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Abstract

Background: Single nucleotide polymorphisms (SNPs) are the most abundant type of genetic variation in
eukaryotic genomes and have recently become the marker of choice in a wide variety of ecological and
evolutionary studies. The advent of next-generation sequencing (NGS) technologies has made it possible to
efficiently genotype a large number of SNPs in the non-model organisms with no or limited genomic resources.
Most NGS-based genotyping methods require a reference genome to perform accurate SNP calling. Little effort,
however, has yet been devoted to developing or improving algorithms for accurate SNP calling in the absence of a
reference genome.

Results: Here we describe an improved maximum likelihood (ML) algorithm called iML, which can achieve high
genotyping accuracy for SNP calling in the non-model organisms without a reference genome. The iML algorithm
incorporates the mixed Poisson/normal model to detect composite read clusters and can efficiently prevent
incorrect SNP calls resulting from repetitive genomic regions. Through analysis of simulation and real sequencing
datasets, we demonstrate that in comparison with ML or a threshold approach, iML can remarkably improve the
accuracy of de novo SNP genotyping and is especially powerful for the reference-free genotyping in diploid
genomes with high repeat contents.

Conclusions: The iML algorithm can efficiently prevent incorrect SNP calls resulting from repetitive genomic
regions, and thus outperforms the original ML algorithm by achieving much higher genotyping accuracy. Our
algorithm is therefore very useful for accurate de novo SNP genotyping in the non-model organisms without a
reference genome.
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Background
Single nucleotide polymorphisms (SNPs) are the most
abundant type of genetic variation in eukaryotic gen-
omes and have recently become the marker of choice in
a wide variety of ecological and evolutionary studies
such as local adaptation, population connectivity, and
speciation. Many of these studies focused on non-model
species, for which the number of SNPs that can be
assayed are usually very limited. The advent of next-
generation sequencing (NGS) technologies has made it
possible to efficiently genotype a large number (e.g.,
thousands to tens of thousands) of SNPs in the non-
model organisms with no or limited genomic resources.
Several genotyping methods based on NGS platforms
have recently been developed [1], most of which utilize
restriction enzymes for genome complexity reduction
(GCR) to reduce the total sequencing cost. In particular,
RAD (restriction-site associated DNA) has gained popu-
larity among these GCR-based methods, and allows for
nearly every restriction site in the genome to be
screened in parallel [2]. Most SNP calling algorithms de-
pend on the reference-based mapping approach [3], thus
limiting their use in non-model species for which a
reference genome is usually not available. Little effort
has yet been devoted to developing or improving algo-
rithms for accurate SNP calling in the absence of a refer-
ence genome. Catchen et al. [4] have recently developed
a pipeline program called Stacks for de novo assembly
and genotyping of RAD tags from a set of individuals.
The core component of their program is ustacks, which
can efficiently build reference sites de novo through the
assembly of short reads into clusters (i.e., stacks), and
apply a maximum likelihood (ML) statistical model to
distinguish SNPs from sequencing errors. Building read
clusters correctly is a critical step toward accurate SNP
calling, which is, however, highly sensitive to read length
and genome complexity [5]. Most eukaryotic genomes
contain a remarkable portion of sequences that are re-
petitive or close to repetitive especially on the length
scale of short read. False SNPs could arise and be mis-
called from read clusters in which reads carrying differ-
ent sequence variants are actually derived from distinct
genomic locations (i.e., repetitive regions) (Figure 1). In
general, such composite read clusters should have
greater depth than the normal (i.e., non-composite)
ones, such that this information can be utilized to iden-
tify composite clusters and further exclude them from
SNP calling. Herein, we demonstrate that the accuracy
of de novo SNP calling can be remarkably improved
using an improved ML algorithm (thereafter called iML)
that incorporates the mixed Poisson/normal model to
identify and exclude composite clusters from genotyp-
ing, and therefore prevents incorrect SNP calls resulting
from repetitive genomic regions (Figure 1). The iML
algorithm is especially powerful for accurate de novo
SNP calling in diploid genomes with high repeat
contents.

Results and discussion
The rationale of the iML algorithm
When a reference genome is available, the reference-
based mapping approach represents an efficient way to
identify and call SNPs [3]. In this approach, reads are
first mapped to the reference genome, and SNPs can be
identified from the sequence alignment and then geno-
typed by choosing one of existing SNP calling algorithms
[3]. During the mapping process, reads that can be
mapped to multiple genomic locations equally well are
usually discarded, thus leaving no or little possibility for
incorrect SNP calls resulting from repetitive genomic
regions. For a RAD dataset, if the average sequencing
depth is C, the read depth k for each unique restriction
site theoretically follows the Poisson distribution, assum-
ing that all sites across the genome are evenly
sequenced:

poisson k Cj Þ � Cke�C

k!

