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Abstract

Background: The evolution of complex molecular traits such as disulphide bridges often requires
multiple mutations. The intermediate steps in such evolutionary trajectories are likely to be
selectively neutral or deleterious. Therefore, large populations and long times may be required to
evolve such traits.

Results: We propose that errors in transcription and translation may allow selection for the
intermediate mutations, if the final trait provides a large enough selective advantage. We test this
hypothesis using a population based model of protein evolution.

Conclusion: If an individual acquires one of two mutations needed for a novel trait, the second
mutation can be introduced into the phenotype due to transcription and translation errors. If the
novel trait is advantageous enough, the allele with only one mutation will spread through the
population, even though the gene sequence does not yet code for the complettrait. Thus, errors
allow protein sequences to "look-ahead" for a more direct path to a complex trait.

Reviewers: This article was reviewed by Eugene Koonin, Subhajyoti De (nomimated by Madan
Babu), and David Krakauer.

I Introduction genomic regions to increase their mutation rate has been

According to a central principle of molecular evolution,
the likelihood that a given mutation occurs is independ-
ent of the mutation's phenotypic consequences. Organ-
isms cannot choose specific mutations. This tenet was
challenged by [1], who observed that under a certain
selective pressure, E. coli cells appeared to acquire an
excess of beneficial mutations. The idea that cells can
somehow 'direct' evolution was thought provoking, and
stimulated many investigations (for reviews see [2-6]).
While the notion that cells can directly decide in which

mostly abandoned [4,7], the original observations by [1]
have been corroborated (see above reviews).

If mutations arise independently of their phenotypic con-
sequences, then how can adaptations occur that require
multiple amino acid mutations and for which the inter-
mediate stages are either selectively neutral or disadvanta-
geous? Large populations can climb multiple fitness
peaks, even with disadvantageous intermediate alleles
[8,9]. Although no new mechanisms are therefore
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required to explain the evolution of complex proteins
[10], we propose that errors in transcription and transla-
tion (phenotypic mutations) allow the selection of the
intermediate mutations of a multiple-mutation requiring
trait, and can thus speed up the evolution of complex
traits.

Studies on the phenotypic mutation rate indicate that it is
orders of magnitude larger than the genotypic mutation
rate [11,12]: the misreading error rate during protein syn-
thesis is estimated to be between 10-3 to 10-4 misreadings
per codon [13], compared with a genotypic mutation rate
of between ~10-7to 10-11[14]. Consequently, for a protein
of 300 residues, on average more than 1 in 10 copies of
the protein will contain a mutation. Using mutation rates
derived from the literature and conservative biological
assumptions, we show via mathematical modeling and
simulations that phenotypic mutations allow evolution to
select for neutral intermediate alleles of a multi-mutation
trait, actually selecting for proteins whose exact DNA
sequence is not in the organism under selection. Evolu-
tion is then able to look ahead for evolutionary jackpots
in sequence space.

Our theory is based on the following hypothetical sce-
nario. A protein can increase the fitness of an individual if
it evolved a specific trait. This trait requires two mutations,
for example a disulphide bridge between two cysteine res-
idues. A modification of only two residues can result in
large structural changes [15]. Having only one of the
required mutations is either selectively neutral or deleteri-
ous, however when an individual has only one mutation,
small amounts of the protein with both mutations will be
produced due to phenotypic mutations. If the presence of
both mutations at low concentrations provides even a
small fitness improvement then the allele with one muta-
tion will spread though the population. As the frequency
of the intermediate allele increases, there is a greater prob-
ability that if the second mutation occurs, it will be in the
presence of the first mutation, and thus provide the full
fitness benefit.

Our hypothesis is similar to an effect proposed in 1896 by
J.M. Baldwin [16], known now as the "Baldwin Effect" or
"Organic Selection". The core idea is that the probability of
a trait occuring can be selected for, not just the trait itself.
If the phenotypic plasticity of an organism allows it to
learn a trait, then during the course of evolution, the
organism's descendants may get better at aquiring the
trait, and may ultimately acquire genes that code for the
trait directly. Using a genetic-algorithm based model, Hin-
ton and Nowlan [17] tested this idea, and concluded that
organisms with phenotypic plasticity evolved faster, even
though the learned traits did not become hereditary in
their study. Subsequent studies futher explored the Bald-
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win effect in different fitness landscapes in the context of
machine learning (see [18] for a review). This work clari-
fied two aspects of the Baldwin effect: that lifetime learn-
ing can accelerate evolution in certain contexts, and that
this learning usually comes with a cost. Organisms that
have to acquire a beneficial trait by learning will generally
have a selective disadvantage over organisms that geneti-
cally encode the trait. That evolution can select for the
ability to learn has been demonstrated experimentally in
fruit flies [ 19]. Our model differs in a subtle but important
way from the Baldwin effect. The Baldwin effect describes
learning from the perspective of the individual, meaning
that an organism starts its life without the trait, but then
later has a chance of acquiring the trait. In our model, phe-
notypic mutations occur at a given rate, although some
individuals are more predisposed to the highly beneficial
phenotypic mutations than others. The traits are not
learned, because individuals that have the neutral, inter-
mediate mutation will always express the beneficial phe-
notypic mutation at a low rate. The organisms in our
model are not exactly phenotypically variable, rather phe-
notypically diffuse. They do not learn, but rather possess a
small part of the many phenotypes close to their geno-
type. We call this effect the "look-ahead effect" as opposed
to the Baldwin effect to highlight that no learning takes
place.

