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Abstract

Background: An important goal in bioinformatics is to unravel the network of transcription factors (TFs) and
their targets. This is important in the human genome, where many TFs are involved in disease progression. Here,
classification methods are applied to identify new targets for 52 transcriptional regulators using publicly-available
targets as training examples. Three types of sequence information are used: composition, conservation, and
overrepresentation.

Results: Starting with 8817 TF-target interactions we predict an additional 9333 targets for 152 TFs. Randomized
classifiers make few predictions (~2/18660) indicating that our predictions for many TFs are significantly enriched
for true targets. An enrichment score is calculated and used to filter new predictions.

Two case-studies for the TFs OCT4 and WT | illustrate the usefulness of our predictions:

* Many predicted OCT4 targets fall into the Wnt-pathway. This is consistent with known biology as OCT4 is
developmentally related and Wnt pathway plays a role in early development.

* Beginning with |5 known targets, 354 predictions are made for WTI. WTI has a role in formation of Wilms'
tumor. Chromosomal regions previously implicated in Wilms' tumor by cytological evidence are statistically
enriched in predicted WT1 targets. These findings may shed light on Wilms' tumor progression, suggesting that
the tumor progresses either by loss of WTI or by loss of regions harbouring its targets.

* Targets of WTI are statistically enriched for cancer related functions including metastasis and apoptosis. Among
new targets are BAX and PDE4B, which may help mediate the established anti-apoptotic effects of WTI.

* Of the thirteen TFs found which co-regulate genes with WTI (p < 0.02), 8 have been previously implicated in
cancer. The regulatory-network for WT1 targets in genomic regions relevant to Wilms' tumor is provided.

Conclusion: We have assembled a set of features for the targets of human TFs and used them to develop
classifiers for the determination of new regulatory targets. Many predicted targets are consistent with the known
biology of their regulators, and new targets for the Wilms' tumor regulator, WTI, are proposed. We speculate
that Wilms' tumor development is mediated by chromosomal rearrangements in the location of WT] targets.

Reviewers: This article was reviewed by Trey Ideker, Vladimir A. Kuznetsov(nominated by Frank Eisenhaber),
and Tzachi Pilpel.
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Background

The first step in regulatory control is the binding of tran-
scription factors (TFs) to specific regulatory sites in DNA.
In simple eukaryotes such as yeast, an estimated 99% of
TF sites occur within 800 bases from the transcription start
site [1]. In humans, on the other hand, TFs may exert reg-
ulatory control at a distance of many kilobases from the
start site [2-4]. Complex genomes also show greater inci-
dence of binding sites occurring within 5' UTRs, introns,
3' UTRs, and even far downstream of a gene.

A particular TF may bind many similar, non identical pro-
moter sites, with an affinity that varies with base
sequence. The set of sites is often described as a motif or
preferred pattern of bases. A popular representation of the
binding motif is the position specific scoring matrix
(PSSM) [5-8], which gives the frequency of observed
nucleotide bases at each position of a known motif. How-
ever, results produced by scanning DNA with basic PSSM
models are often overwhelmed by a high rate of false pos-
itive predictions [9]. In an effort to improve target predic-
tion, we have previously employed a more sophisticated
supervised learning method in Saccharomyces cerevisiae
which combines many types of genomic data to assist
binding site classification [10-12]. We have also devel-
oped a method to rank specific genomic features (e.g.,
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presence or conservation of a particular k-mer) to select
those which are most important for identifying target pro-
moters for a particular TF [12,13]. We now adapt and
apply these methods, which are based on the support vec-
tor machine (SVM), to produce separate classifiers for 152
TFs in the human genome in an attempt to discover new
regulatory interactions important to human disease and
development.

The genomic datasets used include sequence information
from promoters (2 kb upstream and 5' UTR, introns, and
3' UTRs all taken from the UCSC genome browser data-
base [14,15], see Methods) and take account of 1)
sequence composition, 2) sequence conservation in 8 ver-
tebrate genomes, and 3) statistical over-representation.
These datasets have high dimensionality (see Methods),
often containing thousands of numerical features. During
classifier construction SVM recursive feature elimination
(SVM-RFE) [16] is used to reduce the feature set to a man-
ageable size.

Figure 1 provides a graphical scheme describing classifier
construction. Feature ranking as well as feature set and
classifier construction are described more completely in
the Methods section. Each gene used in the analysis is
described by a numerical or feature vector. Each compo-
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SVM Framework. This figure shows the data mining scheme for making TF classifiers. 100 classifiers are constructed for each
TF, each using a different random sub-sample of the negative set. A classifier built on the training set is evaluated using cross-
validation (center, gray box). This will usually be leave-one-out cross-validation, except for classifiers with large training sets
where 5-fold cross-validation is used and repeated |0 times. For every cross-validation split, the top 1750 features are selected
using SVM-RFE and the classifier is trained and finally used to classify the test set (left out sample). This process is repeated 100
times, and the accuracy for the procedure is the average of the 100 cross-validation accuracies.
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nent, or feature, represents one measurement taken in the
genome, for example, the number of occurrences of a par-
ticular k-mer in the gene's promoter. SVMs efficiently han-
dle high dimensional datasets and have proven effective
in a wide range of biological systems [17-23].

SVMs require the input of positive (known target) genes
and negative (non-target) genes to develop a decision rule
which can be used to classify new genes as bound or not
bound by a TF. Once a classifier is created an enrichment
score is assigned to each predicted target using Platt's SVM
[24]. Both the accuracy of the classifier and the enrich-
ment score are dependent on the choice of positives and
negatives used for training. An inaccurate training set will
yield a noisy and less useful classifier. Furthermore, it is
difficult to know the ratio of true positives to true nega-
tives for any TF.

Positive examples are curated from several publicly avail-
able databases and also from the few ChIP-chip experi-
ments which have been performed on human tissues (see
Methods). The negative set is always chosen randomly
from the genome. Clearly a random choice of negatives
can introduce bias into the classifier since it could by
chance contain unknown, but real, target genes even if the
average number of expected targets is negligible. To
resolve this difficulty, each TF classifier is constructed one
hundred times, each with a new sampling of negatives.
The performance of each classifier is evaluated by cross-
validation and a final accuracy measurement is then the
average accuracy from all one hundred trials (see Meth-
ods). In the cross-validation process, feature selection is
done only on the basis of the training set, so that no infor-
mation is used from the test set.

An enrichment score is assigned to each predicted target
using the Platt SVM algorithm [24]. Platt's procedure was
originally developed to estimate the likelihood (posterior
probability) that any example is a positive (target) given
the output of the SVM. In our case a true posterior proba-
bility is difficult to estimate, since the underlying class dis-
tributions are unknown, and Platt's estimate will be used
simply to rank predicted targets so that only the best pre-
dictions are selected.

In our training and test sets we choose the negative and
positive sets to be of equal size for each TF. Other studies
have also employed balanced datasets [25,26]. This has
several consequences for how cross-validation accuracy
measurements and the posterior enrichment scores are
interpreted. Since class priors are equal, a PPV measure-
ment of 50% indicates a random classifier, only classifiers
which achieve significantly better than 50% PPV will be
useful for predicting new targets. By using a statistical test
on the accuracy or PPV measurements it is possible to
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identify classifiers which perform better than chance. Sim-
ilarly, the enrichment score will only be useful in ranking
targets when the classifier is performing non-randomly.
We note that these enrichment scores may actually be
interpreted as confidence levels, but only on the balanced
datasets used in SVM training and testing. A correction is
required if one desires to use the enrichment scores as
confidence levels in the full genome, wherein the number
of negatives can outnumber the number of positives by a
large factor. Although we use and report the uncorrected
Platt scores here simply as a means to show enrichment
for targets, we outline the calculations necessary to correct
these scores to the genomic scale in the Methods section.

Our analysis produces informative classifiers for a number
of human TFs, several of which are important to human
development and disease. Although many factors are
worth in-depth investigation we focus on the targets of
two disease-relevant regulators: the targets of OCT4 and
their relation to diabetes and, more extensively, the targets
of WT1 and their relation to cancer development and pro-
gression. Alterations in transcription factors have been
previously shown to be directly related to cancer progres-
sion [27].

Chromosomal regions known to be associated with pro-
gression of Wilms' tumor are significantly enriched for the
predicted targets of WT1. This finding is significant since
it provides a specific link between disease progression and
disregulation or loss of WT1 targets in these regions. Motif
discovery methods are also used to propose a new binding
motif for WT1.

Results and Discussion

For every TF here, all genes in the genome are given a score
reflecting likelihood of being bound by the TF. The score,
produced by Platt's procedure, ranges from 0 to 1, and will
be denoted with a capital P (e.g., P = 0.5). Cross-validation
performance measures (e.g., PPV or accuracy) are deter-
mined at the decision threshold of P = 0.5. This is the opti-
mal discriminant threshold since, in a balanced test set
(equal numbers of positives and negatives), it indicates
that genes exceeding the threshold have better than a 50%
chance of being a true target in the training set [24]. In
practice the P = 0.5 threshold may be statistically signifi-
cant because Platt scores in our method are average scores
from 100 classifiers generated using different negative
training sets. Genome-wide, fewer than half of all genes
will exceed the 0.5 boundary. Nevertheless, P = 0.5 is not
necessarily the best threshold for use in making new pre-
dictions. For the predictions we discuss below, we accept
genes as targets only if they pass a threshold Platt score of
0.95 on average for 100 classifiers (one classifier for each
negative training set) constructed for a particular TF. Start-
ing with 8817 TF-target interactions curated from experi-
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mental datasets, 9333 new predictions can be made at this
cutoff.

Not surprisingly, many classifiers show poor performance
in cross validation (P = 0.5 threshold) although several do
show high precision (33 have PPV > 0.6, see Methods).
Poor performance may be partly due to the fact that our
defined promoter region is large and in some cases may be
thousands of base pairs long. This size may interfere with
the ability of the SVM to identify important regions. The
greater complexity in the human genome and likely pres-
ence of extensive combinatorial regulation may not
always be captured well by individual classifiers trained
for each TF. Finally and most importantly, human TFs
generally have few known targets (small positive set),
making it less likely that a classifier will find the correct
decision rule. This is discussed in Additional File 1 where
a hypothesis test is proposed to determine the significance
of any classifier given the number of known targets.

Few supervised genome-scale strategies exist for predicting
regulatory targets in mammalian genomes; however, sev-
eral unsupervised approaches have been proposed. One
successful unsupervised method [28] uses expression data
and PWM models with a technique called MARS (multi-
variate adaptive regression splines) [29] to discover condi-
tion specific cis-regulatory networks. The advantages of
MARS are that little prior information is necessary and the
predictions represent a regulatory network specific to the
expression conditions of interest. Our supervised method
requires some known target genes and will predict condi-
tion independent binding. However, it is simple to inte-
grate new types of data into SVM classifiers, whereas the
method in [28] is restricted to sequence and expression
data. In addition our system should function well in mak-
ing condition-specific predictions if appropriate expres-
sion data are acquired.

