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Evolution of vacuolar proton pyrophosphatase
domains and volutin granules: clues into the
early evolutionary origin of the acidocalcisome
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Abstract

Background: Volutin granules appear to be universally distributed and are morphologically and chemically
identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose
functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of
intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that
they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the
calcium and polyphosphate-rich intracellular “volutin granules (polyphosphate bodies)” in two bacterial species,
Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-
translocating pyrophosphatases (V-H+PPases) are present in their surrounding membranes. Volutin granules and
acidocalcisomes have been found in organisms as diverse as bacteria and humans.

Results: Here, we show volutin granules also occur in Archaea and are, therefore, present in the three
superkingdoms of life (Archaea, Bacteria and Eukarya). Molecular analyses of V-H+PPase pumps, which acidify the
acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all
three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited
phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein
domains in the V-H+PPase molecules. Using Protein family (Pfam) database, we found a domain in the protein,
PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal
distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the
domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA).

Conclusion: The importance of the V-H+PPase function and the evolutionary dynamics of these domains support
the early origin of the acidocalcisome organelle. In particular, the universality of volutin granules and presence of a
functional V-H+PPase domain in the three superkingdoms of life reveals that the acidocalcisomes may have
appeared earlier than the divergence of the superkingdoms. This result is remarkable and highlights the possibility
that a high degree of cellular compartmentalization could already have been present in the LUCA.

Reviewers: This article was reviewed by Anthony Poole, Lakshminarayan Iyer and Daniel Kahn

Background
According to the theory of serial endosymbiosis [1], the
symbiotic history of mitochondria and plastids started
more than 1.5 billion years ago when a primitive eukar-
yotic cell engulfed a bacterium [2]. These endosym-
bionts gave rise to contemporary organelles through

complex, and poorly understood molecular evolutionary
events. It is now widely accepted that an a-proteobac-
terium was the ancestor of mitochondria [3]. Similarly, a
single endosymbiotic association between a cyanobacter-
ium and a mitochondriate eukaryote has been proposed
as the origin of the chloroplast [2]. Although the endo-
symbiotic origin of plastids is well established [4,5], the
events that drove the evolution of other sophisticated
membrane-bound cellular compartments remain
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unclear. In fact, other mechanisms may be responsible
for the generation of organelles.
Prokaryotic cells have been simplistically portrayed in

the general scientific literature as a plasma membrane
“sack” containing DNA, filled with cytoplasm and sur-
rounded by a cell wall. However, provocative findings
have challenged the notion that the prokaryotic cell
lacks a sophisticated cytoplasmic organization. For years,
it was believed that the shape of bacterial cell was main-
tained by the organization of cellulose fibers within the
cell wall. However, a protein similar to actin, which was
once thought to be exclusive to the eukaryotic cytoske-
leton, was discovered in bacteria [6-8]. This protein
called MreB self-assembles into filaments forming a
cytoskeleton-like structure that maintains the shape of
bacterial cells.
Even more recently, the idea that organelles similar to

those present in eukaryotes are absent in bacteria was
challenged by the discovery of an organelle similar to
the acidocalcisome of unicellular eukaryotes within the
bacterium Agrobacterium tumefaciens [9]. The existence
of this bacterial organelle has also been confirmed in
the photosynthetic bacterium Rhodospirillum rubrum
[10]. The acidocalcisome is an acidic calcium-storage
organelle that was first described in trypanosomes, but
has now been found in the cells of diverse organisms
ranging from bacteria to higher eukaryotes [11]. This
membrane-enclosed organelle is characterized by its
acidic nature, high electron density, and high content of
polyphosphates (polyP) including pyrophosphate (PPi),
calcium, magnesium, and other elements. In addition,
the organelle contains a variety of cation pumps includ-
ing Ca2+/H+ and H+ pumps. In particular, the vacuolar
proton translocating pyrophosphatase (V-H+PPase) pro-
teins have been localized in the acidocalcisomes of bac-
teria, parasitic protozoans, algae, plants, and recently in
cockroaches [12]. The widespread distribution of these
proteins, which also contain ancient, highly conserved
protein motifs, suggests that V-H+PPase arose early in
the evolution of life on Earth. As mentioned before, the
main components of the acidocalcisome are polypho-
sphates, which includes PPi. V-H

+PPases use PPi as an
energy source to pump protons into the acidocalcisome
lumen, thereby generating an electrochemical gradient.
This strongly suggests that both the V-H+PPase and the
acidocalcisome share similar evolutionary histories.
Acidocalcisomes are morphologically and chemically

similar to the structures historically described as volutin
or polyphosphate bodies, which have been identified in
a variety of microorganisms, including bacteria, archaea,
algae, and protozoans [13]. Meyer [14] described volutin
granules in bacteria more than 100 years ago and much
later they were identified as acidocalcisomes [15]. In
protists, this organelle has essential roles in the

regulation of intracellular Ca2+, pH, and osmotic home-
ostasis, in which polyP is a key player. However, the
study of polyP has been neglected for years. An impor-
tant feature of polyP is its negative charge, which
enables it to interact with nucleic acids and act as a reg-
ulator of RNA polymerases [16] and proteinase activity
[17]. In addition, these negatively charged polymers can
serve as a binding template for proteins, amino acids,
polysaccharides and many cations [18-20].
Other membranous structures have also been reported

in bacteria as well [21]. However, these organelles are not
found in the eukaryotes (e.g., magnetosomes of magneto-
tactic bacteria [22]). Thus, the acidocalcisome is the first
and the only organelle demonstrated to be present in
both bacteria and eukaryotes, and its morphological,
structural and ultrastructural, chemical and biochemical,
and molecular links to volutin granules may suggest it is
indeed universal. The conservation of this organelle in
prokaryotes and eukaryotes suggests that it has important
functions that still await discovery [11].
Debates about organellar evolution have been revita-