Our work is more closely related to works on phenotypic
plasticity [20] and random or noisy phenotypes [21]. The
aim of this article is to derive explicit analytic expressions
for the fixation process of genes whose fitness is modu-
lated by phenotypic mutations, and to show that adaptive
phenotypic mutations can undergo positive selection
under biologically plausible conditions.

2 Model assumptions

We model the scenario of a protein evolving a trait that
requires two mutations. The model is based on a popula-
tion-genetics framework where a single gene can evolve
into different alleles. We do not consider duplication and
divergence of genes. In addition, the process described
here will likely only occur for proteins with sufficiently
long half-lives, as the protein must persist for some time
to exert a phenotypic effect. As we model only a single
gene, we expect our results to be more relevant for single-
celled organisms and viruses than for multicellular organ-
isms, which tend to have larger genomes and smaller
effective population sizes than microorganisms.

The model consists of the evolution of three non-recom-
bining haploid genotypes, where each genotype contains
one of the three alleles shown in Figure 1. The three differ-
ent alleles are named according to number of relevant
mutations, corresponding to zero mutations (allele 0), a
single mutation (allele 1), and both mutations (allele 2)
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The three alleles. The three alleles (or genotypes). The vertical lines in the genes indicate the number of key mutations
required for the novel two-residue function. The fitness of the allele | increases if phenotypic mutations are taken into consid-

eration.

required for the adaptive feature. Having both mutations
of the adaptive feature provides a selective advantage s. We
assume that the intermediate allele (allele 1) is selectively
neutral if transcribed and translated without error. We specif-
ically take into consideration errors in transcription and
translation, that is, phenotypic mutations.

In the model, the population initially consists of one indi-
vidual carrying allele 1 and N - 1 individuals carrying
allele 0. So long as allele 1 is present, allele 2 can be gen-
erated by mutations. The population evolves for a fixed
time period, during which allele 2 can be generated by
mutation and go to fixation. In each generation, selection
increases the frequency of the alleles according to their
corresponding fitness values. Allele 0 has a fitness of 1.
Allele 2 has a fitness of 1 + s, where s is the selection coef-
ficient provided by the adaptive feature. The fitness of
allele 1, the intermediate allele with only a single muta-
tion, depends on the phenotypic error rate. Most pheno-
typic errors will be neutral or deleterious, however some
will be beneficial. For simplicity, we assume that the
length of the protein and the expression level are both
constant. In addition, we do not explicitly model deleteri-
ous phenotypic mutations. As long as the spectrum of del-
eterious phenotypic mutations does not change
substantially among alleles 0, 1, and 2, we can treat its fit-
ness effect as a common factor which we divide out of all
fitness values. This assumption becomes invalid if, for
example, phenotypic mutations for allele 1 are signifi-
cantly more deleterious than those for either allele 0 or
allele 2. What happens when we relax these assumptions
will be the subject of future work.

If there are no phenotypic mutations, allele 1 has the same
fitness as allele 0. However, if phenotypic mutations
occur, allele 1 can produce a small number of allele 2 pro-

teins due to phenotypic errors. The fitness of allele 1 is
therefore dependent on the number of such errors. We
assume, for the sake of simplicity, that fitness is a linear
sum of individual proteins, meaning that if some pheno-
typic variants of a protein have a higher fitness, then the
overall fitness of that allele is proportionally increased.

We let 7 be the number of residues that can potentially
complement the first mutation to provide the full two-res-
idue adaptive feature. These r residues represent, e.g., the
sites at which the second cysteine of a cysteine bridge
could arise; other similar two-residue mutations that sig-
nificantly improve functionality can be proposed. Two
residues that comprise an adaptive trait are likely to co-
evolve, because if a mutation occurs in one of the residues,
selection strongly favors a compensatory mutation in the
other. Based on a large data set, [22] found that co-evolv-
ing residues are spatially near. Co-evolving residues were,
on average, 98.6 amino-acids apart along the sequence,
but had a mean spatial distance of 6.9 A. This spatial dis-
tance can be compared to the width of the van der Waals
volume of an amino-acid (5-6 A), showing that most co-
evolving residues are effectively in contact proximity.
Therefore, 1 is mostly independent of the size of the pro-
tein, as long as the protein is of sufficient length. [23] cal-
culated the mean contact density (the mean number of
residues in contact with a given residue) for 194 yeast pro-
teins, and found that most residues have a mean contact
density of seven to eight residues. In this work we use r =
8. Given r possible positions for the second residue, and
assuming that each position requires a specific residue,
the fraction of proteins of allele 1 containing the second

(now highly beneficial) mutation is = {5 4, where 4 is
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the per codon non-synonymous phenotypic mutation
rate. In this model, we use 4 = 4.5 x 10-4 mistranslations
per codon [24,25]. The fraction S of allele-2 proteins con-
tribute to the fitness, giving allele 1 a fitness of 1 + sf.