Here, a control experiment was run to test the perform-
ance of SVM classifiers against randomized datasets. Three
regulators were chosen according to the number of avail-
able targets (WT1-15 targets,; MYC-67 targets, and
OCT4-218 targets). For each regulator, the index of posi-
tives and negatives was shuffled during training (in all 100
classifiers representing the TF) to create randomized clas-
sifiers. These classifiers were then applied to the human
genome and compared to the classifiers made with not-
shuffled data. As expected, the shuffled classifiers make
very few predictions in the genome which pass the 0.95
threshold. The shuffled WT1 classifier makes no predic-
tions, while the shuffled OCT4 and MYC classifiers make
1 and 2 predictions respectively. In a genome of 18660
genes, this suggests that a random classifier will make
fewer than 1 false positive per 10000 predictions when the
threshold is set to 0.95 or greater. The performance of the
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randomized classifiers was tested using cross-validation
(the classification threshold used in cross validation is
0.5). The real classifiers had performance measures which
were significantly better than random in the cases which
were tested (p-values for PPV and Accuracy less than
2.59e-28). This is shown in Figure 2 for PPV, where box-
plots are used to compare the performance of actual and
random classifiers.

Since cross-validation is performed at the 0.5 decision
threshold, an immediate question that comes to mind is
how to evaluate the significance of the performance accu-
racy of a given classifier (e.g., at P = 0.5, is 68% accuracy
significantly better than random?) We have therefore con-
structed a hypothesis test to determine whether any meas-
ured accuracy is different than random. This test shows
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Figure 2

Actual vs. Label-Shuffled Classifier Box-plots. 100 clas-
sifiers represent each TF, meaning that cross-validation pro-
duces a population of PPV measurements to representa TF
classifier. These populations are used to compare the signifi-
cance of the actual vs. the label-shuffled classifiers (denoted
with the prefix "Rand"). Here the comparison is shown for
WTI, Myc, and OCT4. Each box-and-whisker plot has a top
line (the upper quartile value-not whisker line), a central red
line (the median), and a bottom (the lower quartile value). If
the notches on two different boxes do not overlap then one
may conclude that the two population medians are signifi-
cantly different (at the 5% level). Each box also has whiskers
which look like standard error bars. The length of a whisker
equals 1.5 times the interquartile range, which is the default
value in Matlab [214]. Plus(+) signs represent potential out-
lier points existing beyond that default range.
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that the 68% accuracy measured for WT1 (averaged over
100 classifiers) is significant at p = 1.36e-4, making it
unlikely that our results would have been obtained at ran-
dom. Classifiers with larger numbers of known targets will
show even stronger significance at the same accuracy. The
full details of the hypothesis test as well as a brief discus-
sion of its application to other TFs can be found in our
Additional File 1.

Our method begins with 8817 known TF-gene interac-
tions for 152 TFs. Many of these known interactions are
confined to the few TFs for which ChIP-chip data is avail-
able (see Methods). The two largest, HNF4-a and CREBI1,
have 4627 known targets. In general, classifiers for TFs
which include ChIP data do not necessarily perform better
or worse than those without it. For example, OCT4 has
ChIP data and performs about as well in cross-validation
as WT'1, which does not. In fact, when large sets of known
interactions exist, the classifiers make few or no new predic-
tions, perhaps suggesting that a significant subset of the
targets for those factors have already been found (most
strikingly, HNF4-a classifiers yield only 3 new predic-
tions, and CREBI1 yields only 1). Alternatively, since the
positive sets for these two factors are very large, the possi-
bility exists that the promoters of the positive sets have a
large amount of variability. This variance, which could
result from experimental noise or natural variability in
target promoters, may prevent our classifiers from identi-
fying features which distinguish potential new targets in
the genome. Figure 3 displays the number of known tar-
gets for each TF along with the new predictions discovered
at the average 0.95 threshold. The TFs OCT4 and WT1,
which are discussed below, are indicated on this graph. In
order to explore the best new predictions, for the remain-
der of this manuscript we discuss only targets predicted at
the 0.95 Platt score threshold.

Results for all TFs are available in Additional File 2 and on
our web server [30]. Additional File 2 also contains some
brief notes on the naming conventions of TFs, and how
the classifiers were constructed, as well as files listing the
known targets used in classifier training (see Methods).

SVM Classifiers Identify Biologically Relevant Targets for
OCT4

Regulation by OCT4 is essential in early development,
and expression of OCT4 is important for maintaining the
pluripotency of embryonic stem cells [31,32]. ChIP-chip
analysis of OCT4 and several other regulators revealed
that OCT4 can act in concert with the TFs NANOG and
SOX2 [32]. The SVM classifier for OCT4 has an accuracy
of 67% and a PPV of 66% (at P = 0.5). This accuracy esti-
mate is highly significant at a p-value << 0.01 (calculated
with the method outlined in Additional File 1; again note
that this is not the Platt score correction discussed else-
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Figure 3

Distribution of High Scoring Targets for TF Classifi-
ers. Each bar represents one TF classifier. The height of the
bar indicates the number of genes known or predicted to be
bound by the TF. The green portion of the bar indicates the
number of previously known targets while the yellow portion
indicates predictions made at greater than or equal to the
Platt score 0.95 threshold.

where but a hypothesis test to determine the significance
of the cross-validation accuracy).

It has been discovered that OCT4 targets are enriched for
transcription factors, with many of these also being
important for development [32]. In fact, the known tar-
gets in the training set for OCT4 are significantly enriched
in the GO term "transcription regulatory activity" (50
genes, p = 2.1e-16), and new SVM predictions (at P> 0.95)
also show enrichment in this category (111 genes, p =
6.7e-34). The known targets and new predictions share
many statistically enriched functional terms, including
"developmental protein", "homeobox", and "Wnt signal-
ling pathway". Statistical enrichment of functional terms
in gene groups throughout this chapter were calculated
using the DAVID Bioinformatics Resource [33] (See Meth-
ods) For a complete list of enriched categories in OCT4
targets see Additional File 3.

The authors in [32] noted that several targets of OCT4 fall
into the Wnt signalling pathway. As mentioned above,
both the known target set and the new predictions are
enriched for genes in the Wnt pathway (p = 0.01, p =
0.0014 respectively), meaning that the predictions are
consistent with the known biology of both Wnt and
OCT4, implying a role in development. Figure 4 shows
the Wnt pathway, highlighting SVM predictions alongside
previous knowledge. Other research has shown that Wnt
pathway activation is sufficient to preserve the self-
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Known and Predicted Targets
of Oct4 in the Wnt Pathway
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Figure 4

Oct-4 Targets in the Wnt Signalling Pathway. Known targets of Oct-4 are filled in green and new predictions are filled
in red. Known targets and predicted targets are statistically enriched for genes falling in this pathway.

renewal of human embryonic stem cells [34] and is
important for maintaining pluripotency [35]. OCT4 itself
is required to maintain the undifferentiated status of stem
cells [36]. These results lend credibility to the SVM predic-
tions since the predictions share a significant number of
functional categories with the training set. They also
impart specificity to the known role of OCT4 in Wnt path-
way and maintenance of pluripotentcy.

OCT4 regulates several genes involved in Diabetes

OCT4 is known to bind the promoters of several genes
important for differentiation, and some of these are fac-
tors which can contribute to the onset of diabetes. The
known targets of OCT4 are significantly enriched in genes
falling into the KEGG pathway Maturity Onset Diabetes of
the Young (MODY, p = 0.039). Particularly, OCT4 binds
the gene PDX1, which causes Type IV MODY when
mutated [37]. SVM predicts two new targets falling in this
pathway. Most interesting is the transcription factor
NEURODI1, which has been shown to cause Type VI
MODY when mutated [38]. This evidence hints that OCT4
may play role in diabetes if its mode of regulation is dis-
turbed. Others have hypothesized that disruption of nor-

mal transcriptional regulation is the ultimate cause of
MODY TypeVI when NEUROD1 is lost [37]. This leaves
open the possibility that the disruption of NEUROD] tar-
gets could also be achieved by disruption or mutation of
OCT4.

Regulation by WTI

General findings

Wild type WT1 has a complex role in carcinogenesis, act-
ing as both a tumor suppressor [39,40] and an oncogene
[41] depending on context. To further complicate its role,
the gene encodes four splice variants [42-48], each
thought to have separate functions and slightly different
DNA binding affinities. Regulation by WT1 is not well-
defined, and its function may be modulated by post-trans-
lational modification [49,50] or by physical contact with
other regulators, including possible dimerization with
other proteins or with itself [51-58]. Two recent reviews of
WT1 function and Wilms' tumor are available [59,60].

The classifier for WT'1 has an average prediction accuracy
of 68% and an average PPV of 75% (P = 0.5). Because the
ratio of positives and negatives in the training sets are
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equal, these performance measures may not equal per-
formance in the genome where the ratio of targets to non
targets will be small. The number of expected false posi-
tives will be minimized in practice since any new targets
must pass the 0.95 threshold (not 0.5) in its Platt score on
average across 100 classifiers. Our randomized simula-
tions and the hypothesis test in Additional File 1 show
that the classifier for WT'1 performs significantly better
than would be expected at random.

Using the known set of 15 targets for WT1, the SVM
method expands the set to include 354 new targets (at
Platt score P > 0.95; see Methods The 15 training set target
genes and original supporting references can be found in
Additional File 2 in the spreadsheet
"Wtl_known_targets_and_references.xls"). The new pre-
dictions show significant enrichment for several KEGG
pathways in which there are previously annotated targets.
These pathways are Map-kinase (p = 1.1e-3), adherens
junction (p = 8.7e-3), and calcium signalling (p = 4.7e-2).
Furthermore, one study has identified differentially
expressed genes by comparing mutant and wild-type WT1
tissues [61]. Although the overlap with the set of predic-
tions made here is small, the new predictions are signifi-
cantly enriched for differentially expressed genes (p =
1.7e-4 by hypergeometric test). These data suggest that the
classifier for this TF is revealing accurate biological hits.

Since the positive targets for all TFs are parsed from public
databases, it is possible that other established targets have
been confirmed in the literature but do not appear in our
training sets. Such a set of identified targets can serve as an
independent experimental validation set. A recent review
[60] of WT1 compiles a list of 30 genes [62-96] which are
possible targets of WT1 according to in vitro or in vivo stud-
ies (See spreadsheet in Additional File 2 entitled
"Wt1_20_Targets.xIs" for a list of these 20 genes, SVM pre-
dictions, and original references). Many of the in vitro
studies showed transcriptional repression which has not
yet been seen in vivo. This ambiguity makes it possible
that, although experimental binding is observed in all
cases, some of the binding sites are not biologically func-
tional. 9 of the 30 genes in this list are already in our pos-
itive training set, and 1 gene [91] is an indirect target of
WTT1, leaving 20 genes which can be used as an independ-
ent validation set.

Of these 20 genes, 9 are predicted as targets by the WT1
classifier at the baseline 0.5 threshold. This is an encour-
aging result given the small size of the gene set and the
possibility of experimental noise. Considering the
number of genes which are predicted targets of WT1 at the
0.5 cutoff (3135 predictions out of 18660 total genes;
recall that predictions are averaged over 100 test sets), cor-
rectly identifying 9 of these 20 genes is highly unlikely by
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chance (p = 6.34E-4, hypergeometric test); this is evidence
that the positively classified genes are significantly
enriched for binding targets of WT1. In addition to the
discussion below, Additional File 1 contains an analysis of
the role of WT1 in nervous tissue development and in cel-
lular migration.