lized and streamlined during the post-genomic revolu-
tion. The availability of multiple complete genome
sequences from the whole spectrum of life, along with
corresponding protein sequence data sets and more
sophisticated bioinformatics tools opens a window into
the intricate mechanisms of cellular evolution. In the
present study, we use sequences and domain informa-
tion from a diagnostic protein of the acidocalcisome, the
proton pump V-H+PPases, to infer the phylogenetic his-
tory of this protein and an ancient origin of the acido-
calcisome. Within protein molecules, certain parts can
interact more strongly with each other than with other
parts, and are usually highly conserved, making up mod-
ules, called protein domains [23]. These segments fold
compactly, appear repeatedly in different proteins, and
often combine with other domains. Because domains
can harbor functional centers or can modulate biological
activities, the combination of domains in proteins adds
inherent diversity to the biological make up of an organ-
ism [24]. The combination of domains in proteins can
help clarify the origin and the evolutionary histories of
proteins and proteomes [25]. Using Bayesian reconstruc-
tion methods, we build phylogenetic trees base on pro-
tein sequences that shed light on the evolution of V-H
+PPase proteins. We then examine the distribution of
the main functional V-H+PPase domain on the tree
using Protein family (Pfam) database definitions.
Here, we delineate the connections between the evolu-

tion of V-H+PPases and volutin granules as opportunity
to infer the likely origin of the acidocalcisome. In addi-
tion, we discuss the implications that these findings may
have on our understanding of the cellular complexity of
the ancestor of cellular life.
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Results and Discussion
Taxonomic distribution of V-H+PPase pumps
V-H+PPase is commonly present in the membrane of
acidocalcisomes which couple PPi hydrolysis to active
proton transport across the organellar membrane. The
enzyme is found in organisms from all superkingdoms
of life and should be considered ancient. Its ubiquitous
nature already suggests it appeared before the last uni-
versal common ancestor (LUCA) of diversified life [26].
The V-H+PPase is a highly conserved enzyme that acidi-
fies the lumen of the acidocalcisome [11]. V-H+PPase
has been detected by immunogold labeling localization
in acidocalcisomes of bacteria, and several eukaryotic
microorganisms [9,10,27-33]. Recently, an organelle that
shares similar characteristics of the acidocalcisome,
including the presence of V-H+PPases in its surrounding
membrane, was found inside the protein storage vacuole
of seeds [34]. Additionally, an acidocalcisome-like orga-
nelle with membrane-bound V-H+PPases has been iden-
tified in the egg yolk of cockroaches [12]. These studies
show that a bona fide organelle linked to V-H+PPase
function exists in bacteria, microbial eukaryotes, and
higher eukaryotes.

Volutin granules: A universal phenomenon
Volutin-polyP bodies occur in organisms spanning an
enormous range of phylogenetic complexity from Bac-
teria and Archaea to unicellular eukaryotes to algae to
plants to insects to humans. Volutin/polyphosphate
electron dense granules exhibit varied internal patterns
suggestive of sponge-like electron-dense spheres, and
when fixed they look as empty or partially empty
vacuoles. The volutin granules shown in a number of
microorganisms appear to be identical to acidocalci-
somes of Agrobacterium and Rhodospirillum and eukar-
yotes. While it may come as a surprise that volutin
electron-dense granule from different organisms bear
close similarity to acidocalcisomes, now we know that
acidocalcisomes are virtually identical in size, composi-
tion and morphology to volutin-polyP bodies found in a
vast array of organisms, including Archaea. Although
the volutin granules present in Methanosarcina have
not been yet confirmed to be acidocalcisomes, they are
morphologically and chemically similar to the acidocal-
cisomes of Agrobacterium and Rhodospirillum [9,10].
The volutin granules of Methanosarcina have the same
chemical profile, morphological characteristics (sponge
like-structure) and high levels of phosphorous com-
pounds and calcium [35-37] than acidocalcisomes. In
addition, some of the Agrobacterium acidocalcisomes
(Figure 1, panels A and B) appear like partially or empty
vacuoles due to the fixation/staining protocol that may
promote the diffusion of the electron dense material out

of the acidocalcisome. Remarkably, the same phenom-
enon is observed in the volutin granules of Methanosar-
cina (Figure 1, panels C and D).
Therefore, volutin-polyphosphate bodies electron

dense granules are distributed throughout phylogeny
and are universal. Consequently, our results support the
hypotheses that the volutin granules of Archaea are
likely acidocalcisome structures and that acidocalci-
somes are universally distributed.

Phylogenetic analysis of V-H+PPase
The tree of V-H+PPase amino acid sequences is star-like
and without much deep internal topological structure,
suggesting the existence of limited phylogenetic signal
in the sequence needed to dissect deeper phylogenetic
relationships (Figure 2). It also suggests a relatively
recent history of sequence diversification in the mole-
cule. The eukaryal, bacterial and archaeal V-H+PPase
sequences largely formed monophyletic groups and
eukaryotic sequences mostly grouped according to
established organismal classification, with unicellular
eukaryotes being placed at the base of the clade and
unicellular algae and plants diversifying later. However,
there were several instances of sequences that group in
a way contradictory to accepted classification. These aty-
pical patterns could be explained by lateral gene transfer
(LGT) events among Bacteria, Archaea and Eukarya,
some of which may have occurred early in evolution.
Alternatively, these unusual placements might simply be
the result of phylogenetic error associated with using
only a single gene for analysis [38].
The fact that V-H+PPase sequences group many famil-

iar clades monophyletically, and are also ubiquitous
among superkingdoms although with poor phylogenetic
signal, suggests these proteins are truly ancient. To
further explore their ancestral nature we focused on
structure, which is highly conserved in evolution [39].
We therefore, identified protein domains in the V-H
+PPase sequences, mapped them onto the V-H+PPase
tree, and determined how many species in the three
superkingdoms harbored these domains.