When considering genetic (i.e. inherited) mutations, for
simplicity we neglect back mutations (e.g. from allele 1 to
allele 0), and assume there are no recurrent mutations of
allele 1 from allele 0 (the model starts with a single copy
of allele 1). Allele 2 arises via a mutation from allele 1. We
ignore the possibility of a double mutation directly from
allele 0 to allele 2, as this probability is extremely small in
the parameter range we are interested in. The genetic
mutation rate for allele 1 mutating into allele 2 is derived
as follows: For microbes, the rate of mutations per nucle-
otide per generation is between ~10-7 to 10-!! [14]. Here
we use 108 as the non-synonymous mutation rate per
codon per generation. The resulting mutation rate for

changing allele 1 into allele 2 is U = %10_8 = %10_8 .

Genes can also acquire null mutations, rendering the gene
non-functional and therefore eliminating the organism.
The null mutation rate for protein-encoding genes is on
the order of 10-¢ per generation [14]. However, this rate
will depend on the length (L) of the protein. Assuming an
average protein length of 300 residues, the per-residue
null mutation rate is given by 10-¢/300 = ~3.3-9. For a pro-
tein of length L, the null mutation rate is given by x = 3.3
SL.

3 Results

3.1 Analytical fixation rate of allele 2

To calculate the fixation rate of allele 2 we have to con-
sider the two fates of allele 1. Firstly, allele 1 can become
lost. In this case allele 2 can only be generated during the
period of drift of allele 1. The alternative fate of allele 1 is
fixation. Then allele 2 can be generated either while allele
1 drifts to fixation or after allele 1 is already fixed. We
would like to know how many mutation events from
allele 1 to allele 2 are expected for either fate of allele 1.
We let n(sp) be the expected number of mutation events
for when allele 1 is eventually fixed, and n,(sf) be the
expected number of mutation events for the case when
allele 1 is lost. We can calculate n(sf) and n,,,(sf) from
diffusion theory, by integrating over the sojourn times of
allele 1. The corresponding calculations are cumbersome
but straightforward, and for the sake of brevity we present
the details in the Appendix (A.4 and A.5). For n(sf), allele
2 can be generated as allele 1 drifts to fixation, and also
after allele 1 has already reached fixation. For n;,(s/5),
allele 2 can only be generated while allele 1 drifts.
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Assuming that m is the expected number of times allele 2
is generated, what is the probability that at least one copy
goes to fixation? The probability of fixation of a single
copy of allele 2 is u(s) [26]. (In Appendix A.1, we repro-
duce the exact expression for u(s), as well as approxima-
tions for large and small s.) Thus, if allele 2 is generated k
times, its probability of fixation is 1 - [1 - u(s)]*. Since the
probability that allele 2 is generated k times follows a
Poisson distribution with mean m, we find for the proba-
bility v that at least one of the mutations to allele 2 goes
to fixation

k
v=1- %e‘m[l—u(s)]k

k! (1)
=1—e ™),
We calculate this probability separately for n(sff) and
Nss(5P3), setting m equal to either of these values. We
assume that T is sufficiently large so that allele 1 has time
to reach fixation within this interval (we assume T z 2N).
Then the probability u,(s, §) that allele 2 is generated and
goes to fixation (starting with a single copy of allele 1) is

t5(s, B) = u(sB)(1 = PN (1= u(sB)) (1 - e~ (M),
(2)

The first half of the equation stems from the case when
allele 1 eventually reaches fixation, where the probability
that allele 1 becomes fixed, u(sf), is multiplied by the
probability v that at least one copy of allele 2 is generated
and fixed. The second half corresponds to the case of loss
of allele 1 from the population, where the probability of
loss of allele 1, (1 - u(sf)), is multiplied by the probability
of at least one mutation from allele 1 to allele 2 and sub-
sequent fixation of allele 2. Taking into account allele 2
mutations during allele 1 loss is important especially for
small s. Allele 1 is more likely to be lost than fixed for
small s, but can occasionally drift for long times before
being lost.