General Information Relating WTI and Wilms' Tumor

To frame the new predictions for WT1 in a biological con-
text, it is necessary to review some of what is known about
regulation by this TF and the disease, Wilms' tumor,
which is associated with it. Wilms' tumor is a renal malig-
nancy accounting for 8% of childhood cancers [60]. The
Wilms tumor 1 (WT1) gene codes for an essential transcrip-
tion factor that plays a role in normal urogenital forma-
tion [97-101]. It is found to be overexpressed in an
assortment of cancers including leukaemia [102], lung
[103], colon [104], thyroid [105], breast [106], and sev-
eral others [107-111]. The tumor may occur sporadically
(no obviously heritable association) [112-115] or syndro-
matically (a genetic predisposition) [116-120]. The latter is
relatively rare and often associated with a mutation in
WT1, although mutation or loss of heterozygosity in other
chromosomal regions (outside the cytological band that
includes WT1) has been shown in some syndromatic
cases. Overall, WT'1 may also be mutated in 10-15% of
sporadic cases [112,113,115,121,122]. Also in sporadic
tumors, many chromosomal locations undergo loss of
heterozygosity (LOH) or loss of imprinting (LOI) [123-
128].

These changes are largely absent from syndromatic cases
[123], suggesting that it is either loss of WT1 or loss of
possible downstream targets which is the primary cause of
Wilms' tumor. Recent evidence suggests that up to half of
the sporadic tumors without a WT1 mutation may have
some WT1 downregulation via epigenetic changes [129].

It is not completely understood how loss of WT1 precipi-
tates cancer or how WT1 is linked to the other genomic
changes observed in sporadic tumors. By combining
known information with new predictions, a possible new
model emerges which links past clinical and experimental
observations of Wilms' tumor to the misregulation or loss
of WT1 and/or the modification of its target genes.

WTI May Regulate Apoptosis Through Factors Other than Bcl2

As a tumor suppressor, expression of WT1 has been
shown to impede cell growth in some tumors [130,131].
This is consistent with Wilms' tumor resulting from the
loss of WT1, either by mutation of the gene, or its down-
regulation.

On the other hand, ~90% of sporadic Wilms' tumors

maintain a wildtype version of WTI1 [61,132,133].
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Indeed, in other cancers, WT1 is overexpressed [134,135].
This suggests that the presence or overexpression of WT'1
may encourage malignancy in some conditions. Previous
studies have shown that WT1 interacts with P53
[55,56,61], suppressing its apoptotic effects, and that it
also directly activates the anti-apoptotic gene BCL-2 [41].
In addition, the results reported here include several new
targets that are known to be anti-apoptotic or to otherwise
regulate cell death (Additional File 4). One notable new
prediction is that WT'1 binds the promoter of BAX, a pro-
apoptotic gene [136] whose protein product binds to
BCL-2 and disrupts its repression of apoptosis [137]. A
possible hypothesis is that the action of WT1 on the BAX
promoter down regulates BAX gene expression, thereby
allowing BCL-2 to repress apoptosis. Also interesting is
the predicted target PDE4B, which can augment apoptosis
when inactivated [138]. One possibility is that loss of
WT1, and hence downregulation of PDE4B, may contrib-
ute to the sensitivity to apoptosis observed in WT1 mutant
cells. Although the true expression relationships between
WT1 and these genes awaits experimental validation, the
SVM predictions provide insight into the possible targets
of WT1 and can help in guiding further experimentation.
For the results of additional analysis using the DAVID
annotation system see Additional File 5 (genes related to
cellular adhesion, cytoskeleton, or motility) and Addi-
tional File 6 (genes related to the nervous system).

Disease associated chromosomal loci are significantly enriched in
predicted WT | targets

In recent years it has become clear that there are distinct
pathways of tumor formation in syndromatic versus spo-
radic tumors. As mentioned earlier, syndromatic tumors
often contain a mutation in WT1 (Denys Drash and
WAGR syndromes) or loss of the nearby region 11p15.5
(Beckwith-Wiedemann syndrome) [127,127]. The WTI
gene is located in 11p13, and naturally explains why dis-
ruption of this region contributes to tumor formation
[139-142]. The syndromes resulting from these abnormal-
ities and their associated chromosomal changes are listed
in Table 1.

Table I: Syndromes causing predisposition to Wilms' Tumor

http://www.biology-direct.com/content/3/1/24

Only 10-15% of sporadic tumors have a WT'1 mutation
[112,113,115,121,122]; however, sporadic cases tend to
have a variety of other genomic changes including loss of
heterozygosity (LOH) and loss of imprinting (LOI). In
sporadic tumors LOH occurs in 11p15 where the maternal
copy of 11p15 is lost, often in conjunction with duplica-
tion of the paternal copy [128,143]. This causes the over-
expression of some genes and the silencing of others,
notably IGF2 [144-147] which is often upregulated, H19
[148-150] which is often silenced, and p57 [151-153].
Besides 11p15 [128], LOH in sporadic cases occurs in 1p,
4q, 7p, 11q, 14q,16q, and 17p [123]. LOI is an early stage
event in sporadic tumors, and occurs in several regions
including 11q, 16q, 4p, and 7p [123]. Figure 5 depicts
some of the genetic changes which may lead to tumor for-
mation by the syndromatic or sporadic pathways. These
data suggest that regions shown to undergo LOH harbor
genes regulated by WT'1 or downstream effectors, yet these
observations currently have no cohesive framework relat-
ing them. We show that by combining published data and
the newly identified WT1 targets reported here, past obser-
vations on sporadic and syndromatic tumors can be tied
together, relating them in molecular detail to misregula-
tion or a loss of WT'1 and/or modification of its targets.

Strikingly, examining the predicted targets of WT1 shows
that these genes occur more frequently than expected by
chance in several genomic regions including cytobands
11p15.5 (p = 6.3e-5, 8 new predictions), 1p36.3 (p = 6.3e-
4, 3 new predictions), and 4p16.3 (p = 4.3e-3, 5 new pre-
dictions) (analysis in DAVID [33], see Methods). Three of
the new targets for WT'1 in 11p15.5 are possible tumor
suppressors: RNH1 [154], IGF2AS [155], and CD151
[156,157]. If in fact WT1 normally activates these genes it
could explain why inactivation of WT1 or loss of genes in
11p15.5 contributes to cancer formation, since in both cases
expression of these tumor suppressors would be abolished. Also
in these regions are 2 possible oncogenes (1 previously
known-IGF2, 1-new HRAS), one gene expressed in the
fetal kidney which may be involved in adhesion
(MUCDHL [158]), and one known to contribute to cancer
progression (FGFR3 [159-161]). Of particular interest in
11p15.5 is MUCDHL, the cadherin like protein. Loss of

Syndrome Occurrence of Wilms tumor Chromosomal abnormality Ref.

WAGR 98% by age 6 Deletion at | 1pl3 OMIM: #194072

Beckwith- Wiedemann 96% by age 8 Duplication of paternal | 1p15. May result in increased gene OMIM: #130650
expression(IGF2) or inactivation(p57).

Denys-Drash 96% by age 5 Missense mutation in WTI (1 1pl3 locus) causing dominant OMIM: #194080

negative phenotype.

This table highlights the syndromes causing predisposition to Wilms' Tumor development, and the genetic changes associated with the syndrome.
The reference number for the syndrome in the Online Mendelian Inheritance in Man (OMIM) database [231] is given in the Ref. column. These
include WAGR [139] Denys-Drash [232], and Beckwith-Wiedemann [140] syndromes.
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Figure 5

Pathways to Wilms' Tumor. Genetic changes leading to Wilms' Tumor. Cancer occurs through the sporadic or the syn-
dromatic pathway. Loss of heterozygosity (LOH) and loss of imprinting (LOI) are generally associated with sporadic pathways,
but are occasionally found in syndromatic tumors. The gray bar indicates that the LOH may occur anywhere along the develop-
ment of the sporadic cancer. Most sporadic cases (but not all) have a wild-type overexpressed WT/ gene. It is possible that
LOH, LOI, and other genetic changes in sporadic tumors compensate for the presence or over-expression of WT/. LOH at
regions 16q and |p correlate with poor prognosis. Other regions often showing LOH are listed. Regions 16p13.3, 17925, and
4p16.3 are statistically enriched for predicted targets of WT1 but their involvement in tumor formation is unknown.

MUCDHL could conceivably contribute to loss of cell
adhesion by disruption of adherens junctions, perhaps
providing a relevant step toward metastasis. Subsequent
to this analysis, one of our reviewers kindly pointed out
that there had been previous evidence that MUCDHL and
HRAS were linked to Wilms Tumor [158,162,163]. At the
4p16.3 locus the predicted target FGFR3 is associated with
several types of cancer and may explain why sporadic
tumors show disruption at this locus [164,165].

Although 16q and 22q, which correlate with poor progno-
sis [124,125], have no statistical enrichment, targets pre-
dicted at the 0.95 cutoft do lie in these regions. There are
predicted target genes with known tumor suppressor
activity in the regions 16q and 1p which could explain
why loss of these regions correspond to poor clinical out-
come (CBFA2T3 [166] in 16q, and ENO1 [167] in 1p).
Also lying in 1p is the predicted target PDE4B which, as
mentioned earlier, can augment apoptosis when inacti-
vated [138].

Other chromosomal regions with strong enrichment
include 16p13.3 (p = 4.3e-6, most significantly enriched
location), 17925 (p = 1.7e-5). These regions contain sev-

eral new predictions which may be relevant to tumor for-
mation. At 16p13.3 new targets include TSC2, which is
thought to be tumor suppressor [168,169]. TSC2 has been
shown to be mutated in renal disorders [170-173], sug-
gesting that it has the potential to contribute to disease in
some Wilms' tumor patients. At 17q25 lies the predicted
target FASN. Inhibition of FASN can cause apoptosis
[174] and also sensitizes cancer cells to treatment by
chemotherapy [175]. Activation of FASN could provide
another mechanism by which WT1 supports resistance to
apoptosis. Regions 16p13.3 and 17q25 have never before
been implicated in Wilms' tumor, and their strong enrich-
ment in potential WT'1 targets makes them excellent can-
didates for future experimental investigation. Since many
chromosomal regions have been observed to undergo
allele loss, duplication, or other mutation in Wilms'
tumor, we have compiled a list of known targets and sig-
nificant predictions which fall into several important
chromosomal regions (Additional File 7).

Finally, WT1 is predicted to regulate the transcription fac-
tor POUGF2 (at 7p14-p13). This factor has been suggested
to be a tumor suppressor, and mutations in POUGF2 con-
fer a predisposition to Wilms' tumor [176]. Repression or
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activation of POUGF2 by WT1 could theoretically have an
effect on carcinogenesis, and more studies will be neces-
sary to uncover the expression relationship between these
two factors. Since dysregulation of genes in Wilms' tumor
is due to epigenetic changes as well as genetic mutations,
it is difficult to predict the implications of regulation by
WT1 without direct experimentation.

The Regulatory Network of Wilms Tumor Associated Loci

Since gene regulation is combinatorial, involving many
TFs regulating common subsets of genes, it is of interest to
determine which TFs also regulate the targets of WTI.
Using the SVM predictions for only those TF classifiers
which show high PPV (> 0.6), a statistical test (hypergeo-
metric test) can be used to determine which regulators
share more targets with WT'1 than would be expected by
chance. Thirteen regulators have been determined to sig-
nificantly overlap the targets of WT1 (p < 0.02 see Table
2). This set includes several (8/13) TFs which have previ-
ously been implicated in cancer (NANOG [177], GLI1
[178], E2F1 [179], POU5F1/OCT4 [180], SPI-1 [181], YY-
1 [182], GATA1 [183], and C/EBP-f [184]). Twelve of
these factors bind to genes which are in chromosomal loci
implicated in Wilms' tumor or which show enrichment of
WT1 target genes. Figure 6A depicts a compact regulatory
network of these factors generated in the VisAnt browser
[185,186], showing which factors bind to genes in each
chromosomal location.