Evolution of Pfam domains in V-H+PPase proteins
V-H+PPase proteins have not been crystallized, and
there is no structural entry associated with them in the
Protein Data Bank (PDB). This absence probably stems
from the limitation of NMR and X-ray crystallographic
techniques in their ability to acquire high-resolution
structures from proteins associated with membranes
[40]. In fact, only 1% of structural PDB entries are mem-
brane proteins. We nevertheless considered the possibi-
lity that some other known structure could match the
structure of V-H+PPase. However, domain search using
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Hidden Markov Models (HMMs) of fold superfamily
and fold family structural recognition revealed no hits.
It has already been established that V-H+PPase proteins
have domains with sequence motifs that are highly con-
served in evolution [41], which suggests that catalytic
domains harboring the motifs in V-H+PPase are very
ancient. Because Pfam attempts to classify protein
domains and families using sequence alignments and
profile HMM analysis of sequence motifs [42], we
explored the distribution of Pfam domains in the
sequences of V-H+PPase proteins. A Pfam search
revealed that all V-H+PPase sequences have a single
domain that is annotated as inorganic H+ pyrophospha-
tase, PF03030. This domain in our analysis is distributed
in 279 species including Eukarya, Bacteria, and Archaea
(Figure 2). The domain PF03030 has a conserved motif
(57 amino acids) that contains a functional active site
for the V-H+PPase (Additional File 1). It has already
been established that a consensus sequence of the motif
is highly conserved across more than three hundred V-
H+PPase protein sequences obtained from completed
genomes and Sargasso Sea metagenomic sequences [41].
Our data indicate that the domain PF03030 is conserved

in all three superkingdoms, supporting our hypothesis
that the protein appeared before the LUCA. The taxo-
nomic incongruences present in Figure 2 are clearly the
result of secondary evolutionary events of LGT that are
derived or simply arise from poor phylogenetic signal in
V-H+PPase sequence.

Origin of the acidocalcisome
Several hypotheses attempt to answer the question of
when and how the acidocalcisome arose. The canonical
explanation that the acidocalcisome was acquired either
through lateral transfer or via an endosymbiotic event
is, however, unlikely. Furthermore, sequence and
domain analysis of the V-H+PPase and the universal dis-
tribution of volutin granules support the appearance of
the volutin granules and possibly the acidocalcisome
before the initial branching of the tree of life (Figure 2).
Neither LGT nor direct filiation from the a-proteobac-
teria appears to be a likely explanation for the orga-
nelle’s acquisition in eukaryotes. Instead, the most
parsimonious explanation would be to posit that the
volutin granule/acidocalcisome appeared very early,
before the branching of the three superkingdoms of life,

Figure 1 Electron micrographs thin sections of Agrobacterium tumefaciens(a &b) and Methanosarcina acetivorans (c & d). In panel (a),
the arrow shows the partially filled acidocalcisome of A. tumefaciens containing electron dense material. In panel (b), the arrow shows an empty
A. tumefaciens acidocalcisome. In panel (c), the arrow shows the electron dense volutin granule of M. acetivorans. In panel (d), the arrows show
empty, partially, and completely filled volutin granules of M. acetivorans.
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i.e., that the volutin granule/acidocalcisome was likely
present in the LUCA. Because acidocalcisomes have
been confirmed in Eukarya and Bacteria, and volutin
granules that are remarkably similar to acidocalcisome
like-structures have been observed in Archaea [35-37],
these findings support the view that this organelle might
have been conserved in all superkingdoms. Even if

volutin granules of Archaea are not confirmed to be
genuine acidocalcisomes and represent ancient forms of
the acidocalcisomes organelle, the universal presence of
the organelle precursor (volutin granules) suggests that
the LUCA had a more complex cytoplasm organization
than previously thought. Moreover, the PF03030 domain
which carries the V-H+PPase proton pumping molecular
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Figure 2 Unrooted phylogram from Bayesian analysis of 279 V-H+PPase sequences from the three superkingdoms of life. Terminal
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function crucial for the acidification of the acidocalci-
some using PPi as substrate (see below) is distributed
universally. For these reasons, we hypothesize that this
organelle or its precursors were very early cellular inno-
vations that occurred prior to major organismal lineage
diversification events. As the lineages of the tree of life
began to diverge, this organelle or its precursors were
inherited in the three domains by direct descent from
the LUCA. Under this scenario, the putative absence of
the organelle in an organism must be explained as a
loss.
It is outside of the scope of the present work to dis-

cuss the characteristics of the LUCA, but the above
hypothesis implies that the ancestral lineage may have
had a high degree of cellular sophistication, as others
have suggested [43-46]. For example, Collins [47] argued
that introns and spliceosomal machinery in the eukaryo-
tic ancestor might have been similar in overall complex-
ity to that seen today. Likewise, protein architecture
offers another clue because a substantial fraction of
domain structures in the protein world are common to
all organismal superkingdoms and are truly ancient [23].
While the 3D structure of the proton V-H+PPase

pumps is not yet available, a recent analysis revealed
that sequences from this protein family has a very
ancient and strongly conserved 57-residue block with
unique properties [41]. This finding also supports the
idea that V-H+PPases appeared very early in evolution
of life. Our analysis of the distribution of the main Pfam
domain along the V-H+PPase phylogenetic tree rein-
forces this hypothesis (Figure 2). In addition, one of the
main functions of the acidocalcisome, the modulation of
polyP homeostasis, could offer further insight into its
evolutionary link with V-H+PPases. The most striking
feature of acidocalcisome is the capacity to store polyP
and PPi. This polymer is present in every living cell, and
was long thought to be a molecular fossil conserved
from a prebiotic time with no remaining cellular func-
tion in the cytoplasm of cells. However, this molecule
has been rediscovered, and evidence is mounting for the
many functions of polyP. PolyP is an anionic, negatively
charged molecule. Its length varies from the dimeric
pyrophosphate to chains of thousands of orthopho-
sphate residues linked by phosphoanhydride bonds,
similar to those found in ATP. PolyP is a molecule that
was apparently present on Earth before life appeared
[48,49]. When the planet was still hot, phosphate might
have occurred largely in the form of polyP, which was
formed by a wide variety of abiotic processes including
the dehydration of orthophosphate at high temperatures
[50]. However, it was recently proposed that the prebio-
tic chemistry of phosphorus was shaped by phosphorous
(P) from extraterrestrial material, called schreibersite,
(Fe,Ni)3P. This mineral reacts with water to form more

soluble reduced P compounds; thus, the oxidation of
schreibersite in water forms several potentially prebiotic
phosphorous species including phosphite, pyrophosphate
and triphosphate, and phosphonates [51]. Alternatively,
it has been suggested that in the early Earth, cyanate
might have mediated the synthesis of PPi from CaH-
PO4·2H2O (brushite) [52]. Brushite is the only solid spe-
cies formed between pH 6 and 7, which is thought to
have been in the pH range of the earlier marine envir-
onment [53].
PPi and polyP can be used as a source of energy.

