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Abstract

Eugene V. Koonin.

Background: In several studies, secondary structures of ribosomal genes have been used to improve the quality of
phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking.

Results: This is the first study to counter this deficiency. We inspected the accuracy and robustness of
phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up
to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed
spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of
sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was
investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly
show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in
contrast to sequence only data, whereas a doubled marker size only accounts for robustness.

Conclusions: Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information
content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for
taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference
or maximum parsimony may equally profit from secondary structure inclusion.
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Background

In the last decades, traditional morphological systema-
tics has been augmented by novel molecular phyloge-
netics. One advantage of molecular data is the increased
amount of parsimonious informative characters retained
from genes that are usable for the inference of evolu-
tionary relationships. This transition from few morpho-
logical features to abundant nucleotide or amino acid
information has been a breakthrough for investigations
of species relationships [1].
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However, genetic data often inherits ambiguous infor-
mation about phylogenetic relationships. Especially for
very closely or distantly related taxa, certain parts of
data sets may contradict each other or carry insufficient
information. Phylogeneticists counter such problems e.g.
by increase of the marker’s size by inclusion of more
nucleotides, thus increasing the amount of available data
[2]. Moreover, different markers are combined, so that
for example nuclear or mitochondrial genes are concate-
nated to increase the power of phylogenetic inferences
[3,4]. These methods however face new problems.
Increase of the number of nucleotides does not necessa-
rily improve the accuracy of a tree reconstruction. Sto-
chastically, only the robustness of the results is
increased, if the complete elongated sequence evolved
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under the same evolutionary constraints [5]. The second
method, marker concatenation, combines genes that
result from different evolutionary processes and thus
indeed include different evolutionary signals that may
improve accuracy. However, they need to be investigated
with marker-specific phylogenetic procedures as e.g.
varying substitution models [6-8].

In this study we evaluate an alternative method applic-
able to ribosomal RNA (rRNA) genes that increases
information content without addition of nucleotides. As
non-coding RNA fragments of the genome, the rRNA
gene is generally capable of folding into a secondary
structure. In most cases, these structures are necessary
for cell function and are thus evolutionarily conserved.
Accordingly, structural information may be treated as a
conserved marker. Secondary structures of ribosomal
RNA therefore offer an additional source of information
for tree reconstruction. In particular this is a major
advantage in cases where secondary structures are very
conserved, yet mutations of nucleotides occur fre-
quently. This applies to the internal transcribed spacer 2
(ITS2) of the eukaryote ribosomal cistron [9,10]. Its sec-
ondary structure is evolutionarily maintained as it is of
importance in ribogenesis. By contrast, the evolutionary
rate of its sequence is relatively high and it is not pre-
sent in the mature ribosome.

ITS2 sequences have been commonly used to infer
phylogenies. Moreover, several studies already included
secondary structures in their analyses either by morpho-
metrical matrices or by sequence-structure alignments
[11-16]. All these studies agree that the resulting recon-
structions are improved by the secondary structures.
However, no study has investigated and evaluated this
benefit in detail. Evaluations of phylogenetic procedures
are typically performed by two different means: the
most commonly applied confidence measure in phyloge-
netics is non-parametric bootstrapping. Bootstrap sup-
port values are a measure of robustness of the tree and
allow identification of trees or parts of trees that are not
unambiguously supported by the data [17,18]. The sec-
ond point of interest is accuracy measured by the dis-
tance between the real and the reconstructed tree. As
the ‘real’ biological tree of life is not available, a switch
to sequence simulations along ‘real” artificial trees is
necessary [19]. In this study we (1) simulate ITS2
sequences along evolutionary trees and (2) compare the
results of tree reconstructions by sequence only data
and combined sequence-structure data. Additionally, (3)
the benefit of structural data is compared with that of
sequence elongation. Furthermore, (4) a small biological
example of plant phylogeny is presented in which recon-
structions that either base on sequence-only or
sequence-structure data are compared.
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Results

The overall calculation time took 80,000 processor
hours on our 40 nodes network cluster. Each node com-
prised four Xeon 2.33 GHz cores. In total 448 GB RAM
were used by the cluster.