Finally, six of the TFs are also predicted to directly regulate
WT1. Figure 6B summarizes the regulatory relationships
between these transcription factors (WT1 marked in red).
Since several of the factors are known to be involved in
cancer, it is possible that WT1 acts synergistically with sev-
eral of these TFs to promote carcinogenesis. The fact that

Table 2: Transcription factors with significant target overlap to WTI
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six of the TFs potentially bind the WT1 promoter suggests
that WT'1 normally acts downstream of these factors. Sev-
eral of these TFs are master regulators acting in early devel-
opment or in the embryonic stage (NANOG [187],
GATA1 [188,189], SRF [190,191], MEF2A [192-194], and
OCT4 [195,196]). These are logical coregulators for WT1
since WT1 is also known to be active in early develop-
ment. Specifically, NANOG and OCT4 are critical for
maintenance of the undifferentiated state in stem cells
and may contribute to unbridled proliferation in some
cancers [197-199]. Clearly, the regulation of WT1 and its
targets is complex, possibly involving the combinatorial
interactions of several TFs. The set of co-regulators deter-
mined here may serve as a basis for future investigation
into the mechanisms of regulation by WTT1.

A New Binding Motif for WTI

Discovery of a binding site for WT1 has proven difficult
since each isoform of the regulator may bind to slightly
different sequences in DNA. Dimerization with other pro-
teins and post-translational modifications may also alter
the binding affinity in undetermined ways. Several bind-
ing sites for WT'1 have nevertheless been proposed (GCG-
GGGGCG [45], GNGNGGGNG [200], GNGNGGGNGNS
[74], and GCGTGGGAGT [201]). Unfortunately, showing
that WT1 binds to a site in vitro has not always proven to
be a good predictor of binding and regulatory action in
vivo [60]. The four related consensus sites reported in the
literature can be seen in Figure 7A. Our classification
based approach has yielded a set of 354 high scoring tar-
gets to add to the set of 15 genes known to be bound. This
provides a rich group from which to perform motif dis-
covery.

TF Hypergeometric p-value # of genes overlapped Selected KEGG Pathways of targets shared with Wtl

GLII 0 36 MapK Signalling, Tight Junction, Focal Adhesion

MEF2A 0 29 MapK Signalling, Regulation of Actin Cytoskeleton

NFIC 0 16 MapK Signalling, Regulation of Actin Cytoskeleton, Insulin Signalling

E2F 2.0e-12 52 Calcium Signaling, Notch Signalling, Regulation of Actin Cytoskeleton, WNT
Signalling

SRF 1.3e-10 I MapK Signalling

POUSFI  6.2e-10 38 Neuroactive Ligand Receptor Interaction, MapK Signalling

YYI 3.8e-6 6 MapK Signalling, Regulation of Actin Cytoskeleton

SPII I.1e-3 4 -

NANO  6.7e-3 23 MapK Signalling, Regulation of Actin Cytoskeleton

G

POUIFI  7.7e-3 | -

CEBPB I.1e-2 6 Neuroactive Ligand Receptor Interaction

GATAI |.5e-2 3 MapK Signalling, Regulation of Actin Cytoskeleton

T3R |.9e-2 2 MapK Signalling

TFs that have been determined to have significant regulatory overlap to WTI are given. The p-value for the significance of the overlap as calculated
by hypergeometric test is given in column 2. Column 3 lists the number of genes regulated by WT1 and the TF listed in each row. Column 4 lists a

selection of the most common pathways in which the targets fall.
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Regulatory Network at Wilms' Tumor Associated Loci. Figure 6A depicts the TFs, 13 in all, which target chromosomal
loci thought to be involved in development of Wilms' tumor or which show significant enrichment of genes which are targets
of WTI. Only TFs which have significant target overlap with WT1 are shown. Six of the TFs also regulate WTI (based on our
predictions). 6B shows only TFs that potentially regulate WT I, and the inferred interactions between them.

A first approach (see Methods) comes from an SVM pro-
cedure which iteratively ranks each feature used by the
classifier to determine those that are most useful in distin-
guishing the known targets (positives) form the non-tar-
gets (negatives). This method has been applied
successfully to the S. cerevisiae genome to yield nucleotide
strings which matched well with the known affinities of
transcription factors. In this case it produces a ranking of
k-mers based on information in the training set alone (i.e.,
new predictions do not contribute to the k-mer ranking).
Two other methods have been applied to the entire set of
predictions and known targets. The first of these is oligo-
analysis [1,202], which scores each k-mer (up to k = 6) by
its over-representation in promoters of the gene set (see
Methods). The second is an algorithm called Weeder
[203-205] which implements an efficient search to score
and rank all possible k-mers of length 6, 8, and 10, while
also allowing mismatches. Weeder was one of the best

performing motif discovery algorithms in a recent com-
parison [206].

Figure 7B shows the top scoring k-mers from all methods.
The results are uniform in that the discovered sites are GC-
rich. The 4-mer ranked highest by SVM (CGCG) is also
present in the result given by oligo-analysis and in the best
8 and 10-mers found by Weeder. The Weeder algorithm
offers a further advantage since it automatically clusters
the most similar of the significant k-mers (of any length),
combines them into consensus site, and creates a position
specific scoring matrix (PSSM) based on the occurrences
of the consensus in the gene set. Figure 7C shows the top
3 PSSMs reported by Weeder. A scan of the known target
promoters of WT'1 with the best PSSM shows that all but
1 contains a perfect match to this matrix. Binding by WT1
is complex, and these motifs may describe only one pos-
sible binding mode of the regulator. Furthermore, since
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Figure 7

Motif Discovery on WT1 Targets. Figure 7A lists the proposed consensus binding sites for WTI from the literature
sources mentioned in the text. 7B shows the top ranked k-mer from each motif discovery method, including the best k-mer
ranked by the SVM model. 7C shows the top 3 PSSMs created by the Weeder algorithm. Motif discovery was performed on all

known and newly predicted targets of WTI.

the identified sites are very GC-rich (as are many known
WT1 target promoters) they may suffer from similar prob-
lems to the experimentally determined motifs, names that
the sites may occur frequently in the genome at random.
Although experimentation is required to validate any pre-
dictions, these motifs may aid investigators in future bind-
ing affinity studies with WT1 and serve as a useful
comparison against experimentally determined sites.
Additional File 8 contains the raw outputs from Weeder,
oligo-analysis, and results of scanning previously pro-
posed consensus sites against the promoters of predicted
WTT1 targets. All sites are within 2000 base pairs of the
transcriptional start site.

Conclusion

Prediction of transcription factor binding sites is a chal-
lenging problem in bioinformatics, especially in complex
mammalian genomes. Here we have generated classifiers
for each regulator developed methods to filter these using
cross-validation performance. Comparison to rand-
omized controls and a new hypothesis test show that
many classifiers perform significantly better than would
be expected by random target selection. Selecting the top

new predictions by applying an enrichment threshold
across 100 training sets reduces the effects of noise in the
training data.

Functional enrichment analysis on the proposed targets of
the TF OCT4 hints at its potential role in one type of dia-
betes. A similar analysis for WT'1 confirms the role of WT1
in migration and Wnt signaling (Additional File 1) and
suggests many new roles for WI'1 in development, the
nervous system, and in the progression of Wilms' tumor.
Most strikingly, many of the newly proposed targets of
WT1 are significantly enriched in chromosomal locations
previously known to be associated with Wilms' tumor,
indicating that the new targets could be relevant to this
disease. Many of these new genes are tumor suppressors
and oncogenes (including ENOI1, PDE4B, HRAS,
MUCDHL, FGFR3, CBFA2T3, RNHI1, IGF2AS, and
CD151), the loss or activation of which may now explain
some of the clinical observations of Wilms' tumor
patients. Two new chromosomal regions, 16p13.3 and
17q25, which were not previously connected to WT1 or
Wilms' Tumor, are enriched for predicted WT1 targets.
Two notable predictions in this region are TSC2, which is
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already known to be related to kidney disease, and FASN,
which may be involved in apoptosis.

By applying statistical tests it has been discovered that the
target sets of several other TFs significantly overlap the tar-
gets of WT1. This allows the construction of a potential
transcriptional network for WT1, highlighting important
genomic regions and the TFs known to bind genes in these
locations. Important for their relation to Wilm's Tumor,
several of these TFs have previously been implicated in
cancer (NANOG[177], GLI1, E2F1, POU5F1/OCT4, SPI-
1, YY-1, GATA1, and C/EBP-B). It is also seen that a large
number of the identified regulators bind the WT1 pro-
moter, suggesting that they are acting upstream of WT1
during development and/or carcinogenesis. Since the
actual binding site of WT1 is ill-defined, three different
motif discovery systems were applied to the known and
newly identified targets of WT1 to produce PWM models
which may assist in identifying specific WT1 binding sites.
Finally, the underlying datasets as well as all predictions
in the study are available for download from an online
web-server.

The next step of this analysis has been to incorporate a
more diverse set of data including expression studies
which should allow the models to perform better for
some regulators. Although sequence conservation has
been used, our method finds sequences which are con-
served on average in a promoter region. This ignores posi-
tional information and may allow elements which are not
strongly conserved to go undetected if many similar but
non-conserved sequences exist in a promoter. Work is
ongoing to develop sequence conservation kernels for use
with SVM that can 1) take into account the degree of con-
servation at every position in the promoter, and 2) handle
missing data when good promoter alignments are una-
vailable. One possibility is a modification of the method
described in [207]. Overall our approach shows that
important biological insight can be gained about human
disease and transcriptional networks using supervised
machine learning methods. With future refinements these
algorithms may be used to focus experiments, suggest new
functional roles for human genes, and reveal the tran-
scriptional circuitry underlying human development and
disease.

Methods

SVM training and validation

SVM [208] is one of a number of binary decision processes
for classifying objects based on their properties. In this
paper the objects are genes which either are (positive set)
or are not (negative set) targets of a particular regulator.
Each gene is represented by a set of variables from which
the SVM will learn a decision rule. We have previously
applied machine learning to regulatory analysis
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[10,11,209], and results from application to both the
yeast and human genomes are available on our web-
site[30].

The SPIDER machine learning toolbox [210] in Matlab
was used to select parameters and train the SVMs. The
toolbox is an interface to several SVM optimizers written
in other computer languages. Within this toolbox we have
used the Andre [210] optimizer when training sets con-
tained under 400 genes, and the "Libsvm [211] optimizer
otherwise since it is faster on large training sets. Training
an SVM involves setting a parameter C, which adjusts tol-
erance for misclassifications against the size "safety mar-
gin" about the separating hyperplane within which all
classifications are considered to be in error. The classifier
for the MYC transcription factor was used as the prototype
for parameter selection. Five-fold cross validation was
used to measure the performance of several values of C,
and the value resulting in lowest classifier error was cho-
sen for subsequent use in all classifiers. Tested values of C
include: [2-7, 25, 23, 2-1, 1, 1.5, 2, 22, 23, 24, 25, 26]. The
value 27 was selected [210] as having the best perform-
ance of all tested values. Initial experiments showed little
change in the chosen value of C if other TFs were used to
optimize the value. In principle, the choice of C and the
type of SVM (linear vs. non-linear) could be specifically
selected for each classifier, but this would become quite
expensive computationally. The linear SVM was used in
this study since previous studies in yeast have shown the
linear version to be superior on the datasets used here.
Preliminary results with human TFs (not shown) also
indicated the linear SVM performs better than some com-
mon non-linear versions.

