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Abstract
Background: Over the past two decades, there have been several approximate methods that
adopt different mutation models and used for estimating nonsynonymous and synonymous
substitution rates (Ka and Ks) based on protein-coding sequences across species or even different
evolutionary lineages. Among them, MYN method (a Modified version of Yang-Nielsen method)
considers three major dynamic features of evolving DNA sequences–bias in transition/transversion
rate, nucleotide frequency, and unequal transitional substitution but leaves out another important
feature: unequal substitution rates among different sites or nucleotide positions.

Results: We incorporated a new feature for analyzing evolving DNA sequences–unequal
substitution rates among different sites–into MYN method, and proposed a modified version,
namely  (gamma)-MYN, based on an assumption that the evolutionary rate at each site follows a
mode of -distribution. We applied -MYN to analyze the key estimator of selective pressure 
(Ka/Ks) and other relevant parameters in comparison to two other related methods, YN and MYN,
and found that neglecting the variation of substitution rates among different sites may lead to biased
estimations of . Our new method appears to have minimal deviations when relevant parameters
vary within normal ranges defined by empirical data.

Conclusion: Our results indicate that unequal substitution rates among different sites have
variable influences on  under different evolutionary rates while both transition/transversion rate
ratio and unequal nucleotide frequencies affect Ka and Ks thus selective pressure .

Reviewers: This paper was reviewed by Kateryna Makova, David A. Liberles (nominated by David
H Ardell), Zhaolei Zhang (nominated by Mark Gerstein), and Shamil Sunyaev.

Background
Comparative sequence analysis is a powerful tool for biol-
ogists to study evolutionary relationship among animals
and plants across diverse taxonomic lineages [1-3]. Pair-
wise sequence comparison is perhaps the simplest com-

parative analysis for phylogeny for two reasons [4]. First,
calculating pair-wise distances is the initial step for dis-
tance-matrix methods of phylogeny reconstruction. Sec-
ond, Markov-process models of nucleotide substitution
used in distance calculations lay a foundation for likeli-
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hood and Bayesian analyses. One of the sophisticated
methods is to estimate nonsynonymous and synonymous
substitution rates for interrogating sequence dynamics
and constructing phylogenetic trees. Since Ka and Ks rep-
resent the number of substitutions per nonsynonymous
and synonymous site, respectively, these parameters (or
often their ratio Ka/Ks or ) are important for the estima-
tion of evolutionary rates. The indications of Ka < Ks (  <
1), Ka > Ks (  > 1), and Ka = Ks (  = 1) on evolutionary
trends are negative (purifying), positive (adaptive), and
neutral mutations, respectively. Ka and Ks can be esti-
mated based on approximate methods, which typically
involve three essential steps [4]: (1) counting the number
of synonymous (S) and nonsynonymous (N) sites among
targeted sequences, (2) counting the number of synony-
mous (Sd) and nonsynonymous (Nd) substitutions
between two orthologous sequences, and (3) calculating
the number of synonymous (ds) and nonsynonymous
(dn) substitutions per site after correcting for multiple
substitutions. Most of the methods assume simplified
nucleotide substitution paths and involve ad hoc data
treatments that are not well-justified [5,6]. For instance,
NG (Nei-Gojobori) method, a commonly-used approxi-
mate method in the early days, considers all possible evo-
lutionary courses among compared DNA sequences and
assumes that each nucleotide can be substituted with any
of three other nucleotides at equal rate when it counts
both sites and substitutions [7]. It adopts Jukes-Cantor's
one parameter formula only to correct for multiple substi-
tutions. Another example, LWL (Li-Wu-Luo) method,
classifies sites and substitutions as i-fold degenerate sites
(i = 0, 2, 4) and considers unequal rates between transi-
tional and transversional changes only when it counts
substitutions, but considers equal rates when counting
sites [8]. A modified LWL, LPB (Li-Pamilo-Bianchi)
method corrects for bias in counting sites by using differ-
ent formulas for Ka and Ks estimation, which differentiate
LPB from LWL method [9,10]. Versions of LWL and LPB
methods were also proposed by distinguishing two-fold
degenerate sites and substitutions, taking the account of
the transition/transversion rate bias when counting sites
and correcting for arginine codons [11,12].

Among approximate methods, YN (Yang-Neilsen)
method made significant progress through consideration
of transition/transversion rate and nucleotide frequency
biases [13]. Based on YN method, we recently proposed a
modified YN method (MYN) to distinguish substitutions
between purines (A/G) and between pyrimidines (T/C)
[13,14]. MYN incorporates most of the major features of
sequence evolution but assumes that different sites in
sequences evolve the same way and at the same rate. This
assumption is somewhat less thorough, and accumulating
evidence of rate variation over sites is rather overwhelm-
ing [15-20]. Since mutation rates certainly vary among

sites, and mutations at different sites may be fixed or drift-
ing at different rates due to their versatile roles in the struc-
ture and function of gene products (mostly proteins albeit
RNAs also fold into different conformations), unequal
nucleotide frequencies, different codon usage among spe-
cies, and variation of substitution rates among different
sites should all be taken into account, allowing for signif-
icant yet maybe incremental improvements on various
parameter estimations. Some sixteen years ago, one of the
pioneers of this field, Ziheng Yang suggested -distribu-
tion (gamma-distribution) as an adequate approximation
based on his intensive comparative analysis on several
continuous distributions leveraging on sequence data
from the globin genes [21]. As -distribution has been fre-
quently used in estimating sequence divergence [7,22-27],
we adopt it to formulate an improved approximate
method, denoted as -MYN, based on MYN method [14].
In this method, we assume that nucleotide substitutions
follow -distribution because negative binomial distribu-
tion is known to be generated when Poisson parameter 
varies according to a particular  distribution among sites
[28]. We would like to emphasize that the  distribution
here refers to raw mutation rate rather than  distribution
of  itself. It has been proposed that nucleotide substitu-
tion in coding region is context-dependent [29], and
therefore, substitution rates depend on not only the
neighboring sequences but also their functional con-
straints and models that allow for the correlation of sub-
stitution rates at adjacent sites were also developed
[30,31]. However, as these models tend to produce results
similar to the simple gamma model and variations of 
can make the distribution suitable for accommodating
different levels of rate variations in various datasets [31],
we chose the simple gamma distribution as the depiction
of raw various mutation rates. Since YN and MYN meth-
ods perform better as compared to numerous other meth-
ods [12] and MYN improves the performance of YN for
most parameter combinations [14], we focus on evaluat-
ing the performance of -MYN by comparing it to YN and
MYN under variable conditions. The definitions of sym-
bols used in Ka and Ks estimations are listed in Table 1.