In the limit #— 0, i.e., in the absence of phenotypic muta-
tions, we find with Eqs. (A2), (A27), and (A35)

uy(s,0)= % — e NUI-NU(s) /Ny — oNUs) - (3)

(We assume that N > 1, and neglect corrections of order 1
compared to N. Note that we cannot simplify (N + 1)/N
to 1, because for small U, 1 - eNUu(s) and (1 - eNU(T-N)u(s))/
N are of the same order in N.) As we are interested in the
effect of phenotypic mutations (£ > 0) compared to the
case without phenotypic mutations (5= 0), we define the
increase in the probability of fixation from advantagous
phenotypic mutations (the look-ahead effect) as
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_u(s.B)
&= 19(50) (4)

We can broaden the assumption of T = 2N to T — o with
good accuracy. For T — o, if allele 1 is destined to reach
fixation, then the probability of generating at least one
copy of allele 2 that goes to fixation approaches 1. There-
fore, 1 - en(sAu(s) » 1, in this limit, and thus

£ - UsB)(u(sB)) (e MossCPILS))
(N+1)  N—e~NUU(s)
Apart from a correction for the case when allele 2 occurs
while allele 1 is destined for extinction, Equation (5) is

just the ratio of the probability of allele-1 fixation in the
presence and absence of phenotypic mutations, u(sf)/

u(0) = Nu(sp).

To first order in sg, Eq. (5) simplifies to (Appendix A.6)

E~1+NsB +0(s*B?). (6)
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We can see from this equation that the look-ahead effect
becomes important when N is on the order of 1/(s5).

For Nsf > 1, only the first term contributes to the numer-
ator in Eq. (5), and we obtain (Appendix A.7)

(1-e~25P)

(N+1) / N—exp[-NU(1-¢2%)]

3.2 Simulations

We confirmed our analytic results for the fixation proba-
bilities u,(s, #) and u,(s, 0) by numerical simulation, for
different values of s (Figure 2). With a population size N
= 104, the effect of phenotypic mutations can be seen for
s> 0.1, and increases for larger s. For s < 0.1, the effect is
too small and the intermediate allele is effectively neutral,
meaning the fixation of allele 2 depends on the random
fixation of the neutral allele 1. The look-ahead effect, &
shows the simulation results compared to Equations (5),
(6) and (7). Figure 3 shows the magnitude of the look-
ahead effect for the same parameter settings. For large s,
the look-ahead effect can inflate the probability of fixa-

(7)

10° F

1078 -_I NI B | . |

00001 0001 001

Fixation probability of allele 2: us(s, 3)

Figure 2

01
Selection coefficient s

1 10 100 1000 1000

Fixation probability of allele 2 (u,) vs. the selection coefficient s. Black is for u,(s, f), grey is for uy(s, 0). Solid lines are

predictions according to Eq. (2) and (3), data points are for simulations with 10° repeats. N = 104, U = %10_8 , 5=0.00019, T

=5 x |05, Error bars are standard errors.
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tion of allele 2 by several orders of magnitude. We also
display the different analytic expressions for & in Figure 3.
The approximation (5), derived in the limit T — oo, works
well for all values of s. The approximation (6), derived for
small sf, captures correctly the magnitude of s at which
the look-ahead effect starts to operate, i.e, s = 1/(NJ).
Similarly, approximation (7), valid for Nsg > 1, approxi-
mates & well for larger s.

Figure 4 shows ¢ for different population sizes. As
expected from the condition s = 1/(INg), the look-ahead
effect will work with smaller selection coefficients s in
larger populations. For large s, £ saturates at approxi-
mately N.

We studied the effect of different values of the phenotypic
error rate f (Fig. 5). As the error rate fincreases, the look-
ahead effect £ increases by the same order of magnitude.
For a very high phenotypic error rate of # = 0.019, the
look-ahead effect is present for very small values of s.
However, such a high error rate is likely to be severely det-
rimental, and in our model we do not take into account
the loss of overall fitness for increasing phenotypic error

http://www.biology-direct.com/content/3/1/18

rates. Conversely for smaller S, the look-ahead effect is
restricted to large s.

4 Discussion

We have described a model demonstrating the conse-
quences of positive phenotypic mutations on the evolu-
tion of a single gene. We have compared numerical
simulations with the analytical approximations and
found them to be in good agreement. When phenotypic
mutations exert an effect on fitness, selection can operate
on the intermediate allele of a complex trait, which other-
wise (without phenotypic mutations) would be neutral.
We refer to selection for the intermediate allele as the look-
ahead effect, because this effect allows evolution to select
for sequences not yet in the genome.

The approximation for small 58 Eq.(6), shows most
clearly the relationship between the parameters. The look-
ahead effect is proportional to N, s, and S and sets in
when N is on the order of 1/(sf). For large Nsg, the look-
ahead effect saturates. The asymptotic value of &is approx-
imately N for NU << 1.

1055. T
104é-
1035
1025

10t F

Look-ahead effect &

100 ——F

10_1 N B RS B
0.0001 0.001 0.01 0.1

1001000 10000

1 10

Selection coefficient s

Figure 3

Look-ahead effect (£) due to phenotypic mutations vs. the selection coefficient s. The solid line is for Eq. (5), dashes

are for Eq. (6), dots are for Eq. (7), and data points are for simulations with 10° repeats. N = 104, U = %10_8 , #=0.00019, T

=5 x |05, Error bars are standard errors.