Choosing negatives for classifier construction is difficult
since there is no defined set of genes known not to be tar-
gets. For every TF, a set of negatives is chosen randomly to
be equal in size to the positive set. 100 classifiers are made
in this way using different randomly selected negative
sets, effectively smoothing out the negative background,
from which the positive examples can stand out better. All
100 classifiers are tested using cross-validation, and the
final performance measurements (accuracy, PPV, etc) are
averaged over all trials. This is similar to the training set
selection performed in [212]; however, their goal was not
to predict new targets of transcription factors, but to filter
existing target sets. Leave-one-out cross-validation
(LOOCV) is the recommended procedure used for small
sample classifiers and is applied for 141 of the 153 TFs in
this study. For larger training sets LOOCV becomes com-
putationally expensive and so a 5-Fold cross-validation
(5CV) is used on all training sets with more than 100
genes (12 TFs fit this criteria). Because a single 5-Fold val-
idation may not be as accurate as LOOCYV, it is repeated 10
times for different random splits of the training set. For
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two TFs with very large training sets, HNF4-a and CREB1,
SVM training would still be difficult. To make the training
time more manageable, the training sets for these factors
were under-sampled to a maximum size of 1000 genes.
This is done independently for each of the 100 classifiers
constructed for the TFs.

Accuracy and Positive Predictive Value (PPV) is used as the
measure of classifier performance. As defined here, Accu-
racy is the ratio of correctly classified examples to all
example points in the dataset:

TP+TN

Accuracy=————————
x4 TP+TN+FP+FN

Where TP = true positive, TN = true negative, FP = false
positive, and FN = false negative. PPV is the number of
correct positive predictions to all positive predictions:

TP
TP+FP

PPV

The entire analysis pipeline is described in Figure 1, and
closely follows that reported in [213]. Below is an outline
for the procedure, which is modified from our previous
work [213]:

For a given TF :

1. Assemble positive set (denote size as n1). Sample n genes
randomly to construct the negative set.

2. Split the data for cross-validation.

3. Use SVM-RFE (SVM-Recursive Feature Elimination) to
rank all features in the training set.

4. Construct SVM classifier on best 1750 features. Save full
feature ranking.

5. Classify the left out genes.

6. Repeat steps 2-5 to complete cross-validation. Save all
feature rankings.

7. Calculate all performance statistics (Accuracy, PPV, etc.)
8. Repeat steps 1-7 100 times.

9. Calculate final performance statistics for the TF (i.e.,
mean Accuracy, mean PPV, etc.).

Thus 100 classifiers represent any single TF. To classify a
new example gene, the relevant feature data must be con-
structed and the 100 classifiers applied. Using the distance
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of the new gene from the hyperplane, Platt's method can
be used to calculate an enrichment score (for each classi-
fier) which can be used to rank the new prediction.
Finally, the average is taken over all 100 Platt scores. Since
the choice of negatives is random there will be fluctua-
tions in the placement of the classifier in each training set.
Using the WT1 classifier as an example, the genes lying
between 0.45 and 0.55 (i.e., very near the classifier bound-
ary of 0.5 have an average standard deviation of 0.21.
Thus, these genes may find themselves on either side of
the decision boundary depending on the training set used.
By taking the average score over 100 classifiers, there is
more confidence that a positively classified gene is actu-
ally a target according to the decision rule since a majority
of training sets classify it as such.

We also noticed that genes lying deeper in the positive
domain (i.e., farther on the positive side of the hyper-
plane) have less ambiguity in their classification. Those
with an average Platt score of greater than 0.95 have a dis-
persion of only 0.1, meaning that they fall beyond the 0.5
boundary in most or all training sets.

Typically, if P > 0.5, a gene is classified as a positive, only
for cross-validation purposes. In this paper we increase the
Platt score cutoff to P > 0.95 for actual predictions, in
order to select only the highest quality targets for each TF.
Feature rankings on each training set are saved and used
to calculate the final ranks of each feature (see below). All
SVMs for classification and feature ranking were con-
structed in Matlab [214] using the SPIDER [210] machine
learning toolbox.

Classifying new targets and prediction significance

As described in [24] and applied in [213] the SVM can
produce a probabilistic output. This is a class conditional
probability of the form P(target is correct | SVM output),
where "SVM output" refers to the distance from the gene
to the hyperplane classifier. We refer to this output simply
as the enrichment score and denote it using the upper-case
P (e.g., P2 0.95), while other statistical tests which output
p-values are denoted in lower-case (e.g., p < 0.01). The
probability is calculated according to Platt's method by
fitting a sigmoid function to the SVM output using 3-fold
cross validation. Thus, genes lying at a greater distance
from the hyperplane on the positive side will have higher
scores (i.e., more likely to be positive). This form of out-
put makes sense, as one would expect genes falling deep
into the positive region to be more likely targets.

The true posterior probabilities are difficult to estimate
since the underlying class distributions (number of true
positives and true negatives for each TF) are unknown.
Rather than guessing at the distributions, we employ bal-
anced training sets (equal numbers of positives and nega-
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tives) and thus use the Platt estimates, not as hard
probabilities as intended by Platt, but as a means to rank
predicted targets. A new prediction must have an average
Platt score of > 0.95 across all 100 classifiers for a given TF.
The Platt probability estimates, although accurate on the
training set, will underestimate the number of false posi-
tives when the classifier is applied to the genome.

This "balanced bias" is partly offset by the requirement that new
targets achieve a Platt score of 0.95 on average across 100 clas-
sifiers for a TF.

It may or course be of interest to future research to have
the ability to correct the raw Platt scores to account for the
large number of non-binders present in the whole
genome (e.g., 90% or more of genes may be non-targets
for any TF). We first make a conservative assumption
about the proportion (p) of genes in the genome which
are targets of a TF. For this example we choose 10% (7 =
0.1) as the proportion of genes which are bound by a TF.
The #-value for binding associated with any one gene, as
corrected for genomic imbalance, will be given by

__ p(-nx)
p— full = p(1-27)+x

where p is the p-value (1-Platt score) and p_full is the p-
value for the genome. As an example, if a gene is predicted
to be a target of a TF with a Platt score of 0.99, the Platt
conditional probability is equivalent to an uncorrected p-
value of 0.01. The correction above is then used to trans-
form the p-value of 0.01 to approximately a p_full of 0.1.
Note that this is a very conservative correction since it
does not take into account the fact that our Platt score is
the average over 100 classifiers.

Genomic feature selection and ranking

As demonstrated in the yeast genome [213], the SVM
algorithm can be used to select and rank features. One
main output of the SVM procedure is the vector w, which
contains the learned weights of each data feature. The w
vector is calculated directly as shown in [215]. Features
with larger w components are more useful in distinguish-
ing between the positives and negatives. The SVM recur-
sive-feature-elimination (SVM-RFE) algorithm uses the w
vector to iteratively select important features [16]. In this
study, half of the features are removed during each itera-
tion until there are 2050 left. They are then eliminated
individually until 1750 are left. As indicated in the Discus-
sion, the target of 1750 is determined by exploring the
effect of feature selection on the prototype TF-classifier for
MYC.

Since ranking is performed on each training set during a
cross-validation, and because 100 classifiers are cross-val-
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idated for each TF, many feature rankings are accumulated
for each TF. In contrast to the simple rankings by SVM-
RFE, our method takes all rankings (on all cross-valida-
tion training sets for all classifiers representing a TF) into
account when compiling a final feature rank for a particu-
lar regulator. To accomplish this, a count is taken of the
number of times each feature appears in the top 40 of any
ranking (40 chosen arbitrarily). The final rank is made by
sorting the features according to the frequency of their
appearance as a "top 40" feature. Genes high on this new
list are consistently ranked highly over all cross validation
trials and all choices of negative set, making them reliable
in that they are robust to changes in the training set.

Sequences and Transcription Factors

Several regulatory sequence regions were extracted for
18660 human genes from the UCSC genome browser
database using the web based table retrieval tool [14,15].
These regions consist of: 1) 2 kb of sequence upstream of
the transcription start site plus the 5'UTR, 2) all introns, 3)
3'UTR. All Refseq genes from the May 2004 human
genome build in the UCSC database were selected. In
some cases, UCSC reports that a Refseq mRNA matches
more than one sequence region with greater than 95%
similarity. We retain all sequence regions matched with
95% similarity and use them all as possible duplicate
genes. These genes are indicated in our supplementary
data by being suffixed with "_X_1", "_X_2" for copy 1,
copy 2, etc.

Although we report results for 152 separate transcription
factors, many regulators dimerize with others to form a
protein complex (TF) which has its own specific regula-
tory action. For example, RARbeta/RXRalpha is a dimer of
two proteins that has TF activity. Thus, an individual clas-
sifier is made for "RARbeta/RXRalpha". When one protein
participates in more than one distinct TF complex, that
protein may be represented more than once in our list of
TFs. On a higher level, some groups of similar factors may
share overlapping activity, and thus it might be possible to
group them all together under one name, and thus make
one classifier for the whole group which may be better
than the smaller, individual classifiers when the individu-
als have small training sets. For example, the factors RAR-
alpha, RARalpha/RXRalpha, RXR, RARbeta, and RARbeta/
RXRalpha all have separate biological activity as transcrip-
tion factors. Each has its own classifier in our study; how-
ever, we also create a "parent" classifier in which all their
targets are grouped together, and we call this single, uni-
fied classifier "RetinoicAcidR". A more complete descrip-
tion of our naming conventions and classifier
organization can be seen in Additional File 2 in the docu-
ment entitled "notes_on_TF_names.doc".
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Feature Datasets
The sequence data described above was used to create
three types of features vectors for use in the SVM:

1. k-mers-This feature is similar to that used in [213] on
the yeast genome, and results in a feature set very similar
to the spectrum kernel described in [216-218]. The fre-
quency of k-mer counts in intergenic regions can discrim-
inate between genes that are bound by a TF and those that
are not. The appearances of all k-mers (length 4,5, and 6)
are tallied in a gene's promoter region, 5'UTR, introns,
and 3'UTR. The set of counts is assembled into the
attribute vector for the gene. For each gene, the counts for
4-mers, 5-mers, and 6-mers are normalized separately to
mean 0 and standard deviation 1. This is separate from the
feature normalization which occurs prior to SVM training.
k-mer counts are performed separately and summed for
each regulatory region mentioned above. K-mer counting,
which was used, in part, in datasets 1 and 3, was per-
formed using code modified from a script that was kindly
provided by Dr. William Stafford Noble of the University
of Washington.

2. k-mer-Overrepresentation This method calculates the
significance of occurrences of each k-mer in the a gene's
regulatory regions. This method is the same as that
reported in our previous work [213] and follows the equa-
tions set out by RSA tools [1,202]. Here, the background
sequence set is all human gene promoters (2 kb
upstream), 5'UTRs, introns, and 3'UTRs.

3. Conserved k-mer Counts-The feature vectors created
here are made by using the output of the PhastCons algo-
rithm [219,220] combined with k-mer counting and a
customized weighting scheme. The procedure is as out-
lined in our work in the yeast genome [213]. Introns and
3'UTRs are included for the human genome. Essentially,
k-mers are counted in gene regulatory regions as in data
set 1, but each k-mer instance is weighted according to its
level of conservation in a multiple alignment of sequences
from human and seven other vertebrate genomes (chimp,
dog, mouse, rat, chicken, zebrafish, fugu). Genomic align-
ments and PhastCons scores were downloaded from the
UCSC genome browser website [14,15].