However, the developments of proton gradients are a
more sustainable strategy to generate potential energy
available for work in a cell. Proton gradients are as uni-
versal as proteins and nucleic acids in living organisms.
Therefore, the acidocalcisome, acting like an energy
source, might have played a critical function for survival
of the LUCA cells. Interestingly, V-H+ATPases and
ATPsynthases, which are capable of creating proton gra-
dients across the cell membranes, are among the most
ancient protein structures that are known [23]. In addi-
tion, it has been suggested that the catalytic and nonca-
talytic subunits found in these proteins evolved from the
same enzyme already present in the LUCA [54-56].
Remarkably, the V-H+ATPase was found in the acido-
calcisome of several eukaryotic species together with the
V-H+PPase [11,57]. Both V-H+PPase and V-H+ATPase
couple the transport of protons into cellular compart-
ments and enhance the acidification of the lumen of
this organelle [11]. Moreover, V-H+ATPases can “run in
reverse” to synthesize ATP when subjected to a suffi-
ciently large H+ electrochemical gradient [55], while V-
H+PPsaes can have the same ability to regenerate pyro-
phosphate[58,59]. PPi can be used as an alternative to
ATP, because of its similarity to the ATP bond struc-
ture. In addition, PPI acts as a biological energy donor
in photosynthesis [60,61]. Therefore, it has been sug-
gested that PPi might have been involved as an energy
carrier during the early evolution of life [62]. Taken
together, these observations suggest that the LUCA
might have used the polyP stored in the acidocalcisome
as a substrate for its V-H+PPases, which together with
the V-H+ATPase make the acidocalcisome capable of
sustained energy generation. As a result, the energy
demands of the LUCA in the harsh environments of
early Earth might have been met by a combination of
polyP hydrolysis, creation of a H+ gradient, and regen-
eration of ATP and PPi. Moreover, polyP may have
facilitated the assembly and orientation of the key mole-
cules such as phospholipids, nucleic acids, and proteins
[63]. The multifunctionality of polyP makes this mole-
cule a unique link between living organisms and the
inorganic world. PolyP structural and physico-chemical
characteristics are likely the reason this molecule was
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selected as a core component of living cells during evo-
lution [18]. Although the chemical identity of polyP has
remained unchanged, its function might have become
more specialized during the organism diversification
from the ancestral cells to apparently simple bacterial
cells and the platelets of mammals. Now a large body of
emerging evidence has begun to elucidate the role of
polyP in a wide variety of physiological processes includ-
ing physical and chemical stresses. Indeed, one of the
main functions of the acidocalcisome is linked to cellu-
lar responses to environmental stresses [64]. Therefore,
it would be entirely plausible to hypothesize that the
presence of the acidocalcisome in the LUCA might have
been advantageous for adapting to the environment of
the early Earth.

Conclusions
The sequence and domain analysis of the V-H+PPases
together with the characteristics and universal distribu-
tion of the volutin granules and its main component,
polyP, offer pertinent clues about the evolutionary his-
tory of the acidocalcisome. Our findings suggest that the
V-H+PPases, which are universally distributed and
tightly associated with the acidocalcisome, originated
prior to the divergence of the three superkingdoms.
Interestingly, volutin granules-polyphosphate bodies that
have been detected in Methanosarcina acetivorans and
other Archaea [35-37] are remarkably similar to acido-
calcisomes of Agrobacterium and Rhodospirillum [9,10].
Confirmation of the existence of the acidocalcisome in
the Archaea using biochemical, enzymological and cyto-
logical characterization will be significant because it will
further support the hypothesis that this organelle or its
precursors were indeed inherited directly from the
LUCA. Further characterization of the prokaryotic acid-
ocalcisome may confirm the presence of other proteins
previously detected within the eukaryotic acidocalci-
some. These findings could be used for a more compre-
hensive analysis of the evolutionary history of the
acidocalcisome. We trust these results will shed new
light in understanding the putative complexity of the
LUCA and the early evolution of the three superking-
doms of life.

Methods
Sequences and phylogenetic analysis
Sequences for vacuolar pyrophosphatases were down-
loaded in FASTA format obtained from the Pfam data-
base (see below), and were aligned with Clustal W [65].
Ambiguously aligned sites were removed using BioEdit
ver. 7.0.9 [66].
We initially collected 98 V-H+PPase sequences from

organisms spanning the three superkingdoms of life
including the unicellular parasites Trypanosoma,

Toxoplasma and Plasmodium [26,27] and the green
algae Chlamydomonas reinhardtii [28], where acidocal-
cisomes were first identified. The Pfam search indicated
that all of the 98 sequences have one or two PF03030
(V-H+PPase) domain. Consequently, we retrieved all the
protein sequences that harbor the domain from the
Pfam database. As a result, 776 protein sequences in
total were obtained and then aligned and edited, and
imported into phylogenetic reconstruction using Baye-
sian MCMC methods. By manually examining the topol-
ogy of the phylogenetic tree, we removed duplicated
sequences with no genetic distance and sequences that
are not identified taxonomically. Subsequently,
sequences that have paralogous relationships in the tree
were totally removed in this analysis because it is diffi-
cult to know which sequences of paralogs are true
orthologs for the pyrophosphatase on the tree. We
finally selected 279 out of 776 pyrophosphatase
sequences that consist of 31 eukaryal, 231 bacterial and
17 archaeal species (Additional File 2). The multiple
sequence alignment for the sequences followed by dele-
tion of ambiguously aligned sites resulted in 1,652 sites.
The conservation scores of individual aligned sites were
calculated using JALVIEW version 2 [67].
From the multiple sequence alignments manually edi-