�
ð1Þ

However, in the absence of a reference genome, refer-
ence sites have to be established first from a large num-
ber of short reads before calling SNPs, which is usually
carried out through the read-clustering approach [4].
When short reads are assembled into clusters, reads
derived from repetitive genomic regions are usually un-
avoidably clustered together (i.e., forming composite
clusters) due to high sequence similarity. In such a sce-
nario, false SNPs could arise and be miscalled from com-
posite clusters (Figure 1). Theoretically, the distribution
of read depth of composite clusters should show a
repeating pattern occurring at multiples of the average
sequencing depth (C) (as shown in Figure 2), which cor-
responds to the copy number variations of repetitive
sites. Therefore, in the read-clustering approach, the
read depth k for each cluster approximately follows the
mixed Poisson distribution due to the existence of com-
posite clusters:

Pr k Cj Þ �
X
1≤i≤M

aipoisson k iCj Þð
 

ð2Þ

where
X
1≤i≤M

ai ¼ 1and M indicates the copy number of

repetitive sites. The mixed Poisson model is suited to de-
scribing the distribution of cluster depth derived from
diploid genomes with high repeat contents, and provid-
ing the information necessary to identify and exclude
composite clusters from SNP genotyping. All parameters



Figure 1 Schematic illustration of an occurrence of a false SNP after de novo clustering of reads derived from repetitive genomic
regions. Both ML and iML perform well in the genotyping of SNPs derived from single-copy genomic regions (left), but iML is more efficient to
identify and exclude false SNPs resulting from repetitive regions (right).

Figure 2 Observed distribution of cluster depth (black) and the fitted mixed Poisson model (purple) at different sequencing depths
(10x, 20x, 30x and 40x) for the simulation datasets of Arabidopsis thaliana. The mixed Poisson model well fits the observed distribution
especially at higher sequencing coverages. The depth threshold for genotyping is indicated by a dashed line.
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including C and a1~aM can be directly estimated from the
sequencing dataset using the expectation-maximization
(EM) algorithm (see Methods).
The original ML genotyping algorithm was developed

by Hohenlohe et al. [6] for SNP calling from RAD tags.
This algorithm calculates the likelihood for each possible
genotype at a given locus, and selects the one with the
largest likelihood. Here we describe an improved ML al-
gorithm called iML that incorporates the mixed Pois-
son/normal model and thus can exclude repetitive loci
from genotyping. The posterior probabilities for each of
the three possible categories (homozygote, heterozygote
and undetermined) are calculated as follows:

Pr

�
n1; n2; n3; n4

����homozygote

�
¼ n!

n1!n2!n3!n4!

poisson

�
n

����C��1� 3e
4

�
n1

�
3e
4

�
n2 þ n3 þ n4

Pr

�
n1; n2; n3; n4

����heterozygote� ¼ n!
n1!n2!n3!n4!

poisson

�
n

����C��0:5� e
4

�
n1 þ n2

�
3e
4

�
n3 þ n4

Pr

�
n1; n2; n3; n4

����undetermined

�
¼
X
k≥2

ak
1� a1

poisson

�
n kC

�����

ð3Þ

where n1, n2, n3 and n4 are the read counts for each of
the four possible nucleotides (A, T, C and G); n is the
total number of reads and E is the sequencing error rate.
According to the formula 3, each locus is genotyped by
assigning it into the category with the largest posterior
probability.