Asin [213], the weighting metric we have chosen to use is:

1
1-BP;

where P is the PhastCons score which is averaged over the
nucleotides of one k-mer instance. There is a parameter, £,
which can be adjusted to control how heavily conserva-
tion is weighted in the k-mer count. When a k-mer is not
conserved at all, it is given a baseline count of 1. #is cho-
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sen to equal 0.75, so that a k-mer with the highest possible
conservation receives a weighted count of 4.

Functional Analysis

Statistical enrichment of gene sets for particular gene func-
tions was calculated using the Functional Annotation
Tool in DAVID 2006 [33]. Enrichment for functions was
calculated using default background sets provided in
DAVID. DAVID uses the Fisher Exact test to measure func-
tional enrichment in annotation categories from numer-
ous public databases (e.g., KEGG pathways, GO terms,
Spir keywords, etc). Enrichment for chromosomal loca-
tions was found using DAVID by searching only for
enriched chromosomal cytobands. Genes were also clus-
tered according to functional similarity using the Func-
tional Annotation Clustering tool in DAVID. Many of the
Additional Files showing gene annotation were modified
from DAVID output.

TF Coregulators with WTI

The set of potential TFs which may coregulate genes with
WT1 was selected from the pool of factors whose classifi-
ers had a measured PPV of 0.6 or greater. For each of the
remaining TFs, the hypergeometric test was used to deter-
mine whether the number of overlapping targets was sig-
nificant. Given 18660 genes in our study, 369 predicted
targets for WT'1 (known and new), and x targets predicted
for a second TF, we ask what is the likelihood that y € x
genes are shared targets of the TF and WT1. The test was
implemented using the Matlab statistics toolbox [214].

Positive Binding Targets

Known binding sites for human TFs were parsed from sev-
eral public databases in January 2006. The databases used
are Oregano [221], TRDD [222], Transfac [223], Ensembl
[224], and the Eukaryotic Promoter Database [225]. Many
binding sites were also manually curated from literature
sources. Several large-scale experimental binding studies
were also examined to identify binding sites [2,32,226-
229]. In all cases, binding sites found outside of the
sequence region studied (i.e., 2 kb upstream, 5' UTR,
introns, and 3' UTR) were excluded. Lists of literature
curated binding sites with Pub-med references and a
spreadsheet of binding interactions parsed from the above
databases can be downloaded in Additional File 2.

Motif Discovery

Motif Discovery was performed on WT1 known targets
and new predictions. Sequence data for each gene went to
1 kb upstream and 0.5 kb downstream of transcriptional
start. The sequence data was downloaded from the human
promoter extraction database at Cold Spring Harbor Lab-
oratory [230]. Motif discovery was performed with
Weeder [204] and Oligo-analysis [1] available at the RSA-
tools website [202]. The full raw output from Weeder and
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Oligo-analysis along with the accompanying fasta files is
available as Additional File 8. Matching of consensus
strings to promoter regions was performed using RSA-
tools.
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Reviewers Comments
Reviewer's report |
Trey Ideker, University of California San Diego

Reviewer Comments

I have now completed my review of your manuscript enti-
tled "In Silico Regulatory Analysis for Exploring Human
Disease Progression.” As you know, predicting human
transcription factor (TF) regulatory interactions is a timely
endeavor and currently an area of active interest in
genomics and computational biology. The topic is of
course not novel, as many others have worked in this area,
but continued efforts to predict protein-DNA interactions
are highly significant, especially in human. Therefore the
main questions are (1) whether your methods are sound
and (2) represent a significant advance in the field over
previous approaches.

In response to the first question, I did indeed find that
your SVM-based classification system for TF targets was
reasonable. In general, your method seems like an inter-
esting way to predict TF targets and results in roughly dou-
bling the number of protein-DNA interactions that are
known for human at present.

As one major objection, I did not follow your logic as to
why it is reasonable to use P > 0.50 as your cutoff for cross
validation but P > 0.95 as your cutoff for final prediction
of protein-DNA interactions. It would seem that you
should consistently use P > 0.95 for both tasks. I suspect
that using P > 0.95 for cross validation would result in per-
formance estimates that appear much worse than the ones
you give at present — perhaps this is why you avoided
doing this. At P > 0.5 it seems that half of all genes (i.e.
>10,000) would be chosen as targets for a given TF and
this is clearly not reasonable. As it is, it appears that you
may have chosen P to best suit your wish to make your
approach look good in different circumstances (i.e. P = 0.5
gives good CV figures, P = 0.95 gives good GO enrich-
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ment). If I am being unfair here, please clarify the manu-
script to make it clear why.

To get to the second question, that of how your method
compares to previous attempts to predict transcription
factor binding, this is not addressed by your manuscript as
far as I could tell. In order to be publishable, I think it is
reasonable to expect to see a comparison of the perform-
ance of your approach to at least one other leading
method. You review these nicely in your paper, but never
compare them to your method.

Finally, 1 have some recommendations regarding the
organization of text. Sentence by sentence, I found the
manuscript well written and easy to read. However, the
larger scale structure of the manuscript is confusing. Much
of the second half of the Introduction is really describing
your Methods and some Results. Paragraphs 1-2 of the
Results read like Discussion, and paragraph 3 (beginning
"Few supervised genome-scale strategies exist...") reads
like Introductory text. The second half of the Results goes
into great detail on the biology of several of the TFs exam-
ined in your study, namely Oct4 and Wtl. At this point
several pages of background are provided, reviewing what
is known about Wt1 regulation. This text seems extraordi-
narily lengthy and at any rate inappropriate for the Results
section of a paper that is really about a method for predict-
ing large-scale TF binding interactions. I would recom-
mend condensing the summary of Wtl biology from
several pages down into ~1 paragraph.

[Authors' Response]

We thank Dr. Ideker for his thoughtful criticisms. With
respect to the choice of cutoff for validation versus predic-
tion, we use the P > 0.5 for validation purposes so that
each classifier can be compared on equal footing. In fact,
the P = 0.5 threshold is similar to the maximum margin
separator which is often the optimal separator when using
SVMs. As we discussed in the manuscript, an Accuracy (or
PPV) measurement of 50% is equivalent to random
chance. This is due to the fact that balanced datasets are
employed. If this is kept in mind, we see no reason for
confusion when interpreting the results. Naively, it would
seem that P = 0.5 is equivalent to random chance as well.
This is not entirely true, however, because predicted tar-
gets at 0.5 must pass the 0.5 threshold across 100 classifi-
ers repeated with slightly different negative sets. As such,
far fewer than 50% of genes would be "hits" at P = 0.5.
That being said, there are several TF classifiers which yield
no new predictions at the stringent threshold of P = 0.95
(i.e, classifiers have a PPV = 0). In that case there is no dif-
ficulty since that TF will simply have no new hits by our
method. Our use of random controls allows one to test
whether a classifier is behaving "better than random" at
the P = 0.5 cutoff. In this case, better than random means
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that the classifier shows a statistically significant improve-
ment in the PPV as compared to the randomized control.
Thus, if a classifier is showing statistical significance at P =
0.5, the targets identified at P = 0.95 should be the most
relevant hits.

Regarding Dr. Ideker's comments on comparisons to
other methods, we feel that showing statistical signifi-
cance and biological interpretations is sufficient for a pub-
lication on this topic. As this method continues to
develop, a more detailed comparison with other methods
is desirable, and we hope to complete that in future work.
We believe that the significance of this work lies not just
in method, but in a combination of methodology and
biology; for the latter, especially the insights on the
important regulator, Wtl. Finally, regarding the writing
and organization of the manuscript, we realize that there
is content in the introduction which is methodological in
nature and that there is also some background details
given in the results. Given the nature of this topic and the
fact that we are attempting to appeal to both computa-
tionally oriented and biologically oriented audiences, we
felt the need to repeat certain methodological points
which are important. We further felt that the biological
meaning of the data presented in the Discussion section
has greater depth given the detailed discussion of WT1.
Moving this section to the Introduction may break the
continuity of the story.

Reviewer's report 2
Vladimir A. Kuznetsov, Division of Genome and Gene
Expression Analysis Bioinformatics Institute, Singapore

Nominated by Frank Eisenhaber, Bioinformatics Institute
(BII), Agency for Science, Technology and Research
(A*STAR), Singapore

[Authors' Note|: Due to the extensive review provided by
Dr. Kuznetsov, we respond section-by-section to his com-
ments below. We are very grateful to Dr. Kuznetsov for his
extensive comments and perspicacious analysis.

Reviewer Comments

The authors of this work have developed a pattern recog-
nition method to identify new targets for a given tran-
scriptional factor (TF). Based on Support Vector Machines
(SVM) approach, they attempted to produce classifiers for
that 152 TFs in order to predict new gene targets and to
find new regulatory interactions and gene networks
(genes that could control expression other TFs) which
could be important in development of human disease (in
particular, Wilm's cancer). The paper outlines the strategy
behind this idea, the methods applied and the detailed
findings of BSs for two important disease-relevant regula-
tors: OCT4 and WT1. The authors used publicly available
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motif datasets and some other sequence information
mapped on human genome as training set of SVM algo-
rithm to predict new targets for selected TFs. Based on
their counting of occurrence of several types of DNA frag-
ments (e.g. motifs, preferred patterns of bases, evolution-
arily conserved DNA fragments etc.) in RefSeq genes or
their putative promoter regions the authors predicted 933
targets for 152 TFs, including 354 target genes for WT1 TF.
An association of predicted OCT4 gene targets with Wnt
pathway and some other biological and clinical correla-
tions were considered. Main Comments Evaluation and
control of accuracy, specificity, sensitivity of gene target
predictions and consistency of the predictions with previ-
ous studies are my major focuses in consideration of the
work. I concern regarding the predictive power of TFSVM
methodology, performance of the method, biological sig-
nificance of predicted targets, interpretation and extrapo-
lation of the results, and independent validation.

1. At the beginning of the paragraph "Results and Discus-
sion" the authors claim that cross-validation performance
measures of their method are determined at the decision
threshold of P = 0.5 and they further explain the reasons
of their choice. That means that only genes with average
scores higher than this threshold have a chance of being
true targets. However, this P = 0.5 threshold might still be
a small or a large number depending on the situation.
Since P is an average score it is also sensitive to outliers. It
may be better preferable to base selection on a criterion
that also takes into account the variance of the 100 P
scores for each gene or alternatively to use the additional
information of how many times (percentage) is P exceed-
ing a threshold over the 100 iterations.

[Authors' Response]

Our use of an average P = 0.5 threshold is due to the very
observation that there may be variability between meas-
urements. Since the choice of a negative set is random,
and therefore potentially noisy, we felt that forcing an
average cutoff is clearly better than any single classifier
measurement. Nevertheless, Dr. Kuznetsov may be correct
that using a criterion which accounts for the variance may
improve prediction. For instance, perhaps we need not be
as strict when the variance is very low (more strict when
the variance is high)? This is something we intend to
examine more closely in future work.

Reviewer Comments
2. How would different scores affect the number of false
positives/negatives of the study?

3. At the same time, the authors mention that the best
threshold for making predictions is set to 0.95. However,
they do not explain the reasons behind this choice. Would
it be the case that 0.95 may be too conservative in some
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situations, thus producing many false negatives and
obscuring useful information of the study? How many
new false positive predictions were made for lower cut-
offs?

[Authors' Response]

Regarding the number of false positives/negatives, in the
machine learning context, increasing the threshold value
should have the effect of reducing false positives and false
negatives. This is the primary reason why the 0.95 thresh-
old was chosen to make new predictions, as it should
yield a more enriched set of true positives. Given the noise
in the negative sets and the higher threshold of 0.95, it is
likely that there are many false negatives for some TFs,
though this is preferable to a very high false positive rate.