Page 6 of 15

(page number not for citation purposes)



Biology Direct 2008, 3:18

http://www.biology-direct.com/content/3/1/18

10

— N =10000
- - N =1000

10°

102

10

Look-ahead effect &

10°

_1 . —
10 0 001 001 01

1 10

100 1000 10000

Selection coefficient s

Figure 4

Look-ahead effect (£) due to phenotypic mutations vs. the selection coefficient s for different population sizes

(N). Solid lines are from Equation (5), data points are for simulations with 108 repeats. U = %10_8 , £=0.00019, T=5x 105

Error bars are standard errors.

Therefore, large populations have two advantages over
small populations in terms of the look-ahead effect: the
effect sets in for smaller values of s, and saturates at a
larger asymptotic value & Of course, even in the absence
of the look-ahead effect, larger populations can more eas-
ily traverse multiple local fitness peaks [9]. Because the
selection coefficient s depends on the environment, a
valid question is how often does s reach sufficiently high
levels so that the look-ahead effect can operate. For micro-
bial species such as bacteria, sufficiently large s should be
reasonably common. Many bacteria experience highly
fluctuating [27] and structured [28] environments, where
growth is limited by the lack of a key trait. An obvious and
extreme example is antibiotic resistance. Evolving a
defense against an antibiotic molecule can involve only a
few amino acids [29], and those individuals that can gen-
erate an enzyme capable of degrading the antibiotic, even
if briefly or weakly, will have a very large fitness increase.
In fact, if the efficacy of the antibiotic is 100% on suscep-
tible genotypes, a mutation providing only moderate
resistance has an infinite selective advantage. And even for
very small antibiotic concentrations, mutants diffiering by
only two amino acids at a single S-lactamase gene can be

selected effectively [30,31]. Thus, bacteria may frequently
experience environments in which a large fitness increase
(large s) is only a few mutations away. Similarly, in bacte-
riophages, selective coefficients s of 10 or more are not
uncommon, even for individual mutations [32]. Our
work is entirely theoretical, but we expect that it will be
possible to experimentally verify our predictions in future
work. For experimentally observing the look-ahead effect,
we would need a system where s and N are both large,
while g (the phenotypic mutation rate) can be modified.
The values of both N and s used in this work are well
within biologically realistic ranges achievable in a micro-
biological laboratory. Conditions for large s may be cre-
ated with e.g. antibiotic resistance, which is a common
laboratory workhorse. Unfortunately, many antibiotics
function by reducing translation fidelity [33], and thus
would conflate s and A Changing £ could involve a
mutated ribosome. Ribosomes appear to be optimized for
accurate and efficient translation of mRNA [34], and sev-
eral examples of altered ribosome fidelity exist, both
increasing [35] and decreasing fidelity [36]. Specific
regions of the ribosome rRNA sequence have been identi-
fied as influencing fidelity [37], and various agents can
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Figure 5
Look-ahead effect (&) due to phenotypic mutations vs. the selection coefficient s for different phenotypic error
rates (/). Solid lines are from Equation (5), data points are for simulations with 108 repeats. N = 104, U = %1078 ,T=5x

105. Error bars are standard errors.

reduce fidelity, e.g., streptomycin, magnesium, and etha-
nol [36]. Few mutations may be sufficient to alter the
fidelity of a ribosome, for example, a single mutation in
the S5 ribosomal protein in E. coli increases frameshifting
and nonsense mutations [38]. In yeast, mutations in the
18S RNA have been found that both increase and decrease
translational fidelity [39].

In fact, a similar system to what we propose was already
used to estimate the effects of tRNA competition on mis-
reading error rates [13]. Here, several firefly luciferases
were constructed with inactivating point mutations at an
essential active-site lysine residue. Mistranslations of the
transcript occur, rescuing the mutant and restoring the
wild-type function. This system demonstrated a possible
evolutionary constraint for the system presented in this
work, in that some codons are more likely to be misread
than others, depending on the relative amounts of tRNAs.

In this work, we have calculated the look-ahead effect
from a comparison between the two cases of > 0 and
= 0. The latter may not be experimentally possible; any

experiment will likely compare two different positive val-
ues of S. Nevertheless, Figure 5 shows that a larger look-
ahead effect can be achieved with a higher S where
increasing by one order of magnitude both increases the
look-ahead effect by an order of magnitude and lowers the
smallest s where an effect is observed. Of course, our
model does not take into account the loss of fitness or
other confounding effects from a higher phenotypic
mutation rate. Thus, a balance must be found in having
two different values of g that are different enough to
measure, while at the same time minimizing the con-
founding effects. The most obvious consequence of
increasing the phenotypic mutation rate is that overall fit-
ness may be reduced, for example in E. coli, where a higher
translational error rate activates stress responses [40], or in
mouse, where such errors are implicated in neurodegener-
ation caused by misfolded proteins that aggregate [41].
Increasing translational fidelity may not come without fit-
ness cost either. The hyperaccurate mutations in the 18S
RNA in yeast [39] cause an increase in oxidative stress.
This observation suggests that cells consume more energy
to achieve hyperaccuracy. It may also partially explain
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why the phenotypic error rate is much higher than the
genotypic error rate, as there is possibly a direct disadvan-
tage in reducing the phenotypic error rate, rather than
only reducing the selective advantage that occurs if the
phenotypic error rate is reduced, as discussed in [42].