ted, phylogenetic trees were reconstructed using
MrBayes version 3.1.2 [68], which runs two independent
Markov chain Monte Carlo (MCMC) chains for each
analysis and checks for convergence between them. The
JTT [69] model of amino acid replacement was used,
and 4 chains were run for each analysis, sampling trees
every 100 generations. 2,000,000 generations were run,
and 5,000 trees (25%) were discarded like burnin. The
resulting tree files were summarized into a consensus
tree showing posterior probabilities, visualized, and
color-coded using Dendroscope version 2 [70]. We
excluded the aligned sites that include gaps in the multi-
ple sequence alignment and calculated the overall mean
distance among the 279 sequences of the alignment
using MEGA5 with the JTT model [71]. For each of the
non-aligned 279 sequences, the topology of transmem-
brane helices was predicted using SCAMP with default
parameters [72]. We also used several other algorithmic
implementations, including TMMOD, an HMM-based
transmembrane protein prediction implementation [73],
and TOPCONS, a consensus prediction tool of mem-
brane protein topology [74].

Protein domain analysis
We used the Pfam database version 24.0 to assign pro-
tein domains to the vacuolar pyrophosphatase sequences
[42]. On the Pfam website, http://pfam.sanger.ac.uk/
family/PF03030#tabview=tab6, we performed a batch
search for the sequences against both the Pfam-A
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HMMs using an E-value of 10-4 [75]. To assign protein
domains at the levels of fold superfamily and fold family
that are defined in the Structural Classification of Pro-
teins [76], we downloaded a MYSQL database from the
SUPERFAMILY database, version 1.73 [77] and searched
the sequences against HMMs of fold superfamilies and
fold families using the iterative sequence alignment and
modeling system (SAM) method [78]. As with the Pfam
search, an E-value of 10-4 was used because it represents
an ideal cutoff to minimize false positive assignments in
the HMM searches [79].

Electron Microscopy
Agrobacterium tumefaciens cells were washed with
Dulbecco’s PBS and fixed for 1 h with 2.5% grade II
glutaraldehyde, 4% freshly prepared formaldehyde,
0.03% CaCl2, and 0.03% picric acid in 0.1 m cacodylate
buffer, pH 7.2. Bacteria were post-fixed with OsO4 for
45 min and then for 15 min with potassium ferricya-
nide, washed, and treated with 2% uranyl acetate for
30 min. Subsequently, samples were dehydrated by
successive incubations of 6 min with increasing con-
centrations of ethanol (10, 25, 36, 75, 95, and 100%) at
room temperature. Epoxy embedding was carried out
by resuspending the sample once in 1:1 ethanol/aceto-
nitrile, twice in 100% acetonitrile, and then 30 min in
1:1 epoxy/acetonitrile, 1.5 h in 3:1 epoxy/acetonitrile,
and 4 h in 100% epoxy. Embedded samples were poly-
merized for 20 h at 85°C. Epoxy blocks were ultrathin-
sectioned, sections were deposited on 300-mesh copper
grids and grids were stained with uranyl acetate for 30
min and triple lead stain (lead citrate, lead nitrate, and
lead acetate) for 1 min. For Methanosarcina acetivor-
ans, cells were processed for electron microscopy as
described in [80].
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Anthony Poole (University of Canterbury, New Zealand)
The work presented here makes an interesting case for

the existence of compartmentation early in evolution,
based on the presence of volutin granules/acidocalci-
somes in all three domains of life. The authors present
data indicating that vacuolar pyrophosphatases are
found in all three domains of life, and interpret this as
consistent with their conjecture that acidocalcisomes
predate the divergence of the three domains. It is clear
that the phylogeny of vacuolar pyrophosphatases cannot
be used to strongly argue for presence of this gene in
the LUCA, partly because of poor resolution in the

dataset, and partly because of unambiguous evidence for
horizontal gene transfer within the dataset. While there
are some clear cases of late transfers in their phylogeny,
it is harder to establish events deeper in the tree. Map-
ping the domain architecture of PF03030 onto this tree
does not obviously strengthen the evidence, though it is
striking to note the high level of conservation of the
domain itself.
While it certainly seems reasonable to expect that a

complex organelle may only have arisen once in evolu-
tion (meaning acidocalcisomes should be considered
ancient), such expectation is not evidence in itself. In
further testing this conjecture, it will therefore be inter-
esting to identify a broader set of common signature
proteins associated with this organelle, and examine
their evolutionary histories. In addition, examining
whether patterns of gain and loss of both the organelles
and key associated proteins can be ascertained using
more detailed phylogenies and character analyses within
a phylogenetic framework (as was successfully demon-
strated for hydrogenosomes - see Embley et al. Phil.
Trans. R. Soc. Lond. B (2003) 358, 191-203) will provide
an important means of testing the conjecture presented
here.
The following major claims are made on the basis of

the data presented:
1. That Archaea possess membrane-bound acidocalci-

somes/volutin granules.
2. That volutin granules evolved prior to the diver-

gence of the three domains.
These are bold claims. However, my reading of the

manuscript leads me to conclude that the authors do
not currently have sufficient evidence to fully support
either of these claims. I address each in turn.
1. That Archaea possess membrane-bound acidocalci-