Reviewer Comments

4. The authors mention that many classifiers show poor
performance in cross-validation (at threshold P = 0.5)
although several do show high precision (33 have PPV >
0.6). They claim that poor performance may be partly (i)
due to the fact that the defined promoter region is large
and in some cases maybe thousands of base pair long (the
size interferes with the ability of the SVM to identify
important regions); (ii) human TFs generally have few
known targets making it less likely that a classifier would
be able to find the correct decision rule. Although a test is
developed to deal with the second problem, the first one
is not discussed. How does the complexity of the genome
region affect the findings? How is the number of false neg-
atives affected by genome complexity? Is there a method
to adjust for the P threshold depending on the complexity
of the situation?

[Authors' Response]

As promoter regions get larger and encompass a greater
variety of k-mers, it is more likely that important motifs
will become lost in the background (i.e., less likely to
stand out or discriminate between targets and non-tar-
gets). This is a problem for most TF motif detection algo-
rithms as well as for our SVM classifiers. A related problem
is that, since the negatives are chosen randomly, any given
negative set may include unidentified positives, further
hampering the discovery of an accurate decision rule. It
was our intention that averaging the results of 100 classi-
fiers would partially compensate for the noisy character of
the negative sets in at least two ways: 1. negative sets
which inadvertently contain positives will be in the
minority, and their influence on the final predictions will
be minimized, and 2. if the promoter regions are too com-
plex or too variable, this will be detected as a low PPV
since the classifiers will be unable to consistently identify
true positives. It must be kept in mind that a PPV of 0.5
indicates a random classifier. A classifier which performs
randomly at P = 0.5 could possibly show better results at
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a higher threshold of P = 0.95, although this is not neces-
sarily expected and we did not examine this possibility.
We would recommend focusing only on TFs where the
PPV > 0.5.

Reviewer Comments

5. In order to identify new targets, genes are selected based
on two decision rules (i) average P higher than 0.5 in
cross-validation; (ii) average P higher than 0.95 in predic-
tion. It is also mentioned that many classifiers show poor
performance in cross-validation although several show
high precision. Is it possible that genes just below the
cross-validation threshold of 0.5 may have shown average
P higher than 0.95 in the prediction phase? Should these
genes be included in the analysis?

[Authors' Response]

A gene may have a low P score in any single classifier or
cross-validation, due to variations in the negative sets.
However, since we use the average P score (at P > 0.95) to
make predictions, it is unlikely that genes with consist-
ently low P scores in the cross-validation phase (across
100 classifiers) could make this cut-off.

Reviewer Comments

6. In the Regulation by WT1 paragraph, the authors men-
tion that the new predictions show significant enrichment
for several KEGG pathways in which there are previously
annotated targets. However, the p-values of the pathways
that are included in the analysis do not show significantly
small p-values (especially for adherence function and cal-
cium signaling). The p-values produced by this kind of
analysis should be treated with caution since they depend
on the number of the tests performed and the candidate
genes for selection (genes with GO annotation, all genes
in the chip set etc).

[Authors' Response]

The p-values obtained were calculated using the DAVID
annotation system [33]. We understand that the p-values
are the result of a modified Fisher Exact test (called the
EASE score on the DAVID website) which takes into
account the total size of the human genome as known in
the DAVID system. This modified p-value is more con-
servative than a typical Fisher Exact test according to the
description on their website. The p-values recited (adher-
ens junction (p = 8.7e-3), and calcium signaling (p = 4.7e-
2)) are both less than p = 0.05 which we believe to be rea-
sonable threshold. Nevertheless, a discriminating reader
may choose to apply a more stringent cutoff of 0.01, in
which case calcium signaling would not be a significantly
enriched pathway.
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Reviewer Comments

7. In Materials and Methods, the authors outline their pro-
cedure consisting of 9 steps. Throughout the text some
suggestions are given on the cross-validation scheme and
SVM parameter selection. From the description of the pro-
cedure it seems that the cross-validation step might be the
most time consuming one. To this extent, could the
authors comment in more detail on the ability of their
method to produce adequate results in a relatively short
time?

[Authors' Response]

Cross-validation in itself does not take an extensive
amount of time (<5 minutes on a 2 Ghz processor). Diffi-
culties arise when performing the cross-validation 100
times for each TF, which can take significantly more com-
puter resources. To complete all of the validations in our
analysis we continuously ran the algorithm on ~25-30
nodes of a 200 node linux cluster for ~24 to 30 hours. This
speed could be increased by changing the coding language
from MATLAB, which is simpler to use, to a language like
C++ or Java where there is greater control over memory
usage.

Reviewer Comments

8. In the paragraph Classifying New Targets and Predic-
tion Significance a measure is introduced that corrects
Platt scores to account for the large number of non-bind-
ers present in the whole genome. The authors suggest esti-
mating the average Platt score (p) and then calculating the
p_full. Is this different from estimating p_full for each
individual Platt score and then average the p_full scores?
Which is should be preferred?

[Authors' Response]

Although the method for calculation of p_full is provided
in the methods section, we noted in the manuscript that
the p_full values were not used during validation or pre-
diction in our experiments. The method for calculating
p_full was added later, once we considered that it could be
desirable to adjust for the uneven distribution of positives
and negatives in the genome (whereas the classifiers are
built using balanced datasets). We chose not to make the
correction in our results since the true distribution of pos-
itives/negatives is unknown, and since the distribution
may vary widely between transcription factors. In the
absence of knowledge we felt that providing the results
using balanced datasets was an objective approach so long
as the reader understands the possibility for bias and has
the ability to correct the P-score using the provided meth-
ods.

Moreover, the calculation of p_full does not take into
account the fact that new predictions must meet the P-
score cutoff on average over 100 classifiers. The average clas-
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sifier criterion introduces a correction of its own which
makes the results more conservative and partially offsets
the need for higher stringency due to the uneven distribu-
tion of positives and negatives in the genome. If we apply
the p_full correction to the average P-score obtained over
the 100 classifiers, it would possibly likely produce an
over-conservative assessment.

Reviewer Comments

9. Another important and open question is related to the
small sample size which the authors used in training and
relatively large number of genes in exam sets. How robust
and representative is that set? What is the specificity and
sensitivity of predictions in this case? What is the false dis-
covery rate in such poorly-performed prediction studies?
In particular using only 15 "known" WT1 TF gene targets,
your algorithm predicted 354 new gene targets. I am not
sure that such prediction is reliable and accurate. (See
below). It must be validated in independent and direct
detections of WT1 BSs for a specific cell type.

[Authors' Response]

If input data is of poor quality we expect that the 100 clas-
sifiers used to make predictions would not often agree
and, thus, few or no new predictions would be made.
However, there is always the possibility that, with small
datasets especially, the input set may show a bias. This can
happen, for example, when the small input set of promot-
ers all happen to be AT rich. If there is a sequence bias in
the positives, the classifiers may learn to detect this bias
without identifying any true binding motifs. This can be
very difficult to correct for (what if the true motif is AT-
rich and exists in AT-rich promoters?) and is an obstacle
to TF binding site prediction in general. This is part of the
reason we attempted to provide additional evidence in the
form of pathway analysis and chromosomal location to
impart confidence that the results were biologically mean-
ingful. Nevertheless, we agree that experimental valida-
tion is the ultimate "acid test" of new predictions, and we
hope that the predicted targets are followed up in future
studies.

Reviewer Comments

10. To illustrate my concern regarding correlation
between limitation of training sets and reliability and pre-
dictive power of TFSVM, I provide the results of my own
analysis of predictive power of training sets and the results
of comparison of the prediction with published data. I
collected experimentally-confirmed gene targets for well
studied myc TFBSs. The 1-st report was from Li et al. (Li et
al, 2003): 876 myc BSs associated with promoters in the
Daudi Burkitt's lymphoma cell line were identified by
ChIP-Seq method. 756 myc binding loci on Chr
21&Chr22 have been identified by tiling array in (Cawley
etal., 2004). Fernandez et al, (2003) tested 6541 E-box BS
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regions for Myc binding by Chip-qPCR. About 3800 myc
gene targets were found in ChIP-PET experiments and ran-
domly validated with independent methods (Zeller et al,
2006). One of these 4 papers (Canwey et al, 2004, the
paper was numerated twice by 2 and by 224, see Refer-
ences) has been cited by the authors and for some reason
only very small set of gene targets (67 genes, P.5) have
been used in their training set. I used author's software,
TFSVM, to evaluate overlap between algorithm's predic-
tion of myc gene targets and measurements of 688 direct
gene targets observed in (Zeller et al, 2006). TFSVM pro-
gram predicts 199 myc gene targets at score P = 0.95.
Somebody expect that this subset will be strongly over-
lapped with experimentally defined myc targets. How-
ever, even for that "high reliable" cut-off value (P = 0.95),
only 8% (16 of 199) of predicted genes were found in the
list of 688 ChIP-PET direct myc target genes (2%). Addi-
tionally, I did not find any of 199 genes in the set of 15
genes (see Zeller et al, 2006) which is strongly confirmed
by the four previous experimental studies. These analyses
suggest that the small number of genes in the TFSVM
training set and perhaps existence of significant fraction
non- representative members in that set assure that the
method has low predictive potential. Consequently, these
are the two key issues that would need to be addressed in
order to improve the predictive value of the method.

[Authors' Response]

We first wish to thank Dr. Kuznetsov for the detailed com-
parison he has provided with third party experimental
results. Since our study included 152 transcription factors,
it was not possible for us to conduct an exhaustive litera-
ture review on each TF to compile all known targets. We
relied on public databases and a few large scale studies
where possible. Including the results of large scale studies
was difficult, especially when the results were derived
from ChIP-chip or tiling arrays (e.g., Cawley et al. [2]).
The tiling arrays will interrogate the whole genome and
may include exon regions and very large intergenic
regions. This is in contrast to our analysis which included
regions of only several kb surrounding transcription start
sites. Many of the positive hits identified by tiling array
could not be included in our analysis simply because the
identified binding site falls outside of the promoter
regions we examined. Thus our site filtering by statistical
significance and gene region is at least part of the reason
why not all of the Cawley sites are included. Dr. Kuznet-
sov further points to the study by Zeller et al. {Zeller, 2006
#2124 and calculates that, of the 199 Myc targets identi-
fied in our study, only 16 overlap with the 688 targets
identified by Zeller et al. using ChIP-PET. Although we
would have hoped to see greater correspondence, this
doesn't necessarily indicate that our method is finding
poor targets. Given the size of the genome in our study
(18660 genes), if we assume that the 688 targets identified

http://www.biology-direct.com/content/3/1/24

by Zeller et al. are the gold standard set of true positives,
we calculate that the p-value for identifying 16 correct tar-
gets is 0.0012 (by hypergeometric distribution), indicat-
ing that our target set is enriched for true targets in a
statistical sense, and that the 199 gene set may represent
an interesting group for further study (this calculation
may be repeated using the MATLAB function "hygecdf"
where "p-value = 1-hygecdf(16,18660,688,199)"). There-
fore, while we acknowledge the limitations discussed by
our reviewer and agree that these may be best addressed
by follow-on experimental studies, we feel that many of
the target sets we have identified merit further analysis.