The shapes of bootstrap, Quartet distance and Robin-
son-Foulds distance distributions were similar for equi-
distant and variable distance trees. However, the
branches of the trees for each underlying data set
(sequence, sequence-structure and doubled sequence)
received higher bootstrap support values and fewer false
splits with constant branch lengths compared to variable
distances, though differences were minimal (Figs. 1, 2, 3
and 4). Only Quartet distances are shown, since they are
congruent with the results of the Robinson-Foulds dis-
tance (Additional file 1). Additionally, we included a
relative per-branch representation of accuracy divided
by the number of internal nodes in the Additional file 1.
Bootstrap values and tree distances obtained by differing
ancestor sequences were similar in their distributions
and thus combined for each scenario during the analysis
process. Naturally, with increasing branch lengths, all
three investigated data sets (sequences, doubled
sequences and sequence-structure) became less accurate
and robust, i.e. Quartet distances increased and boot-
strap support of nodes decreased. This effect was also
observable with an increasing number of external nodes.

Differences between the three methods also increased
with evolutionary distance and number of taxa. Thus,
the three methods (especially sequence-structure and
doubled sequence) yielded almost similar results with
low divergence (e.g. branch length 0.05) and few taxa (e.
g. 10 taxa), whereas the results were different with
branch lengths above 0.25 and at least 14 taxa.

For the lowest branch length we simulated, i.e. 0.025,
in comparison to medium divergences a decreased accu-
racy and bootstrap support was observable with all three
methods. This is explainable by too few base changes as
providing information for phylogenetic tree
reconstruction.

Sequence data performed best in reconstruction of
trees (as the maximum and minimum of the spline-
curves for bootstraps and tree distances, respectively) at
a divergence level between 0.05 and 0.1. Sequence-struc-
ture shifted the optimal performance to higher diver-
gences. This effect was also observable for doubled
sequence, however it was not as prominent as for
sequence-structure.

In general, the robustness of recalculated trees was
highest for doubled sequence information contents.
However, inclusion of secondary structures largely
increased the bootstrap support values of nodes in con-
trast to normal sequence data. There is thus a



Keller et al. Biology Direct 2010, 5:4
http://www.biology-direct.com/content/5/1/4

Page 3 of 12

o
S _
o _|
o
o _|
@
o
~
(]
s ?
>
Q.
g 3
=
[2]
@8
oO
@ ¥
o _|
()
- - 10 Taxa
° — 14 Taxa
QT 18 Taxa
o |
Sequence Doubled Sequence Sequence-Structure
o
rm——r—T1 1T T T T T rm——r—T 1T 1T 1T 1T T re——r—T1T 17T T T T T1T711
no ©o O © O O O O O nNno © O © O ©o O O o No © O © O O O o o
A O v O v O v O v A O v O v O uvu O Aaun O v O v O v O v
©C = = § N @ o I 3 e v - d N @ o I 3 co = - d o I <
OO O ©O © © O O o o OO O O O © O O o o OO ©O O © O © O ©o o
(b) Branch lengths
o
o [} Y rY rY
- < J L]
o ISequence
[} e @ Doubled Sequence °
B Sequence-Structure
o
@
I T T T T T T T T 1
n o o o o o o o o o
[3Y] 0 o 0 o n o 0 o 0
o o - - N I3V ™ (5] < <
o o o o o o o o o o

Branch lengths

Figure 1 Bootstrap support values for equidistant trees. All five ancestral sequences were combined for a given scenario. (a) Boxplot and
solid splines are for 14 taxa scenarios of the three methods. Dashed lines and dotted lines are splines of ten and 18 taxa, respectively. (b) Direct
comparison of the 14 taxa splines and medians of all three methods. Sample sizes are 7,000, 11,000 and 15,000 for each of the ten, 14 and 18
taxa scenarios, respectively. Splines show a decrease of robustness with increased number of taxa used and increased branch lengths. Secondary
structure and doubled sequences show an improvement in robustness in contrast to normal sequence information.

robustness benefit to using secondary structure that is
not directly comparable to benefits achieved by marker
elongation.

Additionally, the accuracy of the trees benefitted from
secondary structures: the number of false splits was sig-
nificantly reduced compared to sequence as well as
doubled sequence data. Thus sequences-structures
yielded the most accurate results in our comparisons.

The results of trees reconstructed with sequence data
and sequence-structure data for the plant example were
very different. Sequence only information resulted in a
correct topology reconstruction of genera (Fig. 5). How-
ever, the family of the Malvaceae could not be resolved.
This supports the notion that the optimum divergence

level of ITS2 sequences is at the species/genus level (see
as well Additional file 2). By contrast, all genera and
families could be resolved with secondary structures.
This results in a flawless tree topology and highlights
the improved accuracy. Furthermore, the robustness of
the tree has been enhanced and the optimal divergence
level has been widened.