Buerger et. al [42] asked whether evolution has selected
for the current phenotypic error rate, which does not differ
significantly between eukaryotes and prokaryotes [24,25]
even though the source of errors is different. They sug-
gested that the increase in fitness becomes incrementally
smaller for improvements to transcription and translation
fidelity. We would like to speculate that the phenotypic
error rate is on the border between minimal costs (of e.g.
misfolded proteins) and maximum payoff (via the look-
ahead effect). The goal of our analysis was to demonstrate
that the look-ahead effect is theoretically possible, and as
such, we intentionally excluded confounding factors for
the sake of clarity. There are several aspects not considered
in our model that may play important roles. For example,
in this work we did not consider the expression level. For
low expressed genes, the mutation from allele 1 to allele 2
will occur less frequently compared to highly expressed
genes. However, if allele 2 is produced it will be at a higher
concentration (of allele 2 mutant proteins in a population
of allele 1 proteins), as the overall copy number of allele
1 is low. This difference in expression levels is likely
reduced in a large population, where beneficial mutations
occur with sufficient frequency. Another factor related to
the expression level is translational robustness. It has been
proposed that highly expressed genes are under selection
to properly fold despite phenotypic mutations, and con-
sequently evolve slower [43,44]. If a gene is robust to
translational errors, then it can tolerate a larger variety of
mutations, of which some may be intermediates to a new
adaptive multi-residue trait. Thus, translational robust-
ness may increase the sequences available for experimen-
tation at the phenotypic level. However, if the
intermediate allele is itself not robust to errors in transla-
tion, then it will not be neutral, and may be selected
against. The location of the protein trait will also influ-
ence the viability of the intermediate allele: mutations
near the surface of the protein are less likely to disrupt the
protein compared to mutations in the core [45].

In the presence of noise, phenotypic mutations may also
help purge negative mutations [46]. If we have a system
similar to the one described in this work but the final two-
mutation trait is deleterious, then the phenotypic errors
will lead to a selective disadvantage of the intermediate
genotype. To give a concrete example, consider the case of
prions, where an intermediate mutation favouring the for-
mation of prions would be expressed at a small rate and
would increase the liklihood of forming the misfolded
proteins [47]. Since the majority of mutations are delete-
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rious, the negative look-ahead effect is probably more
common than the positive look-ahead effect on which we
focused here.

In this work we use a single fitness optimum, and do not
take into consideration multiple local optima as done by
Borenstein et al. [21], who studied the effect of learning
and of noisy phenotypes on evolution. Borenstein et al.
considered varying learning rates, and showed that there
is a trade-off between the amount of phenotypic plasticity
and both the speed of reaching a local optimum and the
genetic stability of the evolving individuals. It would be of
interest to see if the same conclusions apply using our
model, replacing phenotypic plasticity by a diffuse pheno-
type and learning rate by the phenotypic mutation rate.
Such an analysis will require, however, that we explicitly
model the deleterious spectrum of phenotypic mutations,
and allow for different distributions of phenotypic muta-
tions for allele 0, 1, and 2.

In conclusion, we propose that organisms can experiment
with protein sequences that are mutationally close to the
current sequence, but not yet in the genome. This effect
allows selection for intermediates of complex traits, open-
ing up a more direct route to the trait and thus reducing
the time needed for fixation in the population.

5 Materials and methods

The numerical simulations were written in Java using the
Colt scientific library [48] for the generation of random
numbers. The analytic expressions were evaluated using
both Mathematica and Python, the latter in conjunction
with the SciPy package [49]. Source code for the numerical
simulations is available on request from DJW.

The population in each simulation is represented by three
numbers, corresponding to the abundance of each of the
three alleles. As described, the initial abundances are N -
1, 1, O for alleles O, 1, 2, respectively. The simulation runs
for a specified number of generations T. We used T = 5 x
10> throughout this work. Strictly speaking, T is the
number of generations in which allele 1 can mutate into
allele 2; for later generations this possibility of mutation
is disabled. If allele 2 is present at time T, then the simu-
lation is continued until allele 2 is either lost or has
reached fixation. Generations are discrete, with muta-
tions, selection, and drift occurring at each generation.
During each generation we perform the following steps.
First we check if either allele O or allele 2 has reached fix-
ation; if so, we stop the simulation, as both cases are
absorbing states. Next, for each allele we check for null
mutations by drawing a random number from the Pois-
son distribution where the expected number of events is
the null mutation rate ¢ multiplied by the total number of
individuals with the given allele. Mutations from allele 1
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to allele 2 are computed in a similar manner, where the
expected number of events is U multiplied by the number
of allele 1 individuals. Then, after the possible production
of the mutant allele 2, selection acts on the fitness of the
alleles, where the frequency of each allele is multiplied by
its corresponding fitness, [1, 1 + s, 1 + s] for alleles [0, 1,
2], giving the new number of alleles in a possibly larger
population. Finally, the next population of N individuals
is chosen by recursively sampling from the binomial dis-
tribution, representing random genetic drift. Allele O is
first sampled with the mean = (frequency of allele 0), and
the (number of trials) = N. Allele 1 is then sampled from
the combined allele 1 and 2 individuals. The number of
simulations where allele 2 becomes fixed is divided by the
total number of simulations, giving an estimate of the fix-
ation probability. The number of simulations for each
parameter set was between 108 and 10°.