Reviewer Comments

11. The authors used relatively large training set as well.
For example, 4627 targets for CREB1 and HNF4-alpha [no
references, V.K.]. They stressed that "In fact, when large sets
of known interactions exist, the classifiers make few or no new
predictions, perhaps suggesting that a significant subset of the
targets for those factors have already been found (most strik-
ingly, HNF4- classifiers yield only 3 new predictions, and
CREB1 yields only 1)". This conclusion means that all spe-
cific gene targets for these TF are known. However, it con-
tradicts to observation. For example, using CACO
method, S. Impey et al (Cell, 2004) found 32700 poten-
tial CREB regulatory regions in the rat genome. These
authors also found that ~60% CREB regulatory regions are
located in 2 Kb 5' upstream promoter regions and in inter-
nal gene regions. This estimate assumes that at least 19634
genes could be considered as putative direct targets for
CREB. For different TFs, Chip-seq method [Johnson et al,
Science, 2007, Roberson et al, 2007, Nat Meth, 20007 |
(which sampling in 10-30 times deeper that was use
before in ChIP-based sequencing/cloning experiments)
identifies from 2000 to 42000 locations of TF binding
sites in the human genome. These findings together with
theoretical estimations of sensitivity of ChIP-PET data
[Wei et al, Cell, 2006, Kuznetsov et al, Genome Informat-
ics, 19, 2007] suggest that perhaps most of 152 TF training
sets used in this work are represented by essentially
incomplete, non-representative and bias variables.

[Authors Response]

We thank Dr. Kuznetsov this observation. Especially in
the cases of CREB and HNF4-alpha, one alternative to the
suggestion we provided in the manuscript is that, since the
positive sets for these two factors are very large, the possi-
bility exists that the promoters of the positive sets have a
large amount of variability. This variance, which could
result from experimental noise or natural variability in
target promoters, may prevent our classifiers from identi-
fying features which distinguish potential new targets in
the genome. The problem may be compounded in situa-
tions where the TF binds to large numbers of sites in the
genome (our reviewer recites a possible 32700 regions in
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the rat genome for CREB). In such cases it is increasingly
likely that the randomly chosen negative sets may include
target genes, interfering with the SVMs ability to find a
sensible decision rule. However, we are glad to see that
such variability in the promoter regions (or inability of
the algorithm to find a good classifier) results in very few
predictions for CREB and HNF4-alpha, indicating that our
method of choosing targets (i.e., those which have P >
0.95 over 100 classifiers) has the desired effect of remov-
ing what might otherwise be false positives.

Reviewer Comments

12. The author's said that "OCT4 has ChIP data performs
about as well as WT'1, which does not" is in contrast with
CACO, Chip-PET and ChIP-seq observations. Than they
concluded: "Classifiers for TFs which include ChIP data
do not necessarily perform better or worse than those
without it". That conclusion did not consist with observa-
tion in [Johnson et al, Science, 2007, Roberson et al, 2007,
Nath Meth,20007 | and suggests that predictive power of
the TFSVM is quite limited.

[Authors' Response]

We have no intention of refuting the articles cited by our
reviewer, and believe that our remark in the manuscript
may have been misunderstood. When we stated that
"Classifiers for TFs which include ChIP data do not neces-
sarily perform better or worse than those without it" we
merely meant to indicate that the measured accuracy or
PPV of our method did not seem to depend on the source
of the input data. In all cases, positive sets came from
experimental data; however, it did not seem that those TF
classifiers which included large scale ChIP data yielded
largely better or worse results than those which had other
types of experimental data. Thus we draw no conclusions
about the quality or sensitivity of ChIP datasets. Indeed,
the recited methods of Chip-PET and ChIP-seq appear to
have very high quality.

Reviewer Comments

13. The authors claimed that they found new potential
suppressors and oncogenes in Wilms tumor cells includ-
ing HRAS and MUCDHL. However, (i) I found in PubMed
that HRAS and MUCDHL have been already considered as
the genes which are strongly associated with WT1 func-
tions and Wilms tumor phenotype. So the corresponding
references should be presented and discussed). TESVM
predictions are not tissue-type and physiological condi-
tion specific. Are there these and other TFSVM predicted
genes under-expressed or over-expressed in Wilms tumor
versus original normal or benign cells? Predicted gene
could be over-expressed or suppressed in many types of
normal and pathological cells. Is it your case? I believe
that gene expression and gene copy number (CGH) anal-
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yses should provide essential support and/or significantly
improve author's work.

[Authors Response]

Our brief search of PubMed did not find the articles men-
tioned by our reviewer unless he was referring to Goldberg
et al. [163], which discusses the biallelic expression of
HRAS and MUCDHL in chromosomal region 11p15.5
(also perhaps'S Kumar, et al. [162], which we now cite in
the manuscript). Another article by Goldberg et al.
[158]further suggests a possible link between MUCDHL
and Wilms' Tumor. Our initial searches did not uncover
any direct experimental evidence of WT1 binding to the
promoters of either HRAS or MUCDHL. If these two genes
are indeed linked to or regulated by WT1, then SVM was
successful in identifying them as potential targets, since
they were not part of our original positive set. In retro-
spect, this result is not extremely surprising, since the
genes lie in chromosomal regions which are affected in
Wilms Tumor. Dr. Kuznetsov inquires about the expres-
sion of the target genes in various tissues, and we agree
that this information would be valuable in validating the
predictions. Thus far we have not analyzed gene expres-
sion or conducted any expression studies in our lab. This
is clearly a high priority topic for future studies.

Reviewer Comments

14. There are too many references (229) in this manu-
script. The significant proportion of the references could
be omitted without leaving out any key information
related to this work. On the other hand, the list of refer-
ences does not include references to the papers (starting
from spring of 2006) in which a several new ChIP-based
sequencing methods have been used to detect many thou-
sands TF targets on the genome scale. In particular, at least
one thousand of high- and moderate- avidity gene regula-
tory regions for mouse OKT4 TF have been detected

[Loh YH et al, Nat Genet. 2006]. The data set is still
incomplete; however it might be used for partial valida-
tion of TFSVM predictions.

[Author's Response]

The bulk of the coding and analysis on which this manu-
script is based was undertaken in 2005 and 2006, which
is the reason why many datasets published in mid-2006
onward were not included in our analysis. We intend to
incorporate these newer datasets in future iterations of our
algorithm.

Reviewer Comments
15. The title of the manuscript should be more concrete
and reflect the major results.
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[Author's Response]

Since this manuscript has already been cited in other
work, we prefer not to alter the title so as not to confuse
readers who cross-reference the article

Reviewer Comments

16. Finally, I agree with the authors that "prediction of
transcription factor binding sites is a challenging problem
in bioinformatics, especially in complex mammalian
genomes". However, analysis of essentially incomplete,
high-noisy and low-specific sequence data which poorly
represent the full complexity of the genome demonstrate
real limitations of machine learning approach for predic-
tion and understanding of transcriptional machinery and
networks. Using only pattern recognition approach for
such TF binding information is not sufficient for provid-
ing reliable, specific and sensitive predictions of TF direct
gene targets and considering TF controlled functional
genes in different cell types at diverse physiological condi-
tions.

[Author's Response]

Again, we thank Dr. Kuznetsov for his detailed response.
We agree that no single approach will be entirely sufficient
to unravel the complexities of predicting transcription fac-
tor binding sites. Along those lines we have begun devel-
oping related algorithms which are designed to learn the
actual binding site motifs rather than simply make a pre-
diction of "positive" or "negative" (Kon et al. 2007.
ICMLA Proceedings of the Sixth International Conference
on Machine Learning and Applications. P.573-580). It is
hoped that alternative methods such as this, combined
with experimental studies can provide better prediction
methods for TF binding sites.

Reviewer Comments
I hope that the authors will find my comments construc-
tive and useful.

Declaration of competing interests: I declare that I have no
competing interests' in your report.

Reviewer's report 3
Tzachi Pilpel, Weizmann Institute of Science Rehovot,
Israel

Reviewer Comments

The authors study the problem of identification of targets
for human transcription factors. They use state-of-the-art
classifier to predict interactions based on training sets and
identify thousands of new potential interactions. They
focus on two particular cases of factors involved in cancer
progression and among their targets on particular poten-
tial anti-apoptotic representatives.
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Over-all this is a very well-written and interesting paper.
The methodology is sound and robust. Various sources of
information, including conservation and robust k-mer
statistics are effectively utilized. The final output from the
paper should be of wide interest, even beyond the cancer-
related applications. As such the paper would add nicely
to a growing body of data on human transcription factors
and their targets. Two minor comments are:

1. I can t see how the current title of the paper "In Silico
Regulatory Analysis for Exploring Human Disease Pro-
gression" reflects in main contribution. Particularly I
think that delineating "disease progression" would
amount to more than is shown here. On the other hand
the title gives no clue about the actual content of the

paper.

2. Despite an unusually high number of paper cited, I
missed a mention of one of the best characterized cases of
a mutation in human transcription factor with a clear
implication in cancer - Cell. 2004 Nov
24;119(5):591-602

[Authors Response]

We thank Dr. Pipel for his thoughtful criticisms. Please see
our response for Dr. Kuznetsov which addresses the com-
ments about the manuscript title. We have updated our
manuscript to recite the Cell reference kindly provided by
Dr. Pipel.

Additional material

Additional file 1

Supplementary Notes. This is a word document describing and demon-
strating the hypothesis test for classifier accuracy. Also described are the
possible roles of WT1 in nervous tissue development and cellular migra-
tion. The hypothetical relationship between WT1 and the Wnt pathway
are also discussed.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-S1.pdf]

Additional file 2

This file contains several sub-folders. The folder "Classifier Results" con-
tains the SVM predictions for all TFs in this study as well as a list of clas-
sifiers and their associated performance measures. The new predictions for
all TFs are also available for query and download on our website[30]. The
folder "Literature_curated_targets" contains the known TF-target interac-
tions taken from databases and the literature. Any interactions manually
curated from primary literature are listed, and the Pubmed ID of the arti-
cle used is given. All files are annotated so as to be self explainatory or have
an accompanying Readme file.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-S2 zip|
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Additional file 3

This file contains two excel spreadsheets providing the functional annota-
tions of known targets and predicted targets of OCT4 respectively. These
are annotations as provided by the DAVID system at NIH and include the
statistical significance of each functional category.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-S3.zip|

Additional file 4

Using both known and newly predicted targets, this file contains a list of
genes which relate to apoptosis as given by the DAVID functional analysis
tools. The genes appear several times in various, similar annotation cate-
gories which are related to cell death pathways.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-54 zip|

Additional file 5

Using just the newly predicted targets, this file contains a list of genes
which relate to cellular adhesion, cytoskeleton, or motility as given by the
DAVID functional analysis tools.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-S5.zip|

Additional file 6

Using both known and newly predicted targets, this file contains a list of
genes which are annotated to terms by DAVID which are somehow related
to the nervous system. Three main categories are present (represented by
folders) which each contain several functional terms and the genes anno-
tated to them. The three main categories are "Neuron related", "Sensory
perception”, and "Voltage gated channels and membrane receptors".
Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-S6.zip|

Additional file 7

Using both known and newly predicted targets, this file contains a list of
genes and the chromosomal cytobands to which they are mapped. p-values
generated by DAVID are also given to show statistical enrichment.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-S7.zip|

Additional file 8

This file contains the results of running the Weeder algorithm on 1) the
set of known and newly predicted (Platt score P >0.95) targets of WT1,
and 2) the known targets of WT1. Sequence regions used are as defined
in Methods. The file also contains the results of Oligo-analysis. Also
included are the matching results after scanning the literature derived
consensus sites for WT1 against the full set of WT1 targets (predicted and
known).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-3-24-S8.zip|
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