Discussion

Number of Taxa and Divergence

Based on the simulations, we draw several conclusions
regarding phylogenetic tree reconstructions with and
without secondary structures. First of all, the robustness
of a tree and its accuracy were significantly negatively
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Figure 2 Quartet distances values for equidistant trees. All five ancestral sequences were combined for a given scenario. (a) Boxplot and
solid splines are for 14 taxa scenarios of the three methods. Dashed lines and dotted lines are splines of ten and 18 taxa, respectively. (b) Direct
comparison of the 14 taxa splines and medians of all three methods. The samples size of each scenario is 1,000. The accuracy of tree topologies
decreases with more taxa and greater evolutionary distances between sequences. Trees calculated with secondary structures or doubled
sequences show greater accuracy than those determined with normal sequences.
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correlated with number of taxa. This is the case even for
normalized per-branch accuracy data (Additional file 1).
Graybeal [20] argues that an increased taxon sampling
enhances accuracy of a resolved tree in the ‘Felsenstein
zone’. We argue that such an enhancement is the case
for special occurrences of long branch attraction, but
not, according to our study, for general tree topologies.

This is in accordance with Bremer et al. [2] as well as
Rokas and Carroll [21], who also notice a slight decrease
in accuracy with increased taxon sampling.

Secondly, according to Yang [22], a gene has an opti-
mum level of sequence divergence for phylogenetic stu-
dies. The upper limits are reached when the observed
difference is saturated, whereas the lower boundary is
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Figure 3 Bootstrap support values for trees with variable branch lengths. Subfigures are explained in Figure 1. Sample sizes are 7,000,
11,000 and 15,000 for each of the ten, 14 and 18 taxa scenarios, respectively.

lack of information content caused by too few substitu-
tions. We observed a similar pattern so that we are able
to estimate the divergence level of best performance for
ITS2 sequences with and without secondary structures.
However, these differ for sequence data and sequence-
structure data in two ways: inclusion of secondary struc-
tures shifted the best performance to a higher level of
divergence. Thus, organisms that are more distantly
related can be included in phylogenies. Furthermore, the
range of optimal performance is wider for sequence-

structure data. A shift to more distantly related
sequences does not necessarily mean that relationships
of closely related taxa are not any more resolvable. In a
review Coleman [9] also identified this potential of ITS2
secondary structures by discussing several case studies.
The small biological example of the Malvales and Sapin-
dales in this study supports this notion. Our study
mainly covers artificial data: a large scale comparison
with biological data regarding the extension of the per-
formance span is still desirable.
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Robustness and Accuracy

A substantial benefit to tree robustness was observable
when including secondary structure information. Trees
reconstructed with secondary structures are generally
better bootstrap-supported by the data than those
resulting from sequence only data [18]. This is caused
by a gain of information content due to increased num-
ber of states possible for each nucleotide (unpaired,
paired). This information is extractable with a suitable
combined score matrix as implemented in 4SALE [23]
or similar by site partitioning as in PHASE [24].

The major benefit we identified for phylogenetics is
the improvement of accuracy. Sequences-structures per-
formed far better than sequences alone in matching the
‘real’ tree, especially for high divergences. The resulting
immense profit for phylogeneticists is obvious. It is the
most crucial property of a phylogenetic tree to be as
accurate as possible.

Secondary structure vs. Marker elongation

Both, inclusion of secondary structures and increase of
the number of nucleotides improved the reconstructed
phylogenetic trees. However, inclusion of secondary
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structure in the reconstruction process is not equivalent
to marker elongation. The major effect of more nucleo-
tides is to increase the bootstrap support values. This
has already been demonstrated by other authors [2,5].
With a theoretical increase of marker’s length to infi-
nitely large, corresponding bootstraps within a tree will
stochastically be maximized as they exactly represent
the data. In contrast, the benefit of secondary structures
is predominantly the improvement of a tree’s accuracy.
Thus, additional sequence elongation and secondary
structures represent different types of information
increase. As the secondary structure analysis already
covers the whole marker region of the ITS2 sequence,
sequence elongation is not possible for real biological
data.

The results retained in this study for the ITS2 region
may be transfered to other ribosomal genes. However,
the combination of a conserved secondary structure
with a variable sequence seems to be of major benefit in
phylogenetic studies. Other ribosomal markers, as e.g.
5.8S or 28S rRNA genes may profit less from addition
of secondary structures than the ITS2, as the markers
themselves are relatively conserved.