Testing the performance of the iML algorithm on
simulation datasets
To test the performance of the iML algorithm, we cre-
ated two series of RAD simulation datasets for de novo
SNP calling; one was based on the model plant species
Arabidopsis thaliana genome (~157 Mbp) [7] and the
other on the relatively large rice (Oryza sativa) genome
(~385 Mbp), which has a high repeat content (>35%) [8].
The simulation details were described in Methods.
Briefly, simulation datasets were composed of in silico
short reads (i.e., RAD tags) that were extracted from all
EcoRI restriction sites in the genome (73,624 sites in A.
thaliana, and 175,460 sites in O. sativa) at different read
lengths (35, 50 and 100 bp) and different sequencing
depths (from 8x to 40x). SNPs were introduced at a rate
of 0.5% accompanying with 1% global sequencing error.
For de novo read clustering, ustacks first assembles all
reads into exactly matching clusters (i.e. representing
individual alleles), and then “allele” clusters are further
merged into “locus” clusters with extremely deep clus-
ters (i.e. more than two standard deviations above the
mean depth) excluded from subsequent analysis [4].
SNPs were genotyped from the obtained clusters using
iML, ML or a threshold approach (minor allele fre-
quency > 35%). The false positive rate (FPR) and false
negative rate (FNR) were calculated to evaluate the per-
formance of iML in comparison with the others. The
parameters C and a1~ a3 were estimated using the EM
algorithm (Additional file 1: Table S1). The mixed Poisson
model well fit the simulation data, especially at higher se-
quencing coverages (Figure 2). Parameter 1-a1 accurately
predicted the percentage of composite clusters resulting
from de novo read clustering (Additional file 2: Table S2).
Note, although ustacks has an implemented algorithm
that intends to remove repetitive loci by excluding clusters
that are two standard deviations above the mean depth of
all clusters, this approach is much less efficient at identify-
ing repetitive loci than ours (see Figure 2), which is largely
due to the fact that some extremely deep clusters (e.g.
~0.3% of total clusters with a depth of more than 1,000
reads at the 40x sequencing coverage) can result in a very
large standard deviation of cluster depth.
For A. thaliana, iML always generated lower FPRs than

the threshold approach or ML with 12~19%, 6~11% and
2~4% FPR reductions corresponding to the read lengths of
35, 50 and 100 bp, respectively, at a 40x sequencing depth,
whereas iML generated only slightly higher FNRs (~1%) in
comparison with ML (Figure 3A, Additional file 3:
Table S3). For the relatively large rice genome, which has
a high repeat content, the performance of iML is even
more pronounced with 15~ 23%, 11~ 20% and 3~8%
FPR reductions corresponding to the read lengths of 35,
50 and 100 bp, respectively, at a 40x sequencing depth but
less noticeable FNR reductions in comparison with ML
(Figure 3B, Additional file 3: Table S3). The threshold ap-
proach performed better than ML in terms of FPR reduc-
tion, but this was achieved at the expense of substantially
decreased sensitivity (e.g. 11% FNR increase for A. thaliana
and 21% for O. sativa at a 40x sequencing depth for 35-bp
reads). In all cases, iML improved the accuracy of de novo
SNP calling, bringing the accuracy close to the level result-
ing from the reference-based mapping approach.

Testing the performance of the iML algorithm on real
datasets
We further evaluated the performance of the iML algo-
rithm on two real sequencing datasets. One dataset was
generated by Wang et al. [9] for A. thaliana using a
newly developed 2b-RAD method based on type IIB re-
striction enzymes, whereas the other was generated by
Etter et al. [10] for stickleback (Gasterosteus aculeatus)
using the standard RAD method. For the A. thaliana



Table 1 Summary of two real sequencing datasets used
for evaluation of the iML algorithm

Arabidopsis
thaliana

Gasterosteas
aculeatus

Library preparation 2b-RAD RAD

Restriction enzyme BsaXI(ACN5CTCC) SbfI(CCTGCAGG)

Trimmed read length 27 bp 55 bp

High-quality reads 5,845,509 4,672,098

Mapped reads 5,339,662 4,139,761

Clustered reads 5,809,558 4,220,881

No. of in silico restriction
sitesa

39,678 45,600

No. of in silico unique sites 35,362 40,125

No. of read clusters 33,877 42,352

Reference [9] [10]
a, the total number of restriction sites that were predicted from the genome
assemblies of TAIR8 and BROADS1 for A. thaliana and G. aculeatus,
respectively.

Figure 3 Comparison of the performance of three de novo SNP calling approaches based on the simulation datasets of Arabidopsis
thaliana (A) and Oryza sativa (B). iML outperforms ML or a threshold approach by improving genotyping accuracy remarkably at the expense
of little decreased sensitivity. ML_ref, reference-based SNP calling using the ML algorithm; iML_denovo, de novo SNP calling using the iML
algorithm; ML_denovo, de novo SNP calling using the ML algorithm; TH_denovo, de novo SNP calling using the threshold approach.
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dataset, ~ 5.8 million high-quality reads were obtained,
of which 91.3% could be mapped to the reference gen-
ome and 99.4% were present in de novo read clusters,
whereas ~ 4.7 million high-quality reads were obtained
from the G. aculeatus dataset, of which 88.6% could be
mapped to the reference genome and 90.3% were
present in de novo read clusters (Table 1). For both data-
sets, the number of read clusters was comparable to the
number of unique restriction sites predicted from each
genome (Table 1). Note, for G. aculeatus, the number of
predicted unique sites was slightly lower than that of
read clusters possibly due to the fact that the stickleback
genome assembly (BROADS1) is still incomplete.
In data simulation, we assume that read depth for each