somes/volutin granules.
Figure 1 presents electron micrographs of Methano-

sarcina acetivorans cells (panels c & d) wherein intracel-
lular structures are clearly visible as either black
(electron dense) or white (putatively empty). The resolu-
tion of panels c & d make it difficult to see any evidence
for a membrane; plate d in particular is pixellated. I
therefore find it difficult to evaluate the presented evi-
dence as being either supportive or dismissive of a
membrane surrounding these structures. No other cell
biological evidence is given to support the interpretation
presented in the paper, in notable contrast to the careful
and extensive experimental evidence previously pre-
sented by the lead author for the characterization of
acidocalcisome structures in the bacterium Agrobacter-
ium tumefaciens (J Biol Chem 278, 29971-8). The results
in figure 1 therefore are far too preliminary to be pre-
sented in support of acidocalcisomes or acidocalcisome-
like structures in Methanosarcina.
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I note that proton pyrophosphatase pumps have pre-
viously been identified in Archaea, having been experi-
mentally characterized in Pyrobaculum aerophilum
(Drozdowicz et al. 1999 FEBS Lett 460:505-12) – it
seems somewhat surprising that no reference to this
paper is made. From what I can ascertain, no data indi-
cate an association of these pumps with any internal
membrane structure in Pyrobaculum. I am therefore
curious as to whether acidocalcisome-like structures
have been characterized in this archaeon. Finally, given
that those authors were able to express the Pyrobaculum
pyrophosphatase in yeast, have antibodies have been
successfully raised against this enzyme? This is helpful
information, since my reading of the literature indicates
that these pumps are known to associate with acidocal-
cisomes, though not exclusively; with that in mind, it is
rather a leap to equate presence of H+-PPases in
Archaea with the presence of acidocalcisomes. Experi-
ments of the sort presented in the above-noted JBC
paper are essential for any claim for the existence of
such structures in Archaea.
Authors’ Response: In this paper we neither directly

claim that the volutin granules of Archaea are acidocal-
cisomes nor do we explicitly extrapolate acidocalcisome
presence based on identification of V-H+-PPases in Gen-
bank. What we are postulating is that the volutin gran-
ules observed with electron microscopy in
Methanosarcina are indeed very similar to the volutin
granules of Agrobacterium and Rhodospirillum, which
now are known to be acidocalcisomes. In addition, our
hypothesis is based on previous publications where
micrographs of the volutin granules of Methanosarcina
and other Archaea such as Acidithiobacillus ferrooxidans
and Sulfolobus metallicus are structurally very similar to
the acidocalcisomes found in bacteria. Our intention of
showing these structures is to provide a visual connection
between volutin granules (which we do have direct evi-
dence of) and acidocalcisomes (an inference that requires
considerably more evidence to demonstrate).
We consider that the information we present in this

paper is significant because it provides concrete facts and
clues about the possible presence of this organelle in
Archaea. In addition, this work prompts further inquiry
and exploration of this organelle in other organisms
(including the full characterization of the volutin gran-
ules in Archaea as suggested by the reviewer). The full
characterization of the volutin granules of Methanosar-
cina is not a trivial matter. Based on similar previous
studies, it might well take 1-2 years of work to complete.
Therefore, the present scope of this paper is not to prove
that the volutin granules of Methanosarcina are acido-
calcisomes, but instead illustrate our hypothesis that
they are promising candidates (among others) to be acid-
ocalcisomes. We appreciate the note about the work of

Drozdowicz et al. (1999). The reference has now been
included. Originally, we did not include this reference
because the discovery of V-H+PPase in Pyrobaculum was
made more than 10 years ago and we considered this
information to be common knowledge (we did include
this species in our analysis). Interestingly, Drozdowicz et
al. (1999) also made an early suggestion of the possibility
that the V-H+PPases could have originated in the last
universal common ancestor. However, and as the
reviewer points out, no data is presented in the paper
that indicates an association of these pumps with any
internal membrane structure in Pyrobaculum. This is
not surprising. At the time of the publication of this
paper, the association between volutin granules and
acidocalcisomes in bacteria had not been reported.
Moreover, the absence of organelles (similar to eukaryotic
organelles) in bacteria was at that time already consid-
ered a dogma in microbiology. Consequently, the search
for a membrane bound organelle in bacteria was not
undertaken. In the case of Agrobacterium for example,
the presence of volutin granules and vacuolar pyropho-
sphatases were described a long time ago, but it was not
until 2003 when the volutin granules of Agrobacterium
were rediscovered as acidocalcisomes and the V-H+PPase
was located in their surrounding membrane. Even more
eloquent is the fact that in Rhodospirillum rubrum, the
microbe where the V-H+PPase was first discovered, the
volutin granules were never investigated until 2004,
when they were confirmed as acidocalcisomes and the V-
H+PPase also localized in their surrounding membranes.
2. That volutin granules evolved prior to the diver-

gence of the three domains.
The authors also present genomic evidence (H+-PPase

sequences) in support of acidocalcisomes in archaea.
The implicit argument in this part of the paper is that
one can extrapolate acidocalcisome presence based on
identification of H+-PPases in Genbank.
There are two interesting points here. First, it is nice

to see that the authors are honest regarding the limits
of phylogeny in this particular instance. The previously
inflammatory acronym MUTOG (Myth of the Universal
Tree from One Gene – coined by David Penny) does
need to be taken seriously following the recognition that
most genes do not carry sufficient phylogenetic signal to
trace the relationships between species across the three
domains. Moreover, with HGT an indisputable factor in
gene distribution, this caution is not only welcome, but
necessary. Against this backdrop, that a clearly resolved
three-domain tree cannot be generated for the V-H
+PPases (for instance, the archaeal sequences do not
form a monophyly: Methanococcoides is on alone
branch, Pyrobaculum and Caldivirga form a clade, and
there is a third clade of five sequences, including Metha-
nosarcina acetivorans, that connects the tree at the large
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central polytomy) is not evidence against an ancient pre-
LUCA origin. Having said that, it is not evidence in
favor of it either. The dual forces of mutation and gene
transfer are having a major impact on the reconstruc-
tion of the deep evolutionary past and it may be that
signal has in most cases been heavily degraded, to the
point that it cannot be informatively identified.
The second point lies at the heart of this paper. The