Conclusions

Secondary structures of ribosomal RNA provide a valu-
able gain of information content that is useful for phylo-
genetics. Both, the robustness and accuracy of tree
reconstructions are improved. Furthermore, this enlarges
the optimal range of divergence levels for taxonomic
inferences with ITS2 sequences. Thus, the usage of ITS2
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sequence together with secondary structure for taxo-
nomic inferences is recommended [25]. This pipeline is
theoretically as well applicable to other reconstruction
methods as maximum likelihood, bayesian inference or
maximum parsimony. They may equally profit from sec-
ondary structure inclusion.

Methods

Simulation of ITS2 Sequences

Simulations of ITS2 sequences were performed with
SISSI v0.98 [26]. Secondary structures were included in
the simulation process of coevolution by application of
two separate substitution models (Fig. 6, Additional file
3: Tab. 1 and Tab. 2): firstly we used a nucleotide 4 x 4
GTR substitution model Q,., for the evolution of
unpaired nucleotides and secondly a dinucleotide 16 x
16 GTR substitution model Q,,., for substitution of
bases that form stem regions [11,27]. Qy; and Qgyyer
were both estimated by a manually verified alignment
based on 500 individual ITS2 sequences and structures
with a variant of the method described by Miiller and
Vingron [28]. For lack of information about insertion
and deletion events in the ITS2 region, such were not
included into the simulations.

Simulations were started given (a) an ancestral
sequence and (b) a reference tree that contained (c) spe-
cific branch lengths and (d) a certain number of taxa. In
total, we used 10 different branch lengths, 5 ancestral
sequences and 6 different trees (3 topologies for equal
and variable branch length) resulting in 300 different
combinatory conditions as evolutionary scenarios. (a)
Ancestral sequences and structures were taken from the
ITS2 database after HMM annotation [29-31]. They
represented a cross section of the Eukaryota i.e. Arabi-
dopsis (Plants) [GenBank:1245677], Babesia (Alveolata)

[GenBank:119709754], Gigaspora (Fungi) [Gen-
Bank:3493494], Gonium (Green Algae) [Gen-
Bank:3192577] and Haliotis (Animals)

[GenBank:15810877]. (b) The complete procedure was
accomplished for two trees that shared a similar topol-
ogy (Fig. 7). Tree shapes were chosen to resemble trees
of a previously published simulation study [32]. The first
was a tree that included constant branch lengths,
whereas the second tree alternately varied +/- 50% of a
given branch length. (c) The used branch lengths were
0.025, 0.05, 0.01, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45.
For comparison, pairwise distances of a typical phyloge-
netic study with ITS2 sequences have been added as
Additional file 2. (d) Reference trees were calculated for
10, 14 and 18 taxa. The ancestral sequence served as an
origin of the simulated sequences, but was not included
in the reconstruction process and resulting tree.

Each simulated sequence set contained sequences
according to the number of taxa. Sequence sets were
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accepted as composed of ITS2-like sequences if the
structure of each sequence had been determinable by
homology modeling with a threshold of 75% helix trans-
fer [33]. For homology modeling, the ancestral sequence
served as a template. Thus, each structure had four
helices with the third helix as the longest. This accep-
tance scheme has been introduced for two reasons: the
data is very similar to biological samples [10] and the
structure prediction method is equal to that used at the
ITS2 database [30] as well as phylogenetic reconstruc-
tions [25]. In total, 2,000 valid sequence sets were
obtained for each scenario, what corresponds to 600,000
sequence sets summarized over all scenarios.

The complete sequence set is downloadable at the
Supplements section of the ITS2 Database http://its2.
bioapps.biozentrum.uni-wuerzburg.de/.

Sequences and Structures of the Data Sets

Sequence data set: for each scenario, the order of the
2,000 simulated sequence sets retained from SISSI was
shuffled. The first 1,000 were chosen and used as a
sequence data set.

Sequence-structure data set: for each of the sequence
sets used in the sequence data set, we determined the
individual secondary structure of each sequence by
homology modeling with at least 75% helix transfer [33].
The ancestral sequence was used as a template. Thus,
for the sequence-structure data set we combined
sequences with their respective secondary structures
according to Seibel et al. [23]. Note, this approach using
individual secondary structures is in contrast to align-
ments only guided by a consensus structure. Doubled
nucleotide data set: The remaining 1,000 simulated
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sequence sets were used to exemplify effects on phylo-
genetic analyses of a hypothetical ITS2 gene size dupli-
cation. Each sequence of these sets was concatenated
with a corresponding sequence of the sequence data set
(same taxon in the simulation trees). Thus we received a
data set of doubled nucleotide content that includes as
well 1,000 sequence sets.