Results
Computer simulation
Computer simulation is a routine approach for evaluating
computational procedures of different algorithms. In
molecular phylogeny, one major approach for simulating
DNA sequence evolution is to generate an ancestral
sequence for the root of a tree and "evolve" it along the
tree building process according to substitution models,
branch lengths, and substitution parameters [11,32-35].
This approach can be implemented in the evolver pro-
gram in the PAML (Phylogenetic Analysis by Maximum
Likelihood [36]) package, which usually uses nucleotide
or amino acid sequence data to simulate evolving protein-
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coding sequences. To assess the advantages of -MYN in
comparison with YN and MYN, we generated three groups
of simulated sequences with the PAML package: (1) equal
codon frequencies, (2) human frequencies (based on
human protein-coding genes from the ENSEMBL data-
base) [37] and (3) rice frequencies (based on rice protein-
coding genes) [38]. We also generated 2,000 sequence
pairs with 1,200 bp in length for examining the effect of
different parameters.

Consistency analysis and effect of codon frequencies
In general, a better method should have relatively mini-
mal deviations from real values with near infinite amount
of data and within a reasonable range of all relevant
parameters. In reality, we have to define both data in a
limited way and parameter ranges within reasonable
boundaries. In this exercise, we use  = 0.3, 1, and 3 to
represent negative, neutral, and positive mutations,
respectively [3], and fix parameter t to 0.6 for initial
assessment. Since genuine values for  often range from
1.5 to 5, we always fix  = 3.75 as typical. Considering that
-MYN differentiates Y from R, we always fix one of them

to 3.75 and allow the other varying from 1 to 10. We then
analyze  among data generated with YN, MYN, and -
MYN against R (fixing Y = 3.75), using the three codon
frequencies under different selective pressures (Figure 1A–
I). We observed that -MYN produces less deviated  from
the standard data under negative selection as we perform
analyses for different species. Although -MYN performs
in a very similar way as MYN does, it is obviously better
than YN under either positive or neutral selections. Since
biased codon frequencies often have opposite effects as
compared to the bias of transition/transversion rate ratio,
ignoring codon frequency bias can lead to an overestima-
tion of  [13]. Using empirical data from human and rice,
which represent distinct codon usages, we also did not

detect any effect among different codon frequencies (Fig-
ure 1A–I). Since most of the evolutionary studies tend to
calculate evolutionary rates between closely-related spe-
cies, future research should focus more on the effect of dif-
ferent parameters and the improvement of calculations
under negative selection.

Effect of -distribution
MYN method assumes that different sites in a sequence
evolve in the same way and at the same rate. It is obvious
that such an assumption does not happen in the real
world for most proteins and their genes. For instance,
mutation rates are not the same in nuclear and organellar
genomes among different species [39]. In addition,
sequence variations among portions or domains of pro-
teins mutate differently from a fixed mutation rate due to
their specific structural and functional constraints for dif-
ferent genes under different selective pressures. Therefore,
we introduced a parameter  in MYN method so that each
substitution rate across sites is assumed to follow -distri-
bution.

Since  is an unknown random variable and its variations
may lead to changes of probability density of -distribu-
tion as well as deviations of -MYN method, we chose dif-
ferent parameters to force it to deviate from real values
under different selective pressures (Figure 2). For a quali-
tative survey, the order of estimated values of , in the
cases of R = 1, 2, and 3, is: YN < -MYN < MYN; the order
of estimated values of  for the rest cases, R = 4, 5, 6, 7, 8,
9, and 10, is: -MYN<MYN <YN. Furthermore, we
observed that estimated  do not change much as  varies
when expected  = 1 or 3, and -MYN again performs bet-
ter when  = 0.3 than it does when  = 1 or 3. Because
most calculated  values indicate negative selection, and
variation of  has stronger influence under negative selec-

Table 1: Symbols used in Ka and Ks calculation

Symbol Definition

S Number of synonymous sites
N Number of nonsynonymous sites
Ks Synonymous substitution rate
Ka Nonsynonymous substitution rate

Estimator of selective strength,  = Ka/Ks
Sd Number of synonymous substitutions
Nd Number of nonsynonymous substitutions
t Divergence time between two sequences, the expected number of nucleotide substitutions per codon, t = (Ks × 3S + Ka × 3N)/(S + N)

The parameter of gamma distribution
Ratio of transitional rate/transversional rate

R Ratio of transitional rate between purines to transversional rate, R = R/

Y Ratio of transitional rate between pyrimidines to transversional rate, Y = Y/
gN Frequency of nucleotide N, N  [T, C, A, G]

R Transitional rate between purines

Y Transitional rate between pyrimidines
Transversional rate
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Estimated  based on YN, MYN, and -MYNFigure 1
Estimated  based on YN, MYN, and -MYN. We plotted  values estimated by YN, MYN, and -MYN when Y = 3.75, 
considering R varying from 1 to10. We used the canonical genetic code for simulated sequences with 1.6 million codons and 
three sets of codon frequencies: equal (A to C), human (D to F) calculated from human protein-coding genes, and rice (G to I) 
calculated from rice protein-coding genes.  = 0.3 (A, D, G),  = 1 (B, E, H), and  = 3 (C, F, I) were considered as represent-
ative values for purifying selection, neutral mutation, and positive selection, respectively.
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Estimated  when Y = 3.75 and R varies from 1 to 10 under negative selectionFigure 2
Estimated  when Y = 3.75 and R varies from 1 to 10 under negative selection. We obtained better  estimates by 
introducing parameter  when orthologous genes are under negative selection with  varying from 0.1 to 0.9. The canonical 
genetic code was used for simulated sequences with 1.6 million human codons.
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tion, we analyzed the variation of  in a range of 0.1 to 0.9
to evaluate the effect of  on . We obtained different
optimal  values when  varies from 0.1 to 0.9, and plot-
ted different  distribution densities (Figure 3). Each curve
appears reaching its maximum and goes down with an
increasing substitution rate. The peaks of the curves shift
to the left and become lower in density when optimal 
values decrease from 4.8 to 1.5; the decrease is attributa-
ble to the increase of  (selective pressure) from 0.1 to 0.9.
Furthermore, selective pressure shows significant effects
on , with an increase in the probability at the lowest and
highest substitution rates across all sites. Because -MYN
produces less biases than both YN and MYN do when 
varies from 0.1 to 0.9 under  = 4 (data not shown), we
chose  = 4 as a typical value for our analyses.