restriction site follows the Poisson distribution, which is,
however, may not be fully valid for real datasets due to a
few practical reasons such as uneven cutting efficiency
across restriction sites, amplification bias, and sequen-
cing artifact/error. Before implementing the iML algo-
rithm, we first performed a model fitness test for four
distribution models (Poisson, mixed Poisson, normal,
and mixed normal) on the two real datasets (Table 2). It
turned out that the mixed normal model best fit the
observed distribution of cluster depth in both datasets
(Table 2, Figure 4), suggesting that unlike in the simula-
tion analysis, the mixed Poisson model may not be the
model of choice for real datasets in practice. Therefore,
the mixed normal model was selected to implement the
iML algorithm on the real sequencing datasets.
As expected, iML still generated lower FPRs than ML

with approximately 17% FPR reduction at different se-
quencing depths for A. thaliana (Figure 5A), and 4%



Table 2 The K-S test for the model fitness of four
distribution models on two real datasets

Dataset Model Estimated parameters P
valueC a1 a2 a3 σ1 σ2 σ3

A. thaliana Poisson 137.2 - - - - - - 0

Mixed Poisson 125.0 0.83 0.09 0.09 - - - 0

Normal 137.2 - - - 74.1 - - 2.5E-7

Mixed normal 110.0 0.80 0.18 0.01 48.2 39.1 34.2 0.378

G. aculeatus Poisson 98.1 - - - - - - 0

Mixed Poisson 105.0 0.84 0.09 0.07 - - - 0

Normal 98.1 - - - 50.5 - - 0.029

Mixed normal 100.0 0.98 0.02 0.00 45.3 24.3 24.1 0.288

C, ai and σi represent the mean, the coefficient and standard deviation of i-
copy clusters in a given model.
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(50 bp) ~7% (30 bp) FPR reduction at different read
lengths for G. aculeatus (Figure 5B). The performance of
iML was less pronounced on the G. aculeatus dataset
because this dataset contained much less repetitive re-
striction sites than the A. thaliana dataset (Figure 4). In
comparison with the simulation analysis, iML coupled
with the mixed normal model is relatively less efficient
at distinguishing composite clusters from unique ones
on the real sequencing data, as reflected by the observation
of substantially high FPR and FNR remained in real data-
sets even at the deep sequencing coverages (Figure 5A).
Nevertheless, iML still outperformed the original ML algo-
rithm in terms of genotyping accuracy on the real sequen-
cing datasets, and therefore represents the most promising
algorithm currently available for accurate de novo SNP
genotyping in diploid genomes with high repeat contents.
Figure 4 Observed distribution of cluster depth (black) and the fitted
Arabidopsis thaliana and Gasterosteus aculeatus. The depth threshold fo
Conclusions
In summary, we describe an improved ML algorithm
that incorporates the mixed Poisson/normal model and
can efficiently remove incorrect SNP calls resulting from
repetitive regions. Through analysis of simulation and
real datasets, we demonstrate that iML improved the ac-
curacy of de novo SNP calling remarkably in comparison
with ML or a threshold approach. The iML algorithm is
especially powerful for accurate de novo SNP calling in
diploid genomes with high repeat contents. The Perl
script used for implementation of the iML algorithm is
available from the authors upon request.