Reconstruction of Simulated Phylogenetic Trees

For each simulated sequence set, ClustalW v2.0.10 [34]
was used for calculation of multiple sequence

alignments. In the cases of sequences and doubled
sequences we used an ITS2 specific 4 x 4 scoring matrix
[29,30]. For secondary structures, we translated
sequence-structure information prior to alignment into
pseudoproteins as described for 4SALE v1.5 [23,35].
Pseudoproteins were coded such that each of the four
nucleotides may be present in three different states:
unpaired, opening base-pair and closing base-pair. Thus,
an ITS2 specific 12 x 12 scoring matrix was used for
calculation of the alignment [23].
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Reconstruction of phylogenetic trees for all trees has
been performed with Profile Neighbor Joining (PNJ) of a
console version of ProfDistS 0.9.8 [36,37]. With this we
estimated improvements due to secondary structures, but
keep the method of reconstruction constant. We decided
in favor of PNJ and against other methods like maximum
likelihood, Bayesian inference and parsimony for several
reasons: the distance matrices are independent of insertion
and deletion events, the algorithm is very fast and a pipe-
line for reconstructions with PNJ using secondary struc-
tures is already published [25]. However beneficial effects
may be transferable to these methods. Profile building was
allowed with default settings. General time reversible mod-
els (GTRs) were applied with the corresponding 4 x 4 and
12 x 12 substitution matrices for sequences and
sequences-structures, respectively.

Robustness and Accuracy

Profile Neighbor Joining trees were bootstrapped with
100 pseudo-replicates to retain information about the
stability of the resulting tree. Bootstrap support values
of all tree branches obtained from the 1,000 sequence
sets of a certain scenario were extracted and pooled.
Furthermore, the resulting trees were compared to the
respective reference tree. In this regard, two tree dis-
tance quantification methods were applied, Robinson-
Foulds distances using the Phylip Package v3.68 [38]
and Quartet distances using Qdist v1.0.6 [39]. Results of
all sequence sets were combined for a given scenario to
receive the distributions of bootstrap values, Quartet
distances and Robinson-Foulds distances, respectively.
The result of each 14-taxa-scenario was plotted as a
boxplot with notches using R v2.9.0 [40]. An interpolat-
ing spline curve was added. For the remaining scenarios
(10 and 18 taxa) only spline curves were added for the
sake of clarity.

Short biological case study

Here we provide a short example of ITS2 secondary
structure phylogeny, applied to biological data: we
sampled sequences of three plant families using the
ITS2-database browse feature (database accessed: June
2009): Thymelaeaceae (Malvales), Malvalceae (Malvales)
and Sapindaceae (Sapindales). For each family we chose
two sequences of the first two appearing genera. Tree
reconstruction followed the methods described by
Schultz and Wolf [25] and is equivalent to the recon-
struction procedure used for the simulated sequence
sets. Furthermore, the same procedure was applied with-
out secondary structure information for comparison.

Reviewers’ comments
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Brigham & Women’s Hospital and Harvard Medical
School

Page 10 of 12

This manuscript demonstrates the utility of taking
into account secondary structure in the phylogenetic
analysis. Using comprehensive simulations and a real
dataset of ITS2 sequences the authors demonstrated
that for higher sequence divergence trees constructed
with the help of secondary structure information
improve accuracy and robustness. Another interesting
result is that addition of taxa may reduce accuracy of
tree reconstruction at least in terms of quartet distance
between reconstructed and true trees.

Author’s response

Thanks a lot for this positive report!

Reviewer’s report 2

Andrea Tanzer, Institute for Theoretical Chemistry, Uni-
versity of Vienna (nominated by Frank Eisenhaber,
Bioinformatics Institute (BII) Agency for Science, Tech-
nology and Research, Singapore)

General comments:

The manuscript “Ribosomal Secondary Structures
improve Accuracy and Robustness in Reconstruction of
Phylogenetic Trees” compares different methods to
improve the quality of phylogenetic analysis. RNA sec-
ondary structure information has been included in a
variety of previous phylogenetic analysis, but this is the
first study exploring the effect on the resulting trees in
detail.