triumph of endosymbiotic theory has been the recogni-
tion that some key eukaryotic organelles did not evolve
de novo, but are instead the result of one cell becoming
resident within another. The emerging view of complex
membrane structures has therefore been one of continu-
ity (TCS), though this may yet be challenged by the
recognition that both bacteria and archaea can harbor
complex cell structures. In the case of acidocalcisome/
volutin granule organelles, it seems plausible to suggest
a deep evolutionary origin, given the presence of both
the H+PPases and these organelles across representatives
from all three domains of life. This would suggest that
multiple losses have occurred throughout evolution,
from a more compartmentally complex common ances-
tor. What we still don’t know, and are challenged to
think about by this paper, is whether complex internal
membrane structures such as these could arise multiple
times independently. In this respect, comparative ana-
lyses do have an important role to play in establishing
what the minimum number of components required to
support an acidocalcisome or volutin granule may be.
The variability in membrane number and architecture
observed across Planctomycetes (Fuerst) does suggest a
greater capacity for evolution of novel membranes than
suggested by a stringently ‘genetic’ view (sensu Cavalier-
Smith) of membrane evolution. More fine-scale exami-
nation of whether the distribution of key proteins loca-
lized to acidocalcisomes/volutin granules completely
overlaps with the existence of these organelles. In addi-
tion, looking at evolution within a group (e.g. relatives
of Agrobacterium tumefaciens) may help elucidate
whether or not horizontal gene transfer does play a role
in the emergence of such complex cell structure. It
might be time to ask just whether our assumptions
about how ‘hard’ it is to evolve a compartment are in
need of scrutiny.
Authors’ Response: We agree with the reviewer that the

poor phylogenetic resolution of the tree generated from
V-H+PPase gene sequences, a common finding in many
genes that exist in a genome, tells little about the ances-
trality of the V-H+PPase gene. Lack of phylogenetic signal
in the V-H+PPase sequences is probably the result of (i)
high sequence conservation of segments that correspond
to the Pfam 03030 domain that are present in each and
every one of the sequences examined, including sites
necessary to maintain fold structure and sites needed for

catalytic activity, and (ii) segments of sequence that are
highly variable and prone to sequence saturation that
contain highly degraded phylogenetic signal and prob-
ably arise from the complex and frustrated interplay
between stability and function that exists in proteins
[81]. In contrast, the universal distribution of the Pfam
03030 domain in the tree of V-H+PPase sequences and
in every other V-H+PPase sequence we examined pro-
vides strong support to the suggestion that the functional
and structural core of this domain was already present
in LUCA and was vertically distributed without loss in
all lineages of the tree of life. The size of the domain (an
average of 603 amino acids covering 94% of the sequence
with a model length of 682 amino acids) was calculated
based on start and end positions on the HMM (Pfam)
alignment of sequences obtained by searches in the San-
ger database. The average identity of the complete align-
ment is 44%. Despite sequence variability, the domain is
therefore highly conserved and universally present. More
information about seed sequences and PF03030 domain
distributions can be found elsewhere. (http://pfam.sanger.
ac.uk/family/PF03030#tabview=tab6).
The second point raised by the reviewer is important

for the genesis of organelles and cellular structure. The
proteome of LUCA was recently reconstructed and was
shown to embody the functions of a complex organism,
with pathways for the biosynthesis of membrane sn1,2
glycerol ester and ether lipids [82]. An ancient volutin/
acidocalcisome structure present in LUCA implies gra-
dual evolution of internal cellular structure in the uni-
versal ancestor of cellular life. By definition, LUCA
implies the absence of cellular lineages. Consequently, a
process of endosymbiosis between lineages similar to that
used to explain the origin of mitochondria or plastids
could not be responsible for the rise of volutin/acidocalci-
some organelles without invoking endosymbiosis was an
ancient and pervasive property of LUCA and that these
polyphosphate harboring cellular structures were rem-
nants of that cellular state. Alternatively, cellular struc-
ture other than an external membrane may be the
logical consequence of energetic and architectural con-
straints operating on membrane organization [83]. In
vitro experiments of membrane biogenesis show consider-
able diversity of cellular shape and structure, with cellu-
lar engulfment being a common outcome [84,85].
The argument presented here, that compartmentation

is much older than we may expect based on the pre-
sumed late origin of the eukaryote nucleus and endo-
membrane system, has been given an additional boost in
this manuscript from Seufferheld and colleagues. How-
ever, the jury is certainly still out – on the present data,
it is difficult to distinguish between either a deep evolu-
tionary origin with numerous losses, or ‘convergent’ ori-
gins (of the organelles, not the H+PPases). We do not

Seufferheld et al. Biology Direct 2011, 6:50
http://www.biology-direct.com/content/6/1/50

Page 10 of 15

http://pfam.sanger.ac.uk/family/PF03030#tabview=tab6
http://pfam.sanger.ac.uk/family/PF03030#tabview=tab6


yet know whether independent recruitment (via hori-
zontal transfer) of key functionalities, such as the H
+PPases, are sufficient for the independent evolution of
a new membrane-bound organelle. The authors make
the reasonable assumption that loss is more likely, and
bolster their argument by relating their provocative
model a possible early role for pyrophosphate/polypho-
sphate in the origin and early evolution of life. The
obvious problem with scenarios that invoke loss from a
more complex ancestral state is that one also needs to
explain the original gain. The present manuscript does
not give us an answer, but this and other results do
challenge us to keep an open mind.
Authors’ Response: A scenario of multiple parallel or

convergent origins of volutin/acidocalcisome cellular
structures in lineages is possible but is less parsimonious
than a single origin in LUCA. The reviewer however is
right that a more comprehensive analysis of molecular
machinery responsible for key functionalities of this com-
partment will help understand the role that horizontal
gene transfer and molecular recruitment may have in
shaping cellular structure. Phylogenomic analysis of the
acidocalcisome-associated protein repertoire could be
very informative in this regard.