Methods
Evaluation of the iML algorithm on simulation and real
datasets
Two series of simulation datasets were created for in
silico RAD genotyping, one from the model plant species
A. thaliana genome (~157 Mbp) and the other from the
relatively large rice (Oryza sativa) genome (~385 Mbp),
which has a high repeat content (>35%). Simulation
datasets were composed of in silico short reads (i.e.,
RAD tags) extracted from all EcoRI restriction sites in
the genome (73,624 sites in A. thaliana, and 175,460
sites in O. sativa) at different read lengths (35, 50 and
100 bp) and different sequencing depths (from 8x to
40x). SNPs were introduced at a rate of 0.5% by adding
alleles to the diploidized genomes. Each allele was
“sequenced” to a depth determined by a draw from the
Poisson distribution at different mean sequencing depth.
For each “sequenced” read, the global error rate, which
increases linearly along the sequence, was set to 1%.
Each simulation was replicated 10 times. The reference-
mixed normal model (purple) for the real sequencing datasets of
r iML genotyping is indicated by a dashed line.
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based mapping approach was carried out using the
SOAP2 program (parameters -M 4, -v 2, -p 1) [11], and
SNPs were called using the ML algorithm. For de novo
read clustering, ustacks first assembled all reads into
exactly matching clusters but excluded clusters that con-
tained less than 2 reads (parameter -m 2) because these
clusters are considered to be indistinguishable from the
ones generated with sequencing errors [4]. The estab-
lished clusters were further merged iteratively by allow-
ing two-nucleotide distance between clusters (parameter
-M 2). The extremely deep clusters (i.e. more than two
standard deviations above the mean depth) were
excluded from subsequent analysis [4]. SNPs were geno-
typed from the obtained clusters using iML, ML or a
threshold approach. In the threshold approach, only read
clusters with minor allele frequency > 35% were qualified
for SNP calling, and this criterion has recently been
shown to perform better than the ML algorithm in
terms of genotyping accuracy [9]. The parameters C and
a1~ a3 were estimated using the EM algorithm
(e= 0.000001). Note, for the sake of simplicity, only
a1~ a3 were considered in the simulation analyses. Boot-
strap analysis of the EM estimation was performed 100
times. The false positive rate (FPR) and false negative
rate (FNR) were calculated to evaluate the performance
of the iML algorithm in comparison with other genotyp-
ing approaches.
In order to evaluate the performance of the iML algo-

rithm on real datasets, two RAD-related sequencing data-
sets were retrieved from the NCBI SRA database (SRA
accession no. SRP008452 and SRX028651). One was gen-
erated by Wang et al. [9] for A. thaliana using a newly
Figure 5 Comparison of the performance of de novo SNP calling appr
thaliana (A) and Gasterosteus aculeatus (B). FPR/FNR, false positive or ne
developed 2b-RAD technique, while the other was gener-
ated by Etter et al. [10] for stickleback (Gasterosteus
aculeatus) using the standard RAD technique. Note, al-
though the stickleback dataset was generated by a 2x60
paired-end sequencing, for simplification, only single-
end reads that contained the restriction site were used
for evaluation of the iML algorithm. The low-quality
reads containing ambiguous basecalls (N), or > 5 posi-
tions with low quality score (< 10), or no restriction
site, as well as reads mapped to organelles (mitochon-
drion and/or chloroplast) were excluded from further
analysis. The de novo and reference-based genotyping
approaches followed the same procedure as described
for the simulation analysis. The Kolmogorov-Smirnov
test was used to determine the fitness of four distribu-
tion models (Poisson, mixed Poisson, normal, and
mixed normal) to the observed distribution of cluster
depth in the real datasets. Since SNP configuration is
unknown for the real datasets, we considered SNPs
genotyped by the reference-based approach as “true”
SNPs, which then served as the positive control for cal-
culating the FPRs and FNRs of ML or iML algorithm.

Parameter estimation of the mixed Poisson model
Parameters of the mixed Poisson/normal model were esti-
mated using the EM approach. Here we describe the pro-
cedure of parameter estimation for the mixed Poisson
model, which can be extended to the mixed normal model.
In the de novo read-clustering approach, the read

depth k for each cluster approximately follows the mixed
Poisson distribution due to the existence of composite
clusters:
oaches based on the real sequencing datasets of Arabidopsis
gative rate.
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Pr k Cj ÞeX
1≤i≤M

aipoission k iCj Þð

Let n be the observed cluster number after read clus-
tering and di denotes the depth of the ith cluster. The

log-likelihood of observed data has the following form:

L ¼
Xn
i¼1

log
XM
j¼1

ajpoission di Cjj Þð g
(

The parameter estimates that maximize this log-
likelihood are asymptotically efficient estimates of the
parameters C and aj. However, the direct maximization
of the log-likelihood is very difficult. Therefore, C and aj
can be estimated by the EM algorithm through succes-
sive maximizations of the expected value of the more
tractable complete-data log-likelihood:
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Let D= {d1,d2. . .dn} be the set of observed cluster depth.

Bootstrap samples were created by sampling with replace-
ment of n individual observations. Balance bootstrapping
was performed 100 times for each sample by drawing n
observations out of the pool of original observations. The
means and standard deviations were calculated to evaluate
the robustness of the EM approximation.
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Authors' response: We have provided a more detailed description of the
read clustering approach used in this study (see Methods). We would also
like to refer readers to the ref. 4 for further details about the read clustering
algorithm implemented in Stacks.

The article is very well written and organized.
Minor:
1. In the Methods, Poisson is misspelled "poission".

Authors' response: Corrected.

2. In Figure 3, the colors representing 'MP-ML de novo' and 'ML-ref' are hard to
distinguish in the panels.

Authors' response: This figure has been remade.
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