The authors use internal transcribed spacer 2 of ribo-
somal RNAs, a well established set of markers, to simu-
late a broad spectrum of 300 different scenarios. In
addition, they compare their results from the simula-
tions to a set of biological examples from selected plant
species.

Overall, the manuscript is carefully written and the
authors chose analysis and method appropriately. The
simulated sequence set could be used for future studies.

Minor comments:

*) The title might be a little bit miss-leading since
‘Ribosomal Secondary Structures’ do not improve the
‘Accuracy and Robustness in Reconstruction of Phyloge-
netic Trees’ in general and the method should be applic-
able to other RNA markers. Therefore, I suggest
something like “Including Secondary Structures improve
Accuracy and Robustness in Reconstruction of Phyloge-
netic Trees”.

*) The setup for the simulations is quite complex. It
might help the reader if you add a table or figure to the
supplemental material that summarizes the individual
conditions for each data set produced.

Alternatively, you could just add to the text that you
use 10 different branch length, 5 ancestral sequences
and 6 different trees (3 topologies for equal and variable
branch length) resulting in 300 different conditions. If I
understand this correctly, then you retrieved for each of
these 300 conditions 2,000 sequence sets (a total of
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600,000 sets), where each set contains 10, 14 and 18
taxa, resp., depending on the tree topology used. These
numbers should be mentioned in the text.

*) The set of simulated sequences should be accessible,
such that it can be downloaded and used by the com-
munity for further studies. Maybe put a link on the
website of the ITS2 database.

*) Predicting secondary structures of single sequences
occasionally results in (mfe) structures of unexpected
shapes. One way to get around this problem is the cal-
culation of consensus structures of a set of related
sequences. The resulting consensus structures can then
be used for contraint folding of those sequences that
could not be folded correctly in the first place. Further-
more, the sequences might fold into a number of
equally good structures, but folding programs present
only the first result (under default settings). The ‘true’
structure could as well be among the best folds, but not
necessarily the optimal one (suboptimal folding). After
all, folding algorithms only make the most plausible pre-
dictions. In this study, prediction of RNA secondary
structures includes homology modelling. It is of ques-
tion weather this is the most efficient method. However,
since the structures deposited at the ITS2 database were
created that way, it seems legitimate to apply it here a
well.

Author’s response

Thank you for carefully reading the manuscript. We
addressed the minor comments regarding text changes
and included the necessary information within the text.
The set of simulated sequences is now downloadable at
the Supplement section of the ITS2 Database http://its2.
bioapps.biozentrum.uni-wuerzburg.de/. We totally agree
that there are other possibly more efficient methods
concerning structure prediction. However, as already
stated by Dr. Tanzer ‘structures deposited at the ITS2
database were created that way [homology modelling], it
seems legitimate to apply it here as well’. The big advan-
tage of the ITS2 is, that the core folding pattern is
already known. Therefore, we have an external criterium
to check for the correctness of the predicted structures.
Reviewer’s report 3

Eugene V. Koonin, National Center for Biotechnology
Information, NIH, Bethesda

This is a useful method evaluation work that shows
quite convincingly the inclusion of RNA secondary
structure information into phylogenetic analysis
improves the accuracy of neighbor-joining trees. My
only regrets are about a certain lack of generality. It
would be helpful to see a similar demonstration for for
at least two different kinds of nucleic acid sequences
not only ITS2. Also, at the end of the Conclusion sec-
tion, the authors suggest that secondary structure could
help also with other phylogenetic approaches (ML etc).
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Showing this explicitly would be helpful, especially,
given that NJ is hardly the method of choice in today’s
phylogenetics.

Author’s response

Thank you for your encouraging report. For ITS2 the
core structure is well known and there are about
200,000 individual secondary structures available. How-
ever, it is absolutely right that it would be helpful to
perform an analysis also on other types of phylogenetic
RNA markers. Unfortunately, today there is no compar-
able amount of data available concerning secondary
structures of other RNAs. Similarily, there are no pro-
grams to run an analysis on other methods such as par-
simony, maximum likelihood and/or bayesian methods
simultanously considering sequence and secondary
structure information.

N
Additional file 1: Normalized Quartet distance and Robinson-Foulds
plots. Similar to Figures 2 and 4, but showing per-branch Quartet
distances as a normalized standard i.e. divided by number of splits.
Robinson-Foulds Distances are given in absolute and normalized
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Additional file 2: Empirical pairwise distances. Pairwise distances of
an ITS2 case study that integrates secondary structure.
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