Reviewer’s report 2
Lakshminarayan Iyer (NIH/NLM/NCBI)
Seufferheld and colleagues perform a phylogenetic

analysis of the V-H+ PPase domain, a component of the
acidocalcisome in the eukaryotes and bacteria. They
argue that the acidocalcisome was present in LUCA
along with the V-H+ PPase.
Critique:
The phylogenetic analysis of the V-H+ PPases suggests

a complicated evolutionary history with loss and possi-
ble lateral transfer playing a role in their distribution.
However, reconstruction to LUCA is not strongly sup-
ported. Firstly this domain family is not widespread in
the archaea. Further, the major archaeal branches (e.g.
eury- and cren- archaea) also do not cluster with each
other. Even within the bacteria, homologs from mono-
phyletic groups do not group with each other. Given the
presence of this family in diverse bacteria, I would find
it more parsimonious to reconstruct the evolutionary
history of this family as having evolved in the bacteria
with subsequent lateral transfer to the archaea and
eukaryotes.
The paragraph on the Pfam domains does not fit into

the paper since these proteins show no domain com-
plexity. Further, in this case the Pfam domain deposited
in the database only captures the key catalytic motif of
the protein. If the authors wish to discuss the domain in
terms of sequence, they can write about the various

transmembrane helices and the context of the catalytic
residues.
Authors’ Response: Our phylogenetic analyses of the V-

H+PPase proteins include the amino acid sequence of the
entire membrane-associated protein and not only of the
domain regions. Furthermore, our phylogenetic tree
describes the evolution of the sequence in 279 organisms
spanning the three superkingdoms of life, Archaea (17
species), Bacteria (231), and Eukarya (31). These 279
sequences were selected from an analysis of a larger set
of 776 sequences, following removal of paralogs or
sequences with no genetic distance or that have no clear
taxonomical descriptions. We find that the V-H+PPases
are present in every one of the 776 organism analyzed
and that the Pfam domain PF03030 is always present
and captures the main sequence profile of the structure
of these proteins. The claim of the reviewer that the
domain is absent in Archaea and that its evolutionary
history follows a complex series of losses and possible
gains through LGT is therefore incorrect. The protein
and associated domain is simply present everywhere.
While variants could have been recruited by LGT and
replaced, the protein was never lost in any lineage exam-
ined. We agree that LGT events are possible. They could
have been responsible for the lack of phylogenetic signal
that limits the correct grouping of organisms in the V-H+

PPase tree. However, the topology of the tree has clearly
defined groups that match taxonomical classification,
including the Euryarchaeota, Proteobacteria, Thermoto-
gales, Actinobacteria and Firmicutes. Some cases show
non-monophyletic groupings that could have resulted
from LGT. Nevertheless, it is important to notice that in
several of these non-monophyletic groupings the phyloge-
netic support is very poor 0.5 to 0.76. While the tree of
the vacuolar pyrophosphatase is one gene tree and has a
largely star-like internal topology, it is significant that
the phylogenetic reconstruction of this gene maintains
essentially the three superkingdoms of life.
An analysis of the mean distance between protein

sequences using the JTT model with gaps excluded in the
analysis showed that levels of sequence identity were
64.4%, much larger the 30% expected in the presence of
high conservation levels. Using JALVIEW, we extracted
conservation scores (in a scale from 0 to 11) for every
nucleotide site with a proportion of gaps that is less than
25%. Analysis of the 523 sites (out of the total 1,652 in
the alignment) that fulfills that criterion, shows the vast
majority of sites have conservation scores above 7 (251
sites, 48%) and many have scores above 10 (90 sites,
17%) (Figure 3). These results support the notion that V-
H+PPases have highly conserved protein sequences and
that the variable regions have little or highly degraded
phylogenetic signal. This explains the star-like

Seufferheld et al. Biology Direct 2011, 6:50
http://www.biology-direct.com/content/6/1/50

Page 11 of 15



appearance and poorly supported nature of the V-H+

PPase tree and suggests the V-H+PPase domain is old,
and from a structural perspective, is highly canalized.
This conclusion, together with its wide if not universal
distribution in life, suggests that the most parsimonious
explanation of the origin of this membrane-associated
protein is in LUCA and not in any lineage of the diversi-
fied world of organisms, as the reviewer claims.
While a minority of sequences contain a duplicated

PF03030 arrangement or are associated with another
domain (PB008043), most contain a single Pfam domain.
Thus, and as the reviewer correctly points out, our

analyses show V-H+PPases do not exhibit a complex
domain organization. Complex domain arrangements
are the hallmark of recently evolved proteins in the pro-
tein world [25]. Consequently, the domain make up of
V-H+PPases provides additional clues in support of their
ancient origin. Remarkably, an analysis of trans-mem-
brane helices (TMH) of the protein shows also high levels
of structural conservation. The number of TMHs ranges
9-11with an average of 10.2 ± 0.75 (SD) and TMHs hold
an average of 243.2 ± 20.30 amino acid residues. TMHs
therefore represent on average 42.1 ± 3.46% of the pro-
tein. Figure 3 illustrates the position of the two PF03030

Figure 3 Sequence conservation and transmembrane helical (TMH) make up of V-H+PPases. (A) Sequence conservation of the set of
aligned V-H+PPase sequences illustrated with sequence conservation scores obtained with JALVIEW. (B) Pfam domain definitions and TMH
regions in the V-H+PPase of R. rubrum. The plots show TMH definitions obtained with TMMOD and TOPCONS. TMMOD TMH definitions are given
together with posterior probabilities of the existence of a TMH region. The TOPCONS definitions are from a consensus
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domain and the 10 TMHs in the sequence of R. rubrum
YP426905, the model system for acidocalcisome studies.
The V-H+PPases are therefore evolutionarily conserved
at different levels, including sequence, domain structure,
and TMH make-up, a fact that speaks about their
ancient origins.

Reviewer’s report 3
Daniel Kahn (Laboratoire de Biométrie et Biologie Évo-
lutive, Université Lyon, France)
This reviewer provided no comments for publication

Additional material

Additional file 1: Multiple alignments of PF03030 domain
sequences distributed in the three superkingdoms (Archaea,
Bacteria, and Eukarya). Shown above is the strongly conserved 57-
residue region of the V-H+-PPase identified by Hedlund et al [53] and
viewed using JALVIEW provided by the Pfam database.

Additional file 2: Taxa and accession numbers used in the
phylogenetic analyses.
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