6 Authors' contributions

DJW, DV, COW, and EBB developed the original idea,
DJW and COW performed the simulations and analysis,
all authors contributed to the writing.

7 Reviewers' comments

7.1 Reviewers report |

Eugene V. Koonin, NCBI, NLM, NIH, Bethesda, MD
20894, United States

The idea of this paper is as brilliant as it is pretty obvi-
ous...in retrospect. A novel solution is offered to the old
enigma of the evolution of complex features in proteins
that require two or more mutations (emergence of a disul-
phide bond is a straightforward example). Whitehead et
al. propose that selection for such traits could be facili-
tated by phenotypic mutations (errors of transcription
and, especially, translation). Due to phenotypic muta-
tions, rare variants of proteins will emerge that are "pre-
adapted" to accommodate the second, beneficial muta-
tion, yielding the complex, adaptive trait, even if tran-
siently. Simply put, for the case of a disulfide bond, one
cysteine appears as a result of a phenotypic mutation and
the other one due to a genotypic mutation. The result will
be that, for a while, the cell will have in its possession the
protein molecule with a disulfide bond. Thus, "pre-adap-
tation" owing to phenotypic mutation would promote
fixation of the second mutation which will be beneficial
even without the first one - if the selective advantage of
the complex trait is high enough (the ultimate situation
that helps understanding is that this trait is essential for
survival). The actual fixation of the complex trait, then,
requires only one (the first) mutation and is thus greatly
facilitated. Mathematical modeling described in the paper
shows that, if the selective advantage of the complex trait,
i.e., the selection coefficient for the second mutation, is
high enough, this look-ahead effect becomes realistic
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under the experimentally determined mistranslation
rates. Obviously, the realization of the look-ahead effect
will depend on a variety of factors including the overall
translation fidelity, the local context of the codon
involved, the stability of the protein etc. This allows a
number of rather straightforward experimental tests of the
model.

From my perspective, this is a genuinely important work
that introduces a new and potentially major mechanism
of evolution and, in a sense, overturns the old adage of
evolution having no foresight. It seems like, even if non-
specifically and unwittingly, some foresight might be
involved. At a more general conceptual level, this work is
important in that it puts together, within a single concep-
tual framework, the evolutionary effects of genotypic and
phenotypic mutations. There is much more to investigate
here!

I would like to mention a rather general biological impli-
cation. It seems obvious enough that, under conditions of
stress (e.g., amino acid starvation, heat shock etc), when
translation fidelity drops, the look-ahead effect will be
enhanced. Thus, this could be a general and crucial mech-
anism of adaptation during evolution.

Eugene Koonin

Author response: We would like to thank Eugene Koonin for
his enthusiastic and positive review.

7.2 Reviewers report 2
Subhajyoti De, MRC Laboratory of Molecular Biology
Hills Road, Cambridge CB2 2QH, United Kingdom

I have read the revised manuscript, and have found that
all points raised by the referees were fully addressed. The
work is rigorous and very interesting, and I believe, will
make a significant contribution in the field. I'll be happy
to consider it for publication.

Subhajyoti De

Author response: We would like to thank Subhajyoti De for
feedback that improved the original manuscript, and the subse-
quent positive review.

7.3 Reviewers report 3
David Krakauer, Santa Fe Institute, United States

In this paper the authors demonstrate how phenotypic
variation arising through errors in development (e.g. tran-
scription and translation), can, when building on (ampli-
fying) genetic variation, accelerate the fixation rate of
neutral alleles. By assuming that neutral alleles are genet-
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ically closer to an optimum genotype than a mutation-
free wild-type, this can also reduce the time required to
reach the optimum. The result is illustrated through sto-
chastic simulation and some limiting-case analytical
approximations.

This is an interesting paper that is technically rigorous,
and correct in many of the conclusions that it reaches. The
paper is now much improved as it now includes specific
reference to the almost identical, Baldwin effect. As the
authors correctly state, many of papers on the Baldwin
effect emphasize learning, but a significant fraction
explore the role of random ontogenetic variation on evo-
lutionary dynamics, and a few, explicitly consider the
adaptive value of errors in transcription and translation
on the exploration of fitness landscapes. It is not yet clear
how important the differences are between treating Bald-
win effects in terms of individual ontogenetic programs
versus population level dynamics. In both cases, the key
insight is that random variation is capable of generating a
more effective gradient for population dynamics.

I think it worthwhile therefore to give a brief review of this
mechanism and a little of its literature.