Effect of t
The parameter t represents divergence time between two
sequences. To test the effect of t on our method, we use
human codon frequency (2,000 pairs of sequences with
400 codons for each case), and vary t from 0.1 to 1. Since
-MYN does not change much in comparison with MYN

under positive selection and neutral selection, we only
consider the three obvious conditions of negative selec-
tion when R = 10 and Y = 1 are fixed:  = 0.2, 0.3 and 0.4
(Figure 4). Although YN, MYN, and -MYN all have a

 distribution density as a function of substitution rates at optimal  valuesFigure 3
 distribution density as a function of substitution 

rates at optimal  values. We plotted different  distribu-
tion densities as a function of substitution rates at optimal  
values: (1)  = 0.1,  = 4.8; (2)  = 0.2,  = 4; (3)  = 0.3,  
= 3.3; (4)  = 0.4,  = 3; (5)  = 0.5,  = 2.5; (6)  = 0.6,  
= 2; (7)  = 0.7, 0.8, and 0.9,  = 1.5. Note that each curve 
reaches its maximum and goes down with increasing substi-
tution rates.
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The effect of t based on YN, MYN, and -MYNFigure 4
The effect of t based on YN, MYN, and -MYN. -MYN 
deviates less under the effect of t as compared to other 
methods. Both YN and MYN tend to overestimate . Since 
MYN and -MYN are two modified forms of YN, all datasets 
exhibit a similar trend. However, when t increases, -MYN 
performs better than the other two methods. Parameter val-
ues are (A)  = 4, R = 10, Y = 1, the expected value of  = 
0.2; (B)  = 4, R = 10, Y = 1, the expected value of  = 0.3; 
and (C)  = 4, R = 10, Y = 1, the expected value of  = 0.4.
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nearly identical overall trend when t varies from 0.1 to 1,
and they all tend to overestimate  for negative selection,
-MYN deviates less from the expected values. Despite the

fact that -MYN also overestimates  and the overestima-
tion becomes less obvious as t increases, while the overes-
timation of both YN and MYN becomes severer.

Effects of R and Y
We used the same data (2,000 pairs of human codon
sequences with 400 codons for each case) and methods to
test the effects of R and Y. We plotted the average esti-
mates of  from YN, MYN, and -MYN methods against Y
= R for the parameter combinations: the expected  val-
ues vary as 0.2 and 0.3 when  = 4 (Figure 5). While the
curves produce from YN and MYN methods superimpose
each other when R (= Y) varies from 1 to 10, -MYN devi-
ates clearly less from the expected . We found that -
MYN still performs better than the other two methods,
whereas MYN is degraded to YN when Y is equal to R.
The result suggests that the assumption of variable substi-
tution rates among different sites is necessary to Ka and Ks
calculations.

Effect of S%
Usually the effect of S% (the fraction of synonymous sites
in a sequence) is considered as a factor of method evalua-
tion. Changes in  in relation to S% are often evaluated

based on the effect of S% on the deviation of Ka and Ks.
Therefore, an overestimated S% may give rise to underes-
timation of Ks and overestimation of Ka, resulting in over-
estimation of . Likewise, underestimation of S% may
also lead to overestimation of Ks and underestimation of

. It has been reported that S% has enormous influence
on Ka and Ks under negative selection but has neglectable
effect under positive selection [40]. We used human
sequences to examine the effect of S% on -MYN (Table
2), fixing Y to 3.75. As R increases, the value of S% gen-
erated from our method exhibits minor fluctuations
under different negative selections, when compared to
that from YN. But the difference between -MYN and
MYN is minute under this condition. In more details, the
order of estimated values of S%, in the cases of R = 1, 2,
and 3, is: YN < MYN < -MYN; in the rest cases, the order
of estimated values of S%, when R = 5, 6, 7, 8, 9 and 10,
is: MYN < -MYN < YN. We did not observe any obvious
trend under the condition of R = 4. Therefore, -MYN is
deemed insensitive to S% changes.

Effect of sequence lengths
The length of homologous genes subjected to an analysis
usually varies in actual calculation. In order to evaluate
the effect of variable sequence lengths, we use two groups
of simulated rice sequences under the conditions of (1) 
= 0.2, R = 10, Y = 1, t = 0.6, and  = 4; and (2)  = 0.3,

The effects of R and Y based on YN, MYN, and -MYNFigure 5
The effects of R and Y based on YN, MYN, and -MYN. We showed the effects of R and Y when  = 0.2 (A) and 0.3 
(B) were said to represent negative selection. The human codon frequency was used for the simulated sequences and  = 4 for 
both plots.

� � � , + ��
���

����

����

���,

���+

���

����

����

���,

���+

	

�
�
��
��
�

�
�
��

!

)

� � � , + ��
���

����

����

���,

���+

���

����

����

���,

���+

���

�
�
��

!

(

!"
#!"
#!"

	$%������� ������

!"
#!"
#!"

	$%������� ������



Biology Direct 2009, 4:20 http://www.biology-direct.com/content/4/1/20

Page 8 of 18
(page number not for citation purposes)

R = 10, Y = 1, t = 0.6, and  = 4. We then calculate the
average estimated  when the number of codons varied
from 100 to 1,000 (Table 3). It appears that all three
methods overestimate  regardless the number of codons
in the datasets. In particular, despite the fact that all three
methods give rise greater biases for shorter sequences
(<300 codons), -MYN performs better than the other two
methods. We also found that the performance of -MYN
is getting better faster than the other two methods as the
number of codon increases.

Testing real data
We used three ortholog datasets for the test, 14,323 from
human-dog, 16,066 from human-mouse, and 12,351

from human-chimp. For a more comprehensive display,
we examined the cumulative percentage of R- Y (Figure
6), showing different transitional substitutions with une-
qual frequencies. For example, the cumulative percentages
for R - Y > 0.4 for human-dog, human-mouse and
human-chimp orthologs are 52.27%, 52.66%, and
24.47% and those for R - Y < -0.4 are 25.36%, 24.31%,
and 21.87%, respectively. In the rest cases, for | R - Y| 
0.4, they are 22.37%, 23.02%, and 53.66% for the three
ortholog groups. We found that the value for human-
chimp is more than twice as much as that of human-dog
(or human-mouse), and the reasons are attributable to a
close evolutionary relationship between human and
chimpanzee [41].

Table 2: S% Estimates under different negative selections based on YN, MYN, and -MYN

Human Codon Frequencies

Method S (%)

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

0.1 4.8 YN 25.92 27.09 27.95 28.60 29.18 29.63 29.99 30.28 30.57 30.77
MYN 29.03 28.88 28.78 28.66 28.56 28.50 28.42 28.34 28.29 28.16
-MYN 29.12 28.94 28.83 28.70 28.59 28.53 28.45 28.36 28.31 28.18

0.2 4 YN 25.91 27.07 27.92 28.62 29.22 29.66 30.04 30.36 30.65 30.87
MYN 29.00 28.87 28.69 28.57 28.53 28.43 28.30 28.26 28.21 28.15
-MYN 29.10 28.95 28.75 28.62 28.57 28.47 28.33 28.28 28.23 28.16

0.3 4 YN 25.90 27.06 27.94 28.65 29.19 29.63 30.04 30.38 30.65 30.90
MYN 29.05 28.87 28.70 28.57 28.43 28.33 28.26 28.19 28.14 28.06
-MYN 29.14 28.95 28.76 28.61 28.47 28.36 28.28 28.21 28.15 28.08

0.4 3 YN 25.85 27.06 27.96 28.65 29.20 29.66 30.05 30.37 30.64 30.90
MYN 28.96 28.84 28.70 28.55 28.44 28.35 28.27 28.22 28.16 28.10
-MYN 29.08 28.94 28.78 28.62 28.50 28.40 28.31 28.25 28.18 28.11

0.5 2.5 YN 25.88 27.05 27.95 28.66 29.23 29.66 30.04 30.35 30.64 30.86
MYN 28.97 28.81 28.68 28.56 28.47 28.36 28.29 28.18 28.15 28.05
-MYN 29.12 28.93 28.77 28.63 28.53 28.41 28.33 28.21 28.17 28.07

0.6 2 YN 25.89 27.05 27.92 28.66 29.20 29.66 30.02 30.34 30.61 30.88
MYN 28.99 28.81 28.64 28.58 28.45 28.37 28.27 28.18 28.10 28.09
-MYN 29.19 28.96 28.77 28.67 28.52 28.43 28.31 28.22 28.13 28.12

0.7 1.5 YN 25.87 27.05 27.93 28.63 29.21 29.65 30.02 30.33 30.63 30.86
MYN 28.94 28.79 28.65 28.54 28.47 28.36 28.27 28.16 28.12 28.05
-MYN 29.21 28.99 28.82 28.67 28.57 28.44 28.33 28.21 28.16 28.08

0.8 1.5 YN 25.86 27.05 27.96 28.62 29.20 29.65 30.02 30.33 30.61 30.86
MYN 28.93 28.79 28.69 28.52 28.48 28.37 28.27 28.17 28.11 28.05
-MYN 29.19 29.00 28.86 28.65 28.58 28.45 28.34 28.22 28.14 28.08

0.9 1.5 YN 25.87 27.06 27.96 28.65 29.20 29.66 30.01 30.33 30.61 30.85
MYN 28.91 28.80 28.67 28.57 28.47 28.38 28.27 28.17 28.08 28.04
-MYN 29.18 29.01 28.84 28.69 28.58 28.46 28.34 28.22 28.12 28.07
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To evaluate the performance of -MYN, we compared a set
of values for several key parameters (S%, Ka, Ks, and )
generated with -MYN and three other selected methods
in a straightforward way, considering three cases of R - Y
> 0.4, R - Y < -0.4, and | R - Y|  0.4 (Table 4). We chose
the value of 0.4 as a threshold so that the three cases can
stand for three groups of R under the condition of Y =
3.75: (1) R = 5, 6, 7, 8, 9 and 10; (2) R = 1, 2, and 3; (3)

R = 4. Other than YN and MYN, we also used a maximum
likelihood method proposed by Goldman and Yang
(denoted as GY) [33].

The results showed a few interesting trends. First, GY per-
forms in a similar way as YN does as compared to MYN
and -MYN; it is consistent with our previous simulation
results, as they share a common consideration of transi-
tion/transversion rate bias and nucleotide frequencies
bias [12,42]. Second, the trends of  estimates with the
three methods, YN, MYN and -MYN, are consistent with
our simulation results. In the cases of | R - Y|  0.4 and R
- Y > 0.4, when R = 4, 5, 6, 7, 8, 9, and 10, the order of
estimated values of  is: -MYN < MYN < YN. When con-
fined to R - Y < -0.4, when R = 1, 2, and 3, YN underes-
timates  and MYN overestimates  as compared to -
MYN. Taking  estimates as an example, they are 0.1695,
0.1800, and 0.1713 for human-dog orthologs, 0.1465,
0.1566, and 0.1468 for human-mouse orthologs, and
0.5790, 0.6312 and 0.6309 for human-chimp orthologs,
calculated with YN, MYN, and -MYN, respectively. These
findings are in agreement with our simulation studies.
Third, the orders of S% estimates with the three methods
(YN, MYN and -MYN) are also consistent with our simu-
lation results. For example, when R - Y > 0.4, R = 5, 6, 7,
8, 9 and 10, YN overestimates S% and MYN underesti-
mates S% as compared to -MYN. In the case of R - Y < -
0.4, when R = 1, 2, and 3, the order of estimated values of
S% is: YN < MYN < -MYN. Fourth, we took one gene as an
example to show the outperformance of our new method
over others. Among the human-chimp orthologs,  values
of an immunoglobulin interleukin-1-related receptor
(NP_068577) are listed as 1.02406, 0.622611, 0.59999,
and 0.843755, when -MYN, MYN, YN, and GY are used
for the calculation, respectively. Obviously, only -MYN is
able to detect positive selection for this gene, and others
failed. This gene has been studied previously based on a
population genetics analysis of extended-haplotype-
homozygosity in Northeast Asians, and a possible positive
selection scheme was proposed for it [43]. This result is in
accordance with the result of large-scale scanning on pos-
itively selected genes between human and chimpanzee
genomes [44,45].

Program availability and performance
A C++ program implementing -MYN method is included
in the updated KaKs_Calculator [42], available upon
request. And we tested the running time with YN, MYN, -
MYN, and GY, using the three testing datasets (14,725
human-dog, 16,368 human-mouse, and 15,646 human-
chimp gene pairs). Table 5 shows the time consumption
for each method to compute Ka/Ks ratios from the three
datasets and their average running time. On average, -
MYN takes 600 folds less time than GY does, and YN,
MYN, and -MYN perform similarly in time consumption.

Table 3: Average  estimates calculated based on YN, MYN and 
-MYN.

Rice Codon Frequencies (  = 4)

Number of codons  = 0.2  = 0.3

YN MYN -MYN YN MYN -MYN

100 0.308 0.245 0.235 0.458 0.364 0.352
200 0.305 0.230 0.222 0.450 0.341 0.332
300 0.294 0.219 0.210 0.435 0.325 0.316
400 0.290 0.215 0.207 0.426 0.317 0.308
500 0.294 0.216 0.208 0.430 0.317 0.308
600 0.291 0.214 0.206 0.427 0.316 0.307
700 0.290 0.213 0.205 0.424 0.313 0.305
800 0.290 0.212 0.205 0.424 0.313 0.305
900 0.288 0.212 0.204 0.422 0.312 0.303
1000 0.287 0.210 0.203 0.421 0.310 0.302

Note: The parameters used are R = 10, Y = 1, t = 0.6, and  = 4.  
= 0.2 and  = 0.3 are used separately to represent purifying selection. 

 values are averaged over 2,000 pairs of simulated sequences.

Cumulative percentage of R - Y for human-dog, human-mouse and human-chimp orthologs at a bin size of 0.2Figure 6
Cumulative percentage of R - Y for human-dog, 
human-mouse and human-chimp orthologs at a bin 
size of 0.2. We divided the x-axis into 100 bins and plotted 
the cumulative percentage of R - Y from the orthologous 
genes of human-dog, human-mouse and human-chimp.
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We believe that -MYN may become a useful tool for
large-scale studies, when ML-based methods (such as GY)
are deemed time-consuming.

Discussion
Why should we continue developing Ka/Ks methods?
A major limitation of Ka/Ks methods, mentioned in liter-
atures, is their poor ability for detecting positive selection
(adaptive selection) [6,46-52]. To detect positive selection
at sites requires that  value averaged over all branches is
>1 and to detect positive selection along lineages requires

 value averaged over all sites is >1 [6]. Therefore, Ka/Ks
methods are only useful to weight average selection pres-
sure over sites and branches. They may not be able to
detect positive selection for some highly conserved pro-
teins that are mostly invariable but become fragile when a
single site alters. Other detrimental cases include trans-
membrane domains where high variability may not
change its physiochemical property. To overcome the
weakness, there have been methods developed, such as
Likelihood Ratio Test (LRT) [53-56] implemented in
PAML [57] and Hyphy software [58], to identify positive

selection [45,59-61], which tend to be qualitative. An
obvious pitfall of these methods is that they do not weigh
the relative degree of two genes under negative selection.
Ka/Ks methods can perform better in this regard [38,62-
64] as they tend to be more quantative. In addition, Ka/Ks
methods can be readily extended from our current work to
detect the sequence alternations that lead to protein struc-
ture changes and positive selection, in combination with
other techniques, such as ancestral sequence reconstruc-
tion [65-67] and primary [68,69] or tertiary windowing
[70,71]. Therefore, we believe that the two different lines
of methods (LRT-like methods and Ka/Ks methods)
should also be useful under appropriate conditions.

Why should we introduce new parameters?
With the introduction of the parameter , our method -
MYN shows significant improvements when compared
with the other two related methods in both simulation
and tests on real data. As -MYN assumes that evolution-
ary rate at each site follows -distribution, we found that
the parameter  has observable effects under different
evolution rates. For instance, when  >= 1, -MYN

Table 4: Proportions of synonymous sites (S%) and estimates of Ka, Ks and 

Method R - Y > 0.4 R - Y < -0.4 | R - Y|  0.4

S% Ka Ks S% Ka Ks S% Ka Ks

human-dog orthologs
GY 24.80% 0.0691 0.4936 0.1483 24.72% 0.0723 0.4676 0.1639 24.34% 0.0874 0.5347 0.1704
YN 25.09% 0.0674 0.4900 0.1531 24.96% 0.0700 0.4750 0.1695 24.27% 0.0928 0.5412 0.1746

MYN 23.88% 0.0664 0.5748 0.1361 26.16% 0.0711 0.4495 0.1800 24.22% 0.0939 0.5596 0.1727
-MYN 23.93% 0.0681 0.6462 0.1266 26.28% 0.0733 0.4962 0.1713 24.29% 0.0962 0.6227 0.1620

human-mouse orthologs
GY 25.86% 0.0901 0.7163 0.1291 25.65% 0.0961 0.7118 0.1390 25.52% 0.1128 0.7422 0.1543
YN 26.07% 0.0877 0.7002 0.1344 25.69% 0.0923 0.6904 0.1465 25.31% 0.1091 0.7439 0.1564

MYN 24.83% 0.0863 0.8321 0.1157 26.93% 0.0940 0.6527 0.1566 25.24% 0.1090 0.7734 0.1526
-MYN 24.91% 0.0894 0.9501 0.1058 27.10% 0.0980 0.7390 0.1468 25.35% 0.1140 0.8934 0.1398

human-chimp orthologs
GY 25.47% 0.0273 0.0663 0.5118 25.18% 0.0262 0.0579 0.5685 25.98% 0.0228 0.0420 0.4364
YN 25.79% 0.0302 0.0646 0.5237 25.33% 0.0297 0.0564 0.5790 23.81% 0.0506 0.0595 0.3893

MYN 24.34% 0.0299 0.0719 0.4792 26.87% 0.0307 0.0516 0.6312 23.72% 0.0493 0.0601 0.3863
-MYN 24.34% 0.0305 0.0741 0.4768 26.89% 0.0324 0.0530 0.6309 23.72% 0.0515 0.0626 0.3847

Table 5: Timing comparisons on YN, MYN, -MYN and GY methods

Method Time Required, seconds (hr:min:sec) Average

human-dog human-mouse human-chimp

YN 332(0:5:32) 389(0:6:29) 280(0:4:40) 334(0:5:34)
MYN 529(0:8:49) 641(0:10:41) 396(0:6:36) 522(0:8:42)
-MYN 533(0:8:53) 639(0:10:39) 395(0:6:35) 522(0:8:42)
GY 154309(42:51:49) 233899(64:58:19) 602381(167:19:41) 330196(91:43:16)

The analyses were performed on IBM HS21, INTEL 5335 2.0GHz, memory of 16GB, ROCKS LINUX 4.3 X86-64 platform.
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remains stable. We also observed that selective pressure
can overwhelm the variable substitution rates across sites
and it becomes the most influential factor when increas-
ing dramatically. Therefore, when we consider strong pos-
itive selection and neutral evolution, the effect of variable
substitution rates across sites can be somewhat neglected.
In addition, more parameters often lead to increase of
complexity of an algorithm, resulting in the decrease of
efficiency. However, we hold the view that proper intro-
duction of parameters is worthwhile.

It has been noticed that the majority of the evolutionary
selections are actually negative in nature, and the state-
ment is confirmed by our analyses on real data. When 
varies from 0.1 to 1, we selected optimal  to minimize
biases and found that -MYN is very sensitive when 
changes under negative selection. Furthermore, the opti-
mal  becomes smaller when  becomes larger under neg-
ative selection, and the effects of various substitution rates
across sites become evident under negative selection,
emphasizing the importance of our method in the calcu-
lation under negative selection.

As to -Tamura-Nei model, it usually leads to higher vari-
ations, especially in phylogeny analyses. However, we
found some multi-level observations in both simulation
and real data testing (see in additional file 1). The differ-
ence of variations of  between YN and -MYN (or MYN)
seems to be correlated to the value of R - Y, when results
in Tables S2-S6 were examined together. For instance,
when R- Y < 0,  values vary more when -MYN is used
than YN is. As R- Y increases, the  variation values from
-MYN decrease, leading to lower numbers than those of

YN. The variations of  calculated with -MYN are slight
higher than those yielded from MYN in most cases but not
all. These results reflect the distinction between the usage
of -Tamura-Nei model (or Tamura-Nei model) in KaKs
computation and that of phylogeny reconstruction.

How the variable substitution rates influence the Ka/Ks 
calculations?
We begin our discussion with how  parameter in -MYN
improves MYN method. It is known that ignoring rate var-
iation among sites leads to underestimation of both the
sequence distance and the transition/transversion rate
ratio  (both R and Y) [4].  is used not only in estimat-
ing S and N but also in generating a transition probability
matrix for estimating Sd and Nd. If we derive an approxi-
mate formula for  = Ka/Ks  (Nd/N)/(Sd/S) (the symbol
of " " is used to emphasize the absence of correction for
multiple substitutions),  is composed of two parts: Nd/N
and Sd/S. For purifying selection, synonymous substitu-
tions occur more frequently than nonsynonymous ones
so we should only focus on Ks (Sd/S). Since  decrease is
related to the reduction of substitution rate between two

codons, underestimation of  leads to underestimation of
Sd. In addition, nucleotide transitions between two
codons are more likely to be synonymous especially at the
third codon positions, underestimation of  leads to
underestimation of S. However, the influence of  on Sd is
significantly stronger than that on S. As a consequence, an
underestimated , when used in MYN, may give rise to
underestimation of Sd/S, resulting in overestimation of 
as compared with -MYN. Our theoretical deductions are
consistent with both simulation (Figure 2) and real data
(Table 4).

In addition, we found the optimal  values fall between 1
and 5 (Figure 3). In these cases, the distribution of gamma
values is bell-shaped, meaning that most sites have inter-
mediate rates around 1 whereas a few sites have either very
low or very high rates [4]. When selection pressure
increases, the number of sites of intermediate rates
decreases (Figure 3). In particular, when  approaches
infinity, the distribution diminishes into the model of a
single rate for all sites, which is used in MYN method. If 

 1, the distribution has a highly skewed L-shape, suggest-
ing that most sites have either very low rates of substitu-
tion or are nearly "invariable" with possible substitution
hotspots. Furthermore, estimates of  from real data in
many species over multiple sequences show increases
from 0.26 to 3.0, and this relatively wide window allows
us to explore the spectrum of different substitution rates
over different sites [4]

Applications of our new method
Divergence time (t) is another parameter important for
the estimation of Ka and Ks. When divergence time
reaches the extremes, the compared sequences among
genes often vary considerably and their corresponding
protein structures may changed over greater evolutionary
time scale. Therefore, under such conditions it may
become meaningless to calculate the substitution rates of
such genes. However, most methods for calculating Ka
and Ks use homologous genes for estimating substitution
rates among closely-related species or within close line-
ages, and observable selections are mostly negative. Since
our method -MYN has better performance than other
methods when  < 1, it provides a useful alternative for
more comprehensive Ka and Ks calculations.

Our past work has testified that methods for estimating Ka
and Ks should be used cautiously and one should not
draw simple conclusions on gene evolution from Ka and
Ks analyses based on a single method. Therefore, we rec-
ommend a method based on model selection and model
averaging [12,42], and -MYN has just brought a new
choice into such endeavours. Our method does not chal-
lenge other methods such as GY (Goldman-Yang)
method, a typical maximum likelihood (ML) that has
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been always considered to be the method of choice
[13,33]. It has been suggested in the literature that GY and
YN both give rise to similar estimates on Ka and Ks prima-
rily due to the fact that they both take account of major
dynamic features of DNA sequence evolution, including
transition/transversion rate and nucleotide/codon fre-
quency biases [12,42]. As -MYN performs better than
other methods under certain conditions, despite the fact
that its advantages seemed less obvious under other con-
ditions, we believe that -MYN may become a useful tool
for large-scale sequence analysis when ML-based methods
are deemed time-consuming.

Conclusion
We compared -MYN with two other methods, YN and
MYN, by examining long sequences, performing compu-
ter simulations, and analyzing real datasets. Since neglect-
ing the variation of substitution rates among different
sites may lead to biased estimates, our new method has
minimal deviations when parameters vary within normal
ranges defined by empirical data. -MYN performs better
when genes are under strong purifying selection and com-
parable to the other two methods when genes are under
positive selection or remain neutral. In addition, we
showed that biased estimates of Ka and Ks primarily orig-
inate not only from biased estimates of –or both R and

Y–but also from the neglect of variable substitution rates.

Methods
Mutation model
In Markov-chain models of codon substitution, the codon
triplet is considered as the unit of evolution, and a Markov
chain is used to describe substitutions from one codon to
another codon [4]. In detail, the state space of the chain is
the sense codons with regard to the canonical genetic
code. Stop codons are not allowed inside a functional pro-
tein and are not considered. Although there are several
mutation (substitution) models that take different
sequence variation features into account, in this report we
limit our discussions to the Tamura-Nei Models [24] (see
Table S1 in additional file 2 for details).

-MYN also needs a transition probability matrix similar
to YN and MYN. We assigned the substitution rate qij from
any codon i to j (i  j) to generate a transition probability
matrix as follows:

The diagonal elements of the transition probability
matrix, Q = {qij}, are determined based on the mathemat-
ical requirement that the row sums equal to zero. The
matrix is normalized with the result that the sum over
non-diagonal terms is 1.

Estimating R and Y
To generate the transition probability matrix, we need to
estimate R and Y. Similar to YN and MYN, we calculated
four nucleotide frequencies (gT, gC, gA, gG), proportions of
transitional differences between purines (TR), and
between pyrimidines (TY), and the proportion of transver-
sional differences (V) from compared sequences:

where gR = gA + gG and gY = gT + gC. Note that  is the square
of the inverse of the variation coefficient in the gamma
function.

We then used equation 3 to estimate R and Y.

The detailed procedures for deducing R and Y were sum-
marized in additional file 2. We also made other modifi-
cations accordingly, such as using R and Y to estimate S
and N, generating relevant transition probability matrix
(Equation 1), considering different transitional evolution
pathways to count Sd and Nd, and correcting for multiple
substitutions when estimating Ka and Ks (Equation 4;
[24]).

The algorithm
When compared to MYN and YN, our -MYN method
considers that the rate of nucleotide substitution 
approximately follows -distribution. In fact, if the rate of
nucleotide substitution  is the same for all sites consid-
ered, the model becomes the model that is used in MYN.

qij =

0,if i and j differ by more than one differnce

,if i j aand j differ by a synonymous  transversion

,if  i and R j jj differ by a synonymous  transition between purines

,Y j iif i and j differ by a synonymous transition between pyrimmidines

,if i and j differ by a nonsynonymous transversj iion

,if i and j differ by a nonsynonymous transition R j bbetween purines
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-MYN uses an iterative approach to estimate Ka and Ks.
Before iteration, -MYN computes nucleotide frequencies
(regarding to the three codon positions), R, Y, S, and N
from the sequences to be analyzed. Based on the F3 × 4
model [36], codon frequencies are calculated by multiply-
ing each nucleotide frequencies. R and Y are estimated
from four-fold degenerate sites at the third codon position
and non-degenerate sites. S and N are calculated by using

R, Y, and codon frequencies. -MYN chooses initial val-
ues for t and  as starting point for iteration. It generates
a transition probability matrix that represents substitution
probabilities from one codon to another by using , t, ,
and codon frequencies. This transition probability matrix
is subsequently used to deduce Sd and Nd and for new esti-
mates of  and t. -MYN repeats the calculation for
another transition probability matrix, until the algorithm
converges.

Comparative analysis on Ka and Ks estimations
We used simulated sequences generated from hypotheti-
cal common ancestral sequences for our comparative
analysis by randomly choosing codons (61 excluding stop
codons) from the ancestral sequences according to codon
frequencies that were derived from three empirical data-
sets: (1) equal codon frequencies [13], (2) human codon
frequencies deduced from 39,420 human protein-coding
genes from ENSEMBL database (Release 35; [37]) and (3)
rice codon frequencies deduced from 19,079 rice protein-
coding genes [38] (see in additional file 1).

In addition to codon frequencies, we also have to fix or
choose ranges of other parameters for the simulation,
including sequence length, divergence time (t), two ratios
of transitional rate between purines ( R) and between
pyrimidines ( Y) to transversional rate, and selective pres-
sure . Although  varies from gene to gene,  = 1 and 3
can be regarded as "typical values" for neutral mutation
and positive selection, respectively [3,13,67], which are
observable from real datasets. Since most calculated  val-
ues indicate negative selection and variation of parameter

 has stronger influence under negative selection, we ana-
lyzed the variation of  in a range of 0.1 to 0.9 for the eval-
uation of effects of  on . To accurately examine the
effect of one parameter and to avoid stochastic errors aris-
ing from other factors, we generated 2,000 pairs of
sequences. Three orthologous gene sets were downloaded
from NCBI's HomoloGene database (Build 61), which
contained 14,725 human-dog, 16,368 human-mouse,
and 15,646 human-chimp gene pairs [72]. We considered
"NA" occurrence (in any of Ka, Ks or ) as unreliable data
and filtered the orthologous pairs (extremes in sequence
homology) that have such labels, and 14,323 human-dog,
16,066 human-mouse, and 12,351 human-chimp gene
pairs were remained. The datasets were used for compar-
ing -MYN with other methods.
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selection. However, this is incongruent with Bakewell et
al. (2007; PMID: 17449636) in terms of the number of
genes under positive selection and  values. Authors
should discuss the difference in detail.

Authors' response
Bakewell et al[44]indeed identified two gene sets, 154 and 233
positive selected genes or PSG for human and chimpanzee lin-
eages, respectively, the authors also claimed that the branch-site
likelihood method was not able to detect all PSGs according to
their results from computer simulation. Therefore, we speculate
that both their and our estimates about the numbers of PSG are
not thorough enough, limited by our methodology. In our calcu-
lation, we did not distinguish the two lineages, only computed
the average values across the lineages, and did not consider the
common ancestor of human and chimpanzee. We believe that
only an in-depth population genetic analysis may resolve such
issues. As far as  is concerned, our methods are based on the
raw definition of Ka/Ks and their methods are based on branch-
site test. Interestingly, most of the functional categories of PSG
genes in both studies overlap significantly, especially in "protein
metabolism & modification" and "stress response and immu-
nity".

6. Regardless of the number of codons and divergence
time (t), why do all three methods ( -MYN, MYN, and
YN) overestimate  values?

Authors' response
We believe that this is perhaps due to similar assumptions with
the same parameter settings (i.e. R = 10, Y = 1) in the two
calculations. However, the differences are also obvious as we
tried to demonstrate throughout our manuscript.

7. It is not clear how the "unreliable data" from three
orthologous gene sets were excluded.

Authors' response
We addressed this in our revised manuscript.

8. It is not clear how multiple splicing variants for each
gene were handled to obtain codon frequencies.

Authors' response
We did not distinguish splicing variants in our study. In other
words, we assumed that codon frequencies are the same for all
possible alternatively spliced forms.

9. It is surprising that a set of human-dog gene pairs took
longer to compute Ka/Ks ratios than that of human-chimp
gene pairs(533 sec versus 395 sec for -MYN), even
though the number of human-dog gene pairs was smaller
than that of human-chimp gene pairs (14,725 versus
15,646).

Authors' response
As the sequence variation of individual gene pairs governs the
time for the calculation, the required time is not proportional to
the number of gene pairs but the number of effective sites.

Reviewer 2
David A. Liberles, Department of Molecular Biology, Uni-
versity of Wyoming, Laramie WY 82071, USA

" -MYN: A new algorithm for estimating Ka and Ks with
consideration of variable substitution rates" by Wang,
Wan, Zhang, and Yu describes a more model rich version
of the original Yang and Nielsen 2000 model [13]. Previ-
ous work added parameters to differentiate between
purine transitions and pyrimidine transitions [14]. The
current work adds a gamma distribution on top of the pre-
viously described work.

The stepwise addition of parameters to the Yang and
Nielsen approach reflects an attempt to add increasing
layers of biological realism. Differentiating between
purine and pyrimidine transitions is driven by potential
underlying forces like codon bias to the extent that it is
correlated across codons in a gene and the chemistry (spe-
cificity) of DNA damaging agents, DNA polymerase, and
DNA repair enzymes (see [73] for example). The biologi-
cal link to the gamma distribution is somewhat less clear
in the way that it has been applied. Nucleotide sequences
as well as amino acid sequences typically show support
for a gamma distribution characterizing rates across sites.
At the nucleotide level, this is typically related to two com-
ponents: differences in substitution rate in the different
codon positions due to the nature of the genetic code as
well as amino acid level constraint on the protein. The
former category is already modeled with , potentially
creating some degree of redundancy between the  and 
parameters. Modeling  at the amino acid level (trans-
lated codons) would not suffer from the redundancy and
likely accounts for the improvement in performance by -
MYN.
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Authors' response
We agree with reviewer's excellent explanation why -MYN is
capable of improving the performance of omega calculation.
Modeling  at the amino acid level avoids suffering from the
parameter redundancy especially when genes are subjected to
negative selection as in one of our unpublished results, we found
that the interplay of  parameter and other evolutionary fea-
tures may show some degrees of redundancy.

The authors show the improved performance of -MYN
on simulated data, where the correct answer is known.
This is necessary but not sufficient to support the use of
additional parameters on real data, as the model is effec-
tively recovering itself on simulated data. The authors do
apply -MYN to mammalian comparative genomic data.
However, it should be possible to evaluate the likelihood
of the sequence data given the model and its parameteri-
zation for -MYN compared to simpler models and to
evaluate the performance of the models with AIC, even if
the methods are approximate rather than proper likeli-
hood estimates.

Authors' response
In our previous work, we did incorporate AIC to KaKs calcula-
tions [42]and found that the selected models in the calculation
did not depend on combinations of various parameters. We
speculate that -MYN perhaps may not be the best choice under
certain conditions, when the smallest AIC is considered as the
criteria. We will incorporate AIC into our new model and the
updated KaKs Calculator (the software through model selection
and model averaging).

A more minor point is that the authors suggest that
approximate methods need to average over all sites or all
branches. Based upon earlier work using ancestral
sequence reconstruction coupled with counting methods
[65-67], approximate methods have been developed or
can easily be extended from current work based upon pri-
mary windowing to detect selective sweeps [68,69] and
tertiary windowing to detect structural covariation leading
to positive selection [70,71]. This should probably be dis-
cussed when discussing the power of these methods.

Authors' response
We expanded our discussion into this issue. The power of detect-
ing positive selection in KaKs methods certainly can be
enhanced by introductions of ancestral sequence reconstruction
and sliding windows. However, it is still an interesting question
as which one is better when compared to the LRT methods.

Further development of models based upon mechanistic
molecular and biological underpinnings is always a wel-
come addition to the literature. A number of problems
from multiple sequence alignment to amino acid-based
phylogeny to problems in detecting positive selection suf-

fer from the divorce of common models from underlying
processes. Well-performing mechanistic models will be
broadly applicable across bioinformatics.

Authors' response
We fully agree with this comment. In the real world, sequence
analysis can be complex and difficult. Therefore, models consid-
ering more biological parameters lay foundations for broader
applications, especially in the field of molecular evolution (phy-
logeny tree reconstruction and mechanics of evolution dynam-
ics).

Reviewer 3
Zhaolei Zhang, Banting & Best Dept. of Medical Research
(BBDMR), Department of Molecular Genetics, University
of Toronto, 160 College St., Room 608, Donnelly CCBR
Building, Toronto, ON M5S 3E1, Canada

"  (gamma)-MYN: A new algorithm for estimating Ka
and Ks with consideration of variable substitution
rates"

Authors: Da-Peng Wang, Hao-Lei Wan, Song Zhang, and
Jun Yu.

General comments
This manuscript describes a new method to estimate the
ratio of Ka/Ks taking into account the evolutionary rate
variation. Ka/Ks ratio is commonly used as an indicator of
selective pressure acting on protein-coding genes. Current
methods mostly use simplified substitution models,
which may have effect on the estimation of Ka/Ks. Here,
based on their previous work, the authors present a new
method that the evolutionary rates across sites are mod-
eled by a gamma distribution. Using both simulated and
real data, the authors show that the new method performs
better than current methods under some conditions.

The novelty of this manuscript is that this is the first Ka/Ks
estimation method that considers the rate variation
among sites. It is an important contribution to the scien-
tific communities that use Ka/Ks in their research, and
likely will open avenues for new researches in this area.

Specific comments
I found the overall writing is clear, albeit a little verbose at
some places.

Authors' response
We revised the manuscript again for clarity.

Concern of overfitting
Can the authors address the concern of over-fitting by
introducing additional parameters?
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Authors' response
We would like to address this issue as it has been a major con-
cern all along. First, more complex models (e.g. allowing for the
correlation of substitution rates at adjacent sites and thus
parameter-rich) used in phylogenetic analyses usually produce
similar results to simple gamma models [31]. Second, the oppo-
site is usually true also as some methods with simple assump-
tions often lead to similar results over complex ones. For
instance, Nei [7]developed a simple method (giving no weights
to different types of codon substitutions) that gives essentially
the same results as those more complicated methods (such as
giving different evolutionary pathways different weights).
Third, more parameters usually lead to higher sensitivities to
sequence variations albeit untenable in certain cases, especially
when testing some real data. However, setting more parame-
ters, especially by estimating their optimal ranges, we should be
able to assess the relationships between parameters and the
characteristics of the real data as well as tradeoffs between
parameters and models.

Specific examples
Is it possible for the authors to show one specific example
(a gene) that the new method out-performs other meth-
ods, i.e. the conclusion is more biologically relevant?

Authors' response
Limited by the manuscript length, we decided to show our anal-
ysis on one real gene in the "testing real data" section.

Reviewer 4
Shamil Sunyaev, Harvard Medical School, Boston, MA,
United States

This manuscript presents a new method to compute Ka
and Ks. The authors incorporated Tamura-Nei model into
the Yang-Nielsen approach. This extension of the method
would be of interest to experts in molecular evolution. I
have a few comments and suggestions.

1) The manuscript would benefit from a much clearer jus-
tification of the method and discussion of its applicabil-
ity. Tamura-Nei model was developed for the control
region of the mitochondrial genome. Is the model with
the uniform selective constraint (reflected by parameter
omega) and raw mutation rates following gamma distri-
bution realistic for nuclear protein coding genes? The
dominant source of mutation rate variation in mamma-
lian genes (used by the authors for testing the method) is
likely to be the context-dependency, predominantly due
to CpG contexts. Is the gamma distribution model capa-
ble of capturing this variation? Different rates for transi-
tions between purines and pyrimidines imply strong
strand bias. Is this a realistic assumption in nuclear genes
and does it justify incorporation of additional parame-
ters? Also, Tamura-Nei distance is known to have higher

variance. How is this reflected in the performance of the
method? I would suggest discussing these issues in the
introduction and discussion sections.

Authors' response
We are grateful to the valuable suggestions and revised relevant
text accordingly. After it was brought forth by Professor Ziheng
Yang in researching globin genes [21], gamma distribution has
been widely used in characteristic of variable substitution in
coding genes [74], especially in phylogeny analyses. In our
method, we only computed the raw omega value (averaging all
sites in a gene) based on raw mutation rates following gamma
distribution. But this can be easily expanded to omega varia-
tions among sites in a manner using the sliding-window meth-
ods when necessary. It was proposed that nucleotide
substitutions in both coding and noncoding regions are context-
dependent in the sense that substitution rates depend on the
identity of neighboring bases by adopting an approach of incor-
porating gamma distribution [29]. Furthermore, models that
allow for the correlation of substitution rates at adjacent sites
were also developed [30]. However, as these models tend to pro-
duce results similar to the simple gamma model and variations
of  can make the distribution suitable for accommodating dif-
ferent levels of rate variation in various data sets [31], we chose
the simple gamma distribution as the depiction of raw various
mutation rates. As to the difference between purine and pyrimi-
dine transitions, they are driven by potential underlying forces
such as codon bias to the extent that it is correlated across
codons in a gene and the chemistry (specificity) of DNA syn-
thesis, damaging agents, DNA polymerase, and DNA repair
enzymes [73]. In our computer simulations, we found that the
new method did not always have higher variations in related
parameter estimations as in compared with other methods.

2) I suggest that the presentation of the manuscript will be
improved. For example, it is not clear that by gamma dis-
tribution of substitution rates (and, in general, by variable
substitution rates) the authors mean gamma distribution
of raw mutation rate rather than gamma distribution of
omega.

Authors' response
Done. We revised the text to clarify this point. We do mean 
distribution of the raw mutation rate rather than omega.

3) Tests on real data: I would suggest eliminating the dis-
cussion of positive selection between human and chim-
panzee. Small number of substitutions and relaxation of
selection due to small effective population size may easily
lead to the observed increase in genes with Ka/Ks > 1.
Also, I do not see why human-chimpanzee comparison
would be a good test of the method because there are
essentially no multiple hits, so any method including sim-
ple counting should be reliable. A good test would be the
analysis of known examples of proteins evolving under
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positive or negative selection and demonstration that the
new method has higher power to detect selection (e.g.
using fewer species or partial sequences). I understand,
however, that this may be a subject of a separate study.

Authors' response
Agreed. We have removed the discussion on positive selection
on the human-chimp dataset. We added an example for an
evaluation of our new method. We are performing a systematic
study on sequences from diverse evolutionary distances and
planned to publish the results in separate manuscripts.

4) Is the software implementation of the method availa-
ble?

Authors' response
Yes. Since the new integrated version of KaKs_Calculator 2.0
is still being programmed, a simple C++ source code package
(can be used in Linux) is available upon request from the
authors now.
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