
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Figure 5 Growth of the tumour cell population: nonspatial case
3. Plots showing the growth of the tumour cell population over time
in the case where the spatial components of the model (i.e. all
diffusion, taxis terms) have been set to zero. The plots show that the
tumour can evade the immune system for either approximately 850
days or approximately 1900 days depending on the parameter N.
Parameter values: pN = 0.75 and k+i = constant = 1.3 × 10−7 and:
N = 4 (solid line) and N = 10 (dashed lines). The red lines represent
the population T0, the blue lines represent the summed populations
T1 + . . . + TN , and the black lines represent the summed populations
T0 + . . . + TN . Time t is in days.
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Figure 6 Growth of the tumour cell population: nonspatial case
4. Plots showing the growth of the tumour cell population over time
in the case where the spatial components of the model (i.e. all
diffusion, taxis terms) have been set to zero. The plots show that the
tumour can evade the immune system for either approximately 250
days or approximately 550 days depending on the parameter N.
Parameter values: pN = 0.75 and k+i are linearly decreasing functions
and: N = 4 (solid line) and N = 10 (dashed lines). The red lines
represent the population T0, the blue lines represent the summed
populations T1 + . . . + TN , and the black lines represent the summed
populations T0 + . . . + TN . Time t is in days.
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Figure 7 Growth of the tumour cell population: nonspatial case
5. Plots showing the growth of the tumour cell population over time
in the case where the spatial components of the model (i.e. all
diffusion, taxis terms) have been set to zero. The plots show that the
tumour can evade the immune system for either approximately 350
days or approximately 850 days depending on the parameter N. In
this case however, the initial population T0 is eradicated. Parameter
values: pi = constant = 0.9997 and k+i are linearly decreasing
functions and: N = 4 (solid line) and N = 10 (dashed lines). The red
lines represent the population T0, the blue lines represent the
summed populations T1 + . . . + TN , and the black lines represent the
summed populations T0 + . . . + TN . Time t is in days.
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Figure 8Nonspatial case 6. Plots showing the growth of the tumour
cell population over time in the case where the spatial components
of the model (i.e. all diffusion, taxis terms) have been set to zero. The
plots show that the tumour can evade the immune system for either
approximately 200 days or approximately 400 days depending on the
parameter N. Parameter values: pN = 0 and k+i are linearly decreasing
functions and: N = 4 (solid line) and N = 10 (dashed lines). The red
lines represent the population T0, the blue lines represent the
summed populations T1 + . . . + TN , and the black lines represent the
summed populations T0 + . . . + TN . Time t is in days.
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than the maximum size of all the non-naive tumour cells
compartments summed up:

Max(T0) < Max(T1 + · · · + TN ).

Moreover, Max(T0) seems to be a decreasing function
of pN . These results might be explained as follows: the
decrease of the competition between all the tumour cells
and the immune system embedded in the decrease of
the parameters k+

i , might shift the ‘internal’ competition
between the naive and the non-naive tumour cells.

Spatiotemporal Model
Before we present the computational simulation results
of the new model in this paper, in Figures 9 and 10 we
plot the spatial distribution of tumour cells and CTLs,
respectively, in the baseline case of the absence of immu-
noevasive mechanisms. Figure 9 shows the spatial distri-
bution of tumour cell density within the tissue at times
100, 400, 700, and 1100 days. These results illustrate the
basic spatiotemporal dynamics of the tumour cell den-
sity induced by its interplay with the distribution of CTLs
i.e. a gradual transition between a front of tumour cells
to a train of solitary-like travelling waves slowly invading
the tissue, finally creating a spatially heterogeneous and
time-changing (through irregular temporal oscillations)
distribution. Similarly, Figure 10 shows the corresponding
plots of the CTL density.
Figure 11 shows the spatial distribution of tumour cell

density within the tissue at times 700, and 1100 days where
the parameters pN = 0.75 and k+

i = constant. These
results show that if we include the immunoevasive mech-
anism with a decreased value for the parameter pN , we
obtain a process that is identical to the baseline case for
most of the time. Indeed, basically the left plot of this
figure is identical to that of Figure 9. However, after
the onset of the evasion, the tumour cell density distribu-
tion changes significantly as can be seen in the left part of
the domain. From these observed differences, we may say
that in this modelling framework the effect of immuno-
evasion on the spatio-temporal dynamics is characterized
by a return to a spatially homogeneous steady-state. This
transition to the new spatial regimen is illustrated in more
detail by the “time-slices” shown in Figure 12.
Finally, we note that the effect of chemorepulsion, which

is well detectable at level of the spatial densities Ti, is no
more detectable at level of the total density of all tumour
cells. However, this effect is again noticeable if we consider
the density of T0 versus the density of T1 + · · · + TN (see
the second plot of Figure 11).
Figures 13 and 14 show the corresponding density of

CTLs in the tissue. Note that after the onset of immu-
noevasion, corresponding to the newly reformed invasive
front of tumour cells at a high density, the density of CTLs
is close to zero.
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Figure 9 Tumour Spatial density in absence of immunoevasive
mechanisms. Plots showing the spatial distribution of tumour cells
within the tissue at times corresponding to 100, 400, 700, and 1100
days, respectively, in the baseline case of absence of the
immunoevasive mechanism described in this paper. This corresponds
to the results of [13].
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Figure 10 CTLs Spatial density in absence of immunoevasive
mechanisms. Plots showing the spatial distribution of CTLs within
the tissue at times corresponding to 100, 400, 700, and 1100 days,
respectively, in the baseline case of absence of the immunoevasive
mechanism described in this paper. This corresponds to the results
of [13].

Figure 15 shows the spatial distribution of tumour cell
density within the tissue at times 400, 700, and 1100 days
in the case where the parameters pN = 0.75 and k+

i
are decreasing such that k+

N = 0. Due to the accelera-
tion of the immunoevasion caused by the synergy existing
between the variability of pi and k+

i , the plots in this
figure are substantially different from those in the base-
line case in Figure 9 and also with respect to the plots
in Figure 11. Indeed, in this case the spatio-temporal dis-
tribution of the tumour cell density is far more regular,
and by t = 1100 days almost all of the tissue has been
invaded by the tumour cells close to their maximum den-
sity. Moreover, here in large regions of the domain we have
T0 < T1 + · · · + TN , which is the opposite of the previ-
ous case, where the naive tumour cells T0 were prevalent.
Finally, Figure 15 illustrates the fact that the distributions
of naive vs non-naive tumour cells are “mirror-images” of
one another and they are complementary, since their sum
is a homogeneous front.
In Figure 16 we show the differential effect of chemore-

pulsion on the various classes of tumour cells. The plots
show the total number Ai(t) of cells in each classes, i.e.

Ai(t) =
∫ 1

0
Ti(x, t)dx,

over time, as well as, in the last plot, the grand-total
A1(t) + · · · + AN (t). The effect of the chemorepulsion on
each sub-population Ai is striking, although overall it is
globally compensated (see the last plot).
Figure 17 shows the distribution of tumour cell density

within the tissue at times corresponding to 700, and 1100
days respectively with parameter values pN = 0.5 and
k+
i = constant = k+

0 . Note that in this case, although
pN = 0.5, probably due to the constancy of k+

i , in large
parts of the space the number of naive cells exceeds the
rest of the classes of other tumour cells, i.e. T0 > T1 +
· · · + TN . Note that at the end of the average lifespan of
the mouse, the tissue is invaded to a large extent but to a
lesser extent than in the case where pN = 0.5 and k+

N = 0.
Figure 18 shows a more detailed evolution of the tumour
cell density by presenting the “time-slices” from t = 0 to
t = 1100. Figure 19 shows the corresponding distribution
of CTL density.
Finally, Figure 20 shows the distribution of tumour cell

density within the tissue at times corresponding to 400,
700, and 1100 days respectively when the parameters
pN = 0.5 and k+

N = 0. This figure summarizes well
the important role of the two parameters pN and k+

N in
shaping the spatio-temporal distribution of tumour cells.
Indeed, the parameter k+

N appears to accelerate the onset
and the velocity of propagation of the invasive front, and
moreover it also differentially shapes T0 and T1+· · ·+TN .
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Figure 11 Tumour Spatial density in presence of immunoevasive mechanisms. Plots showing the distribution of tumour cell density within
the tissue at times corresponding to 700, and 1100 days respectively. These plots illustrate the spatiotemporal onset of immunoevasion. The final
plot at t = 1100 should be compared to the equivalent plot in Figure 9, whereas the plot in the left panel, referring to time t = 700 days, is
analogous to the equivalent plot in Figure 9. These plots suggests that the onset of immunoevasion occurs after t = 700 days. Parameter values
pN = 0.75 and k+i = constant. Solid line with chemorepellent, dashed line without. The red lines represent the population T0, The blue lines
represent the summed population T1 + . . . + TN , and the black lines represent the summed population T0 + . . . + TN .

Conclusions
In this paper we have presented a novel mathematical
model of the immune response to cancer, focusing on
the specific spatio-temporal response of cytotoxic T-
lymphocytes to tumour cells. We have developed and
extended ideas originally formulated by [13] by proposing
a possible kinetic mechanism leading to tumour evasion
from the immune control. Our model is based on the
key concept that a tumour cell which survives the for-
mation of a complex with a cytotoxic T-lymphocyte can
develop, with a given probability, an increased probability

of surviving further attacks by CTLs. We do not specify
whether this so-called ‘increased resistance’ is genetic or
epigenetic. Indeed, from a kinetic point of view, this is
immaterial. However, in order to experimentally validate
our hypothesis, this distinction would be of paramount
relevance.
Note that the model by [13] is based on a mass-action

law mechanism. The reaction kinetics in a crowded cel-
lular environment could differ from that, as studied (in
absence of immunoevasion) in [17,27,28]. We shall inves-
tigate these more realistic settings in future works, but
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Figure 12 Time-slices of Tumour Spatial density in presence of immunoevasive mechanisms. Plots showing detailed changes in the spatial

distribution of all tumour cells
N∑
j=0

Tj within the tissue over time in the case of immunoevasion. Parameter values pN = 0.75 and k+i = constant. This

figure shows the onset of immunoevasion in the interval (700, 1100) days.



Al-Tameemi et al. Biology Direct 2012, 7:31 Page 12 of 22
http://www.biology-direct.com/content/7/1/31

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
t=700

Distance in tissue

Ly
m

ph
oc

yt
e 

S
iz

e

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50
t=1100

Distance in tissue

Ly
m

ph
oc

yt
e 

S
iz

e

Figure 13 CTLs Spatial density in presence of immunoevasive mechanisms. Plots showing the distribution of CTLs within the tissue at times
corresponding to 100, 400, 700, and 1100 days respectively. These plots illustrate the spatiotemporal onset of immunoevasion. The final plot at
t = 1100 should be compared to the equivalent plot in Figure 10, whereas the plot in the left panel, referring to time t = 700 days, is analogous to
the equivalent plot in Figure 10. These plots suggests that the onset of immunoevasion occurs after t = 700 days. Parameter values pN = 0.75 and
k+i = constant. Solid line with chemorepellent, dashed line without.

we think that the basic results showed here should not
substantially change.
In this work we have dealt with the spatio-temporal

interplay between tumours and a specific immune
response from CTLs. We chose this approach because
of the experimental evidence on the relevance of CTLs
in determining tumour dormancy or the evasion of
many important tumours such as melanomas, ovarian
carcinomas and colorectal carcinomas, where the pres-
ence of infiltrating lymphocytes is a useful prognostic
marker [42,46]. However, tumour immunoevasion from
dormancy is a multi-faceted phenomenon. We stress here

that by no means do we think that ours is an exhaustive
theoretical treatment of a such complex phenomenon.
Concerning spatial issues we also briefly mention that

also in case of small dormant tumours the next generation
of spatial models of tumour growth should better stress
and investigate the interplay of tissue 3D geometry and
the tumour vascularization with phenotypic changes in
tumour cells. We have built our model based on the
tumour dormancy mathematical model of [13,16], where
parameters were fitted to experimental animal (mouse)
data. However, embedding the proposed evolutionary
mechanism in a more complex setting, where a more
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Figure 14 Time-slices of CTLs in presnece of immunoevasion. Plots showing detailed changes in the spatial distribution of CTLs within the
tissue over time in the case of immunoevasion. Parmeter values pN = 0.75 and k+i = constant.
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Figure 15 Tumour cell density within the tissue in for decreasing k+
i and pi. Plots showing the distribution of tumour cell density within the

tissue at times corresponding to 400, 700, and 1100 days respectively. These plots illustrate the spatiotemporal onset of immunoevasion. Parameter
values pN = 0.75 and k+i are decreasing such that k+N = 0. Solid line with chemorepellent, dashed line without. The red lines represent the
population T0, The blue lines represent the summed population T1 + . . . + TN , and the black lines represent the summed population T0 + . . . + TN .

detailed description of both adaptive and innate immunity
is included, should lead to results qualitatively similar to
those here illustrated.
Our simulations suggest that the proposed mechanism

is able to mimic various dynamics of immunoevasion dur-
ing the lifespan of a mouse. We have also highlighted the
differential spatiotemporal contributions to evasion due,
respectively, to: i) a decrease in the probability pi of being
lethally hit; ii) a decrease in the probability, embedded in
k+
i , that a tumour cell is recognized by a CTL. In partic-
ular, our model suggests that a decrease in the parameters
pi is needed to produce evasion, which does not occur in
the case where pi remains constant at its baseline level
inferred from the experimental data. However, the role of
the parameters k+

i is important since it can greatly accel-
erate the simulated process. Moreover, our computational
simulations also showed that the proposed mechanism
can also deeply affect the spatial patterning of the tumour.
In particular, our model suggests that to have a uniform
invasion profile for the tumour cells necessitates also hav-
ing a decrease in the recognition rate, embedded in the
parameters k+

i . These parameters also differentially shape
the spatial distribution of the various classes of tumour
cells.

Concerning the possible chemorepulsion of CTLs, our
computational simulation results showed that, in our bio-
logical settings, although it does not affect the spatiotem-
poral dynamics of the total number of tumour cells, it
has a remarkable influence on the spatio-temporal distri-
bution of the different individual classes of tumour cells.
Further analysis is needed to ascertain if, with different
parameters, the effect of this factor can be different, and in
order to understand the behaviour in the current setting.
As far as the key ‘immuno-evasion-related’ parameters

such as θi, pi, and k+
i are concerned, we were not able to

fit them with experimental data (apart, of course, from the
values for p0 and k+

0 , from [13,16]) because in the liter-
ature, to the best of our knowledge, immuno-evasion of
tumours is only illustrated by means of qualitative clini-
cal or molecular experimental findings. In particular, no
immuno-evasion-related tumour growth data are avail-
able. Indeed, a complete experimental kinetic study of
the adaptive evasion from tumour dormancy allowing,
for example, the plotting of tumour growth curves would
currently be very difficult to undertake. Thus we hope
that this theoretical work may contribute to triggering
such experimental investigations, which would allow us to
validate our model.
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From a theoretical point of view, our model, although
detailed and focused on a very specific aspect of immuno-
oncology, and on some very specific mechanisms, is con-
ceptually in line with the general theories by Bellomo
[36,37,41], who considers tumour cells and immune sys-
tem effector cells as “active particles” endowed with activ-
ities and properties. Indeed, also in this paper the changes
of activities of cells upon encounters between tumour cells
and effector cells of the immune system are central in
determining the dynamics of the system.
To the best of our knowledge, the evolutionary nature of

the immuno-editing process has been studied until now
under the framework of the so-called “modern synthesis”,
following which the environment (in our case the immune
system) is not the “causative agency” [47] but a mere selec-
tive force promoting fixation of adaptive genomic changes
[47]. In the case of immunoevasion, a lowly immunogenic
clone may appear spontaneously due to the large ran-
dom mutation rate of tumour cells. This new phenotype
is then involuntarily selected by the immune system,
which kills the other phenotypes that remain strongly
immunogenic. Thus the sculpting of tumour cells pheno-
types [9] mentioned in the introduction, is involuntary,
passive.
On the contrary, in our model the more immuno-

resistant phenotypes may arise because of genetic or
epigenetic causes - due to the interaction between the
tumour cells and the immune system. This point of
view, which is quasi-Larmackian [47], is in line with a
number of recent discoveries that are leading to a new
theory of “extended evolutionary synthesis” [48], which
indeed investigates the impact of both genetic and epi-
genetic inheritance on evolutionary phenomena in order
to decipher the complex interplay between genotypes,
epigenotypes, phenotypes and environment. From a bio-
logical and biophysical point of view this implies also
including two other key components: timescales (see, e.g.,
the review paper [49]) and the role of randomness. Fol-
lowing this extended and more modern perspective, we
think that two general classes of evolutionary mechanisms
might biologically underlie our kinetic model of transi-
tions between phenotypes of tumour cells: stress-induced
mutations and epigenetic switches.
In stress-induced mutagenesis [47,49], some kind of

stress induces genomic changes in a cell that, although
probabilistic (e.g. in our model θi ∈ (0, 1)), are triggered
by the cell and its interplay with the “external world”,
and that are beneficial for the cell [47,49]. As a result,
the stress-induced mutations are adaptive and beneficial,
and thus they are natural candidates to explain biologi-
cally the kinetic mechanism of our mathematical model.
Moreover, it is important to note that stress-induced
genomic changes are a well-known and important mecha-
nism in tumours [47,50,51]. Finally, Koonin hypothesized
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Figure 16 Effects of chemorepulsion on the total number of
spatially distributed classes of tumour cells. Plots showing the
effects of chemorepulsion on the total number of spatially distributed
classes of tumour cells. Plots of the total number of cells
Ai(t) = ∫ 1

0 Ti(x, t)dx. Panels: (a) A0, (b) A1, (c) A2, (d) A3, (e) A4,

and (f)
4∑
j=0

Aj(t). Solid line with chemorepellent, dashed line without.

Time is measured in days.
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Figure 17 Distribution of tumour cell density within the tissue for decreasing pi and costant k+
i . Plots showing the distribution of tumour

cell density within the tissue at times corresponding to 700, and 1100 days respectively. These plots illustrate the spatiotemporal onset of
immunoevasion. Parameter values pN = 0.5 and k+i are constant. Solid line with chemorepellent, dashed line without. The red lines represent the
population T0, The blue lines represent the summed population T1 + . . . + TN , and the black lines represent the summed population T0 + . . . + TN .

[47] that quasi-Larmarckian processes are essentially
triggered by very strong signals (see e.g. Figure 3 of
[47]), which, we remark, is the case for tumour-CTL
interplays.
As far as the epigenetic path is concerned, it is now

known that there are inheritable phenotypic changes
without underlying genetic variations [48,49], and that
sometimes those changes are unusually rapid [49]. The
“epigenome” is dynamic and it reflects an individual’s or
a tissue’s environmental exposure during the whole of
its lifespan [52]. Among the possible epigenetic changes,

we mention specifically the methylation of DNA bases
(“epimutations”), and also the switching between two dif-
ferent equilibrium states in the biochemical pathways
influencing a set of inter-related phenotypes (e.g. “low
immunogenicity” and “large immunogenicity”), due for
example, to strong stress signals. Indeed, due to hystere-
sis phenomena inducing memory, also when an external
stress signal is removed the system may not return to
its original state. This memory may remain stable for
many generations thus providing an example of epigenetic
inheritance [49].

0

0.2

0.4

0.6

0.8

1

0

200

400

600

800

1000

0

0.5

1

Distance in tissue
Time in days

T
0+

...
+

T
N

 d
en

si
ty

Figure 18 Changes in the spatial distribution of all tumour cells
N∑

j=0
Tj within the tissue for decreasing pi and costant k+

i . Plots showing

detailed changes in the spatial distribution of all tumour cells
N∑
j=0

Tj within the tissue over time in the case of immunoevasion. Parameter values

pN = 0.5 and k+i = constant.
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Figure 19 Distribution of CTLs within the tissue for decreasing pi with pN = 0.5, and costant k+
i . Plots showing the distribution of CTLs

within the tissue at times corresponding to 700, and 1100 days respectively. These plots illustrate the spatiotemporal onset of immunoevasion.
Parameter values pN = 0.5 and k+i are constant. Solid line with chemorepellent, dashed line without.

In this work we were interested essentially in the basic
facts of the immune response to tumours. However, a
number of immunotherapies have been proposed and
also theoretically investigated (see [17,26,30] and refer-
ences therein). We believe that both the experimental
results concerning immunoevasion of tumours and the
theoretical findings we have proposed here might have

some implication of interest for clinical practice. Indeed,
the immunoevasion mechanisms may be seen as a pro-
cess counter-acting immunotherapies able to maintain a
tumour in a dormant state. In general we share the opinion
of [46], who stressed that recent progress in immuno-
oncology has not influenced the way anti-cancer therapies
are conceived and applied clinically. Indeed, we think that
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Figure 20 Distribution of tumour cell density within the tissue for decreasing pi and k+
i , with pN = 0.5 and k+

N = 0. Plots showing the
distribution of tumour cell density within the tissue at times corresponding to 400, 700, and 1100 days respectively. These plots illustrate the
spatiotemporal onset of immunoevasion. Parameter values pN = 0.5 and k+N = 0. Solid line with chemorepellent, dashed line without. The red lines
represent the population T0, The blue lines represent the summed population T1 + . . . + TN , and the black lines represent the summed population
T0 + . . . + TN .
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the immuno-editing process can be seen as an “involun-
tary” antagonistic process acting against immunothera-
pies. As far as this point is concerned, in future we will
also investigate the possibility that the presence of an
immunotherapy is somewhat sensed by a tumour, with a
consequential acceleration of immuno-editing.
The model that was proposed here has to be under-

stood as a detailed model at the level of the kinetics of the
cellular populations of a possible mechanism that might
enable tumour cells to evade from the control of adaptive
immunity. The various specific (and tumour-dependent)
strategies deployed by those cells in order to reach their
aim, are phenomenologically described by means of the
model of the dependence of the various parameters on
the classes of tumour cells, as well as in the macroscopic
modelling of the chemorepulsion. This is a first step in a
research effort for a more complete description of tumour
cell immunoevasion, which will include the detailed mod-
elling of the biological mechanisms underlying those and
other specific evasion strategies. Thus, given the com-
plex network of interplaying between inter-cellular and
intra-cellular signalling, and given the various temporal
scales (from the rapid dynamics of the intracellular path-
ways involved, to the relatively slow growth of a tumour,
up to the very slow onset of immunoevasion) as well as
the spatial ones (from individual cells to visible tumours),
a more detailed model will have to be multiscale. This
will involve a wide array of computational tools, from
those typical of computational biology and bioinformat-
ics, to more classical analytical and numerical methods of
statistical mechanics and mathematical physics.

Appendix
Non-dimensionalization
Before undertaking any computational simulations, we
non-dimensionalise our model (as well as the boundary
and initial conditions) by adopting the following scaling:
i) space is scaled by adopting a reference value xa equal
to the size of the domain in consideration and we assume
xa = 1 cm; time is rescaled relative to the diffusion rate of
CTLs by setting ta = x2aDE :

x̄ = x
xa

, t̄ = t
ta
;

ii) cellular densities are rescaled relative to the maxima of
the respective initial conditions:

T̄i = Ti
Ta

, i = 0, . . . ,N

Ē = E
Ea

, C̄l = Cl
Ca

, l = 0, . . . ,N ,

where, we recall, Ea = Ca; iii) The concentrations of the
chemoattractant and of the chemorepellent are rescaled
relative to the baseline values αa and ρa respectively:

ᾱ = α

αa
, ρ̄ = ρ

ρa

By omitting the bars, for the sake of simplifying the nota-
tion, the proposed model becomes:

∂E
∂t

= ∇2E − γ (α)∇(E∇α) + ξ(ρ)∇(E∇ρ)

+ η1

N∑
j=0

qjCj

a +
N∑
j=0

Tj

− E

⎛
⎝ N∑

j=0
ψjTj

⎞
⎠ − σE

+ k3

⎛
⎝ N∑

j=0
Cj

⎞
⎠ + k4

⎛
⎝ N∑

j=0
pjCj

⎞
⎠ + σh(x),

∂α

∂t
= Dα∇2α − δαα + μα

⎛
⎝ N∑

j=0
πjCj

⎞
⎠ ,

∂ρ

∂t
= Dρ∇2ρ − δρρ + μρ

⎛
⎝ N∑

j=0
wjTj

⎞
⎠ , (4)

∂T0
∂t

= ∇2T0 + rT0

⎛
⎝1 −

N∑
j=0

Tj

⎞
⎠

− φ0ET0 + k1C0 + (1 − θ0)(1 − p0)k2C0,

∂Ti
∂t

= ∇2Ti + rTi

⎛
⎝1 −

N∑
j=0

Tj

⎞
⎠ − φiETi + k1Ci

+ θi−1(1 − pi−1)k2Ci−1

+ k2(1 − θi)(1 − pi)Ci,
∂Cl
∂t

= ψlETl − λCl,

where:

r = r1ta φi = k+
i Eata k1 = k−Cata

Ta
a = g

Ta
λ = ta(k− + k) ψi = k+

i Tata k2 = kCata
Ta

γ = αataχ
η1 = fta

Ta
σ = μota k3 = k−ta μα = Cata

αa
Dα = D2ta δα = δ1ta k4 = kta μρ = Tata

ρa
ξ = αataA Dρ = D∗ta δρ = δ2ta

After the non-dimensionalization, the boundary condi-
tions become (in 1-D):

∂E
∂x

(0, t) = 0,
∂E
∂x

(1, t) = 0,

∂α

∂x
(0, t) = 0,

∂α

∂x
(1, t) = 0,

∂ρ

∂x
(0, t) = 0,

∂ρ

∂x
(1, t) = 0,

∂Ti
∂x

(0, t) = 0,
∂Ti
∂x

(1, t) = 0,
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which then imply, assuming some smoothness of the solu-
tion and the form of Ci equations, that

∂Ci
∂x

(0, t) = 0,
∂Ci
∂x

(1, t) = 0

and the initial conditions take the form (again in 1-D):

E(x, 0) =
{
0, if 0 ≤ x ≤ l
(1 − exp(−1000(x − l)2)), if l < x ≤ 1

α(x, 0) = 0,∀x ∈[ 0, 1]
ρ(x, 0) = 0,∀x ∈[ 0, 1]

T0(x, 0) =
{

(1 − exp(−1000(x − l)2)), if 0 ≤ x ≤ l
0, if l < x ≤ 1

Ti(x, 0) = 0,∀x ∈[ 0, 1]
C0(x, 0) =

{
0, if x /∈[ l − ε, l + ε]
exp(−1000(x − l)2), if x ∈[ l − ε, l + ε]

Ci(x, 0) = 0,∀x ∈[ 0, 1]

where

l = 0.2, ε = 0.01.

The chosen non-null initial conditions for the naive
tumour and immune cells represent a front of tumour cells
encountering a front of CTLs, resulting in the formation of
CTL-tumour cell complexes. In the absence of a tumour,
the homogeneous steady-state density of the CTLs is s/d1
and therefore this is the value we have taken for the ini-
tial density Ea of CTLs in the initial conditions. Similarly,
in the absence of an immune response, the homogeneous
steady-state density of the tumour cells is 1/β1 and this is
what we take as the initial density of tumour cells Ta in
the initial conditions. Thus, when the fronts of the two cell
populations meet, the maximum density of CTL-tumour
cell complexes will be min(Ea,Ta) and hence our choice
for Ca. The function exp(−1000(x − l)2) was chosen to
mimick the onset of sharp but continuous front.

Numerical values of the parameters
To carry out the computational simulations of the pro-
posed model, we used the baseline parameter set reported
in [13], since these were all estimated from experimen-
tal data on murine B-cell Lymphoma BCL1, which is an
animal model for the study of tumour dormancy [53].
In addition to this baseline set, we used the migration
parameters proposed in [16]. Thus, the complete set of
parameters, and of their meaning, is the following (TC
stands for tumour Cell):

s = 1.36 × 104 day−1cells cm−1 CTL supply rate

f = 0.2988 × 108 day−1cells cm−1 Complex-induced
proliferatiomn rate
constant

g = 2.02 × 107 cells cm−1 Constant appearing
in proliferation function

k+
0 = 1.3 × 10−7 day−1cells−1 cm ‘Formation rate’ of

complexes

k− = 24 day−1 Complexes ’unbinding
rate’

k = 7.2 day−1 Rate of lethally hit TC or
CTL rate

p0 = 0.9997 Death probability of
naive TC

r1 = 0.18 day−1 Baseline exponentil
growht rate of TCs

β1 = 2 × 10−9 cells−1 cm Inverse of tumour
carrying capacity

d1 = 0.0412 day−1 Baseline death rate
of CTLs

DE = 10−6 cm2 day−1 Diffusion coefficient
of CTLs

χ = 1.728 × 106 cm2 day−1 M−1 Chemotaxis coefficient
of CTLs

DTi = 10−6 cm2 day−1 Diffusion coefficient
of TCs

D2 = 8 × 10−3cm2 day−1 Diffusion coefficient
of chemorattractant

δ1 = 1.15510−2days−1 degradation rate of the
chemoattractant

Hence, from the experimental data above, the non-
dimensional values of parameters becomes:

γ = 1.728 × 102 η1 = 5.976 × 104 ψ0 = 6.5 × 107
σ = 4.12 × 104 k3 = 2.4 × 107 k4 = 7.2 × 106
Dα = 8 × 103 δα = 1.115 × 104 μαπ0 = 104
r = 1.8 × 105 φ0 = 4.29 × 104 k1 = 1.584 × 104
k2 = 4.752 × 103 λ = 3.12 × 107 a = 4.04 × 10−2
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As far as the spatiotemporal dynamics of the chemore-
pellent is concerned, we assume that its diffusion
coefficient and decay rate is the same as the chemokine α

i.e. Dρ = Dα , δρ = δα , μρ = μα , and ξ = γ .
Note that in the first table above we did not provide the

value of π0, wherease in the second table we directly pro-
vided the adimensional value μαπ0 = 104, in line with
[13,16].

Reviewers’ comments
The comments of the referees were reported in italics. All
the three referees included minor comments on misprints
or undefined parameters or other minor suggestions,
which were all implemented. Thus, we only reported the
comments of interest to the general readership.
Note for the referees: following your suggestions the

revised version now contains an Appendix.

Reviewer #1: Prof. G. Bocharov (nominated by Dr. V.
Kuznetsov, member of the Editorial Board of Biology Direct)
(Institute of Numerical Mathematics, Russian Academy of
Sciences, Moscow, Russian Federation)

The paper presents a theoretical study of the tumour
immuno-evasion from dormancy. To this end a mathe-
matical model of reaction-diffusion-chemotaxis type for-
mulated with PDE is proposed. The model consid-
ers the spatio-temporal population dynamics of interac-
tions between tumour cells and cytotoxic T cells. The
key assumption of the model reflecting recent biological
insights into the pathogenesis of the solid tumour growth
states that the tumour cell population is heterogeneous
with respect to the parameters characterizing the out-
come of the interaction with cytotoxic T lymphocytes.
The interaction with CTL appears to acts as a selec-
tion force shaping the microevolution of the tumour. The
heterogeneity assumption enters the model via parame-
terized dependence of the rate of transition of tumour
cells from naive to more mature states, the efficacy of
CTL mediated killing and the production of chemicals
acting as attractants and repellors for CTLs. Numerical
simulations with the model for various parameters com-
binations show that the immuno-evasion can result from
the phenotypic heterogeneity of the tumour cells dynami-
cally adapting to and shaped by the anti-tumour immune
response.

General remarks:
1. The issue of spatio-temporal modelling of tumour

growth is an area of active research in cell popula-
tion dynamics (e.g., the studies of Bertuzzi and Gan-
dolfi). The related work on spatio-temporal modelling of
tumour growth needs to be refereed to in the Introduction
section.

We fully agree, and we added the required references.

Page 6: The authors make use of the Mass Action Law
to describe the interaction between CTL and target cells
via bilinear terms. Meantime, the reaction kinetics in
crowded cell environments can differ from those assumed
by the classical chemical kinetics. This issue need to be
commented.

This point is very important, and we commented it in
the conclusions.

Page 10: The parameter “1000” appearing in the ini-
tial functions has to be justified. Please, explain the choice
of Ca.

We added a full justification of the chosen initial
conditions.

Page 13: For the readership, the parameters of the model
should be presented in a Table with columns specify-
ing notation, biological meaning, units and uncertainty
ranges.

We added a table with average values of the parameters,
as obtained in Ref. 13 by means of least squares algorithm,
and their meaning.

Page 13, line 20: Can the parameters equality assump-
tion for the repellor and attractant be biologically justified?

Unfortunately there is a lack of experimental results on
this important data, so this is a pure assumption.

Page 14, line -5: Please, elaborate more on the specific
choice of the parameter values.

We added a reference for this parameter. More in gen-
eral all parameters in absence of immuno-editing were
taken as in references [13,16].

Page 15-16: Figures 3-8 could be presented in a more
compact way (e.g., as array of graphs). The same applies to
Figures 9-19.

We tried your suggestion, but the result was not less
clear. Take also into the account that Biology Direct is
purely online, thus there are no pages restrictions.

Page 18: Section 2-Dimensional Domain is based upon
simulations with the chemotaxis and chemorepulsion not
included in the model. The value of the results of the 2D
model based simulations is not straightforward. Please,
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either expand the section by considering the same set of
processes as in 1D case or remove it.

We removed it.
Conclusions section: It would be interesting to have the

authors opinion on whether the tissue 3D geometry and its
vascularisation represent important structural constraints
affecting the genomic or phenotypic changes in tumour cells
that need to be considered in the next generation of the
spatially resolved models of tumour growth?

We fully agree, and we mentioned this important issue
in the discussions.
Finally, all suggestions in your minor remarks were

implemented.

Reviewer #2: Prof. M. Kimmel (Rice University, Houston,
USA)

The paper concerns an extension of Chaplain group’s
model (Matzavinos et al. 2004) of response of tumour cells
to cytotoxic T-lymphocytes. The extension involves classes
from naive through non-naive tumour cells, which have
different ability to repel T-lymphocytes and other differ-
ing characteristics. The models consists of a complicated
system of partial differential equations and is investigated
purely by simulation.

In this first investigation we employed numerical anal-
ysis for two main reasons: first, we feel the immuno-
editing phenomena as mainly a transitory effect, and
as such requiring mainly numerical analysis; second, we
wanted to write a manuscript aimed to theoretical biol-
ogists with biological background, such as the general
readership of ’Biology Direct’. However, we also outlined
a more compact version of the proposed model where
the phenotypes are described by means of a contin-
uum. For this version we soon start a full mathematical
analysis.

In my opinion, stratification of tumour cells with respect
to their immuno-naivete is a natural concept, which how-
ever, leads to many complications and ambiguities in
model building. The paper only partially reviews the con-
sequences of varying the hypotheses.

In the above mentioned continuum version we
should be able of better exploring these important
issues.

In particular, the 2-dmodel by the end of the paper seems
superfluous, as it is not thoroughly investigated and seems
to be plagued by boundary artifacts. I suggest removing it
for the time being.
Following you suggestions, and the suggestions of

another referee, we removed it.

I am not sure if the tumour immuno-editing can be con-
sidered a Lamarckian evolutionary process. Even if it is, I
am not sure if this is important for the paper.

We respectfully disagree with you on this point. The
possibility that immuno-editing might be, at least in some
cases, a Lamarckian process, where the interplay between
the different kind of cells is the ’driver’, is of some interest,
in our opinion.

Page 2. I do not know if “extremely complex” implies
“strongly non-linear” as the authors seem to claim.

We removed this observation.

Page 2.(bottom). It would be perhaps helpful to specify
which cell types belong to the adaptive immune system and
which to the innate one.

Done.

Page 5. “Since we are modeling a situation where
immuno-evasion of the tumour cells is not considered . . . ”
Discussion of what this assumption really implies will be
helpful.

We removed the above quite ambiguous phrase. Indeed,
we wanted tomeans that the baselinemodel, with the con-
sidered values of its parameters, referred to a case where
the tumour is not able (without immuno-editing) to evade
the immune control.

Pages 9-13. Part of this material can probably go into an
online Appendix.

Done.

Reviewer #3: Prof. A. Marciniak-Czochra (Heidelberg
University)

The paper is devoted to modelling of spatio-temporal
dynamics of interactions of cytotoxic T-lymphocytes with
cells of a homogeneous avascular tumour. It takes into con-
sideration a chemoattraction of the immune cells by the
tumour and a chemorepulsion to chemicals produced by
non-naive tumour cells. The model is based on the one
presented in the paper “Mathematical Modelling of the
spatio-temporal Response of Cytotoxic T-Lymphocyte to a
Solid Tumour” (Matzavinos A, Chaplain M, Kuznetsov,
Mathematical Medicine and Biology, 2004, 21:1-34) The
novelty of the current work is in the assumption that the
tumour cells, surviving encounter with the immune cells,
undergo a functional change, which benefits their immune
resistance. This resistance increases with each encounter
until the maximal resistance is reached. The resulting sys-
tem of coupled partial and ordinary di erential equations
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is solved numerically. The results are discussed in the
biological context. I recommend the manuscript for publi-
cation in Biology Direct after some minor revisions related
to the organisation of the paper. The issues, which should
be taken into account before publication are (Note of
authors:this referee listed a long series of misprints, which
were all fixed. We only report the comments of interest for
the reader):
P.8, the second Equation: f and g are not introduced.

Although model equations are nearly identical to those in
reference (Matzavinos et al, 2004), authors should moti-
vate the term “proliferation and recruitment”.

In the revision, we fully explained the meaning of the
term like fC/(g + T).

P.10: It would be helpful to have the initial conditions
plotted.

Since the shape of the initial conditions are elemen-
try, and since another referee asked to add some written
comemnts on this point, we did not include the requested
plots.

P.13: It should be mentioned how parameters are esti-
mated.

The parameters were estimanted in Kuznetsov et al
1991 basically by means of mininmal least squares esti-
mate algorithm.

Please motivate the choice of θ0; pN ; k+
0 ; how sensitive

are the results to the choice of the parameters?

We have choosen a small value for θ0 because we think
that the probability of acquiring the fitter phenotype is
small, in analogy with the small probability of surviving
to an attack by a CTL. The value of k+

0 is taken from
(Matzavinos et al 2004).

P. 28, Figure 12: Why (700,1100) and not (800, 1100)?

800 days would have been a too long time with respect
to 700 (100 days in mice correspond approximatively to
2300 days in men).

Axis labels of the following figures are not readable: 9, 10,
11, 13, 15, 17, 20, 21.

Concerning the readability of the axis labels, it probably
depend on the fact that our eps figures were converted by
the publisher in jpeg figures. In our original pdf figures
they seems readable. We shall carefully manage this point
in case the manuscript should be accepted.

The followingwere comments on the revisedmanuscript
(other comments onmissprints are omitted, andwere
implemented):

The rescaling of equations have mistakes. For example on
p. 30, λ should be ta(k− + k),

Indeed, it was a misprint. We apologize.

while ψi = k+
i EaTata/Ci.

We had forgot to stress that Ca = Ea, so what we wrote
is correct.

I find the following phrase hardly readable “Finally, we
note that the predicted effect on the tumour cells spatial
distribution of the induction of chemorepulsion of CTLs is
not detectable if we consider the total density of all tumour
cells.” Please refomulate it.

We reformulated it.
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Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F: Type, density, and
location of immune cells within human colorectal tumors predict
clinical outcome. Sci 2006, 313:1960-1964.

43. Vianello F, Papeta N, Chen T, Kraft P, White N, Hart WK, Kircher MF, Swart E,
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