A Synoptic Outline Of the Baldwin-Morgan-Osborn Effect

1. The essential insight of Baldwin and several other 19th
century biologists (listed above) was to understand that
phenotypic plasticity can have a direct effect on genetic
evolution. In some cases, this can give rise to the appear-
ance of Lamarckian inheritance, as selection on plastic
phenotypes derived from a single genotype, can lead to
the fixation of polymorphic sequences generating these
phenotypes without plasticity.

2. The modern investigation of this effect is associated
with the work of Hinton and Nowlan (1987) who showed
that ontogenetic variability or plasticity, could lead to
effective genetic optimization in neutral fitness land-
scapes.

3. This has been followed by numerous papers exploring
complex landscapes, diverse models of plasticity, includ-
ing learning, homeostasis, diffusion, and combinatorial
sampling. See Turney (1996) for a review with an empha-
sis on computational approaches.

4. Ancel and Fontana (2000) (building on some more the-
oretical work by Ancel) demonstrated for RNA secondary
structure, the crucial requirement that phenotypic plastic-
ity and genetic polymorphism should exhibit a particular
correlational structure for the Baldwin effect to be effec-
tive.
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5. The most recent, and somewhat exhaustive analysis of
the Baldwin effect has been conducted by Borenstein et al
(2006) in fluctuating landscapes, exploring both directed
and random phenotypic variation.

6. Krakauer and Sasaki (2002) demonstrated a "negative
Baldwin effect" whereby developmental errors could
amplify mildly deleterious mutations in finite popula-
tions, thereby leading to their effective purging.

Certainly the paper by Krakauer and Sasaki does not con-
sider learning explicitly, but something much closer to the
so called "look ahead effect" described by Whitehead et al,
as it treats the ensemble of variant proteins generated by a
single underlying sequence as a result of errors in tran-
scription or translation. In both the Baldwin effect and the
"look ahead" effect, genetically identical organisms gener-
ate phenotypically diverse populations. I think it an inter-
esting subject for future work to establish the precise
nature of any differences manifesting at the level of popu-
lation dynamics, rather than at the incidental level, of
mechanism.

Author response: We appreciate this correction of a large
hole in our background literature. We have cited relevant liter-
ature about the Baldwin effect, and discussed the main differ-
ences between the look-ahead effect and the Baldwin effect.
While on the surface the look-ahead effect is very similar to the
Baldwin effect, crucially the Baldwin effect is about individual
learning, whereas the look-ahead effect is about errors that
always produce different proteins from a single gene, at a given
rate. Thus, in our model there is little difference between indi-
viduals with the same genotype, as no learning is involved, as
opposed to the Baldwin effect, where, due to learning, two
organisms with identical genotypes can have very different phe-
notypes. Therefore, we believe that it is important to distinguish
clearly between the cases with and without learning, and to use
different terminology to emphasize this distinction.

I was somewhat confused by the remark that double
mutations are neglected because they are very rare.

Firstly, double mutations should be allowed within the
binomial model presented by the authors. Secondly, the
statement is empirically false for many haploid genomes.
Bonhoeffer and Nowak (1997) showed that in large pop-
ulations double mutants are likely to exist at fairly high
abundance.

Author response: We agree that for RNA-based viral
genomes, which often have genomic mutation rates 1000 times
greater than DNA-based organisms, double mutations occur
frequently. Our model focused on DNA-based organisms,
where double mutations are rare. If we wanted to apply our
model to RNA viruses, we would have to include double muta-
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tions. However, the results from such a modification are obvi-
ous: If double mutations are frequent, the organism will happen
upon the beneficial double mutation quickly and not require the
look-ahead effect at all.

The treatment of deleterious mutations remains a little
confusing. Presumably developmental noise can both
amplify existing deleterious effects (e.g. cryptic genetic
variation, sensu Gibson & Dworkin 2004) and contribute
novel pathologies, orthogonal to those of the underlying
transcript (e.g. gain of function mutations). This should
be made an explicit, distributional property of the model
rather than assuming a fixed background cost.

Author response: The explanation of how we treat deleterious
mutations was extremely brief in our original draft, and we
have expanded and clarified the respective paragraph. We
believe that a more explicit, complex treatment of deleterious
effects would detract from the main message the model in this
work was meant to convey. We have added to the discussion
how phenotypic mutations can amplify deleterious genotypic
mutations. A more complete treatment of deleterious phenotypic
mutations will be a topic of future work.

A Appendix

Here, we present the details of our analytic derivations.

A.| Probability of fixation
According to [26], the probability of fixation u(s) of a sin-
gle allele with selection coefficient s is given by

=25
1-e
u(s) = ———. (A1)
1— e—2Ns
Fors 2 1/N, this expression simplifies to
1 N-1
u(s) = — + s+0(s?), (A2)
N
whereas for Ns > 1, this expression simplifies to
u(s)=1-e. (A3)

A.2 A single allele drifting to fixation or loss

We first consider a single allele with selective advantage s
drifting to fixation or extinction, and ask how many muta-
tions this allele generates until it is either fixed or lost. We
will treat these two cases separately. Let ng,(s) be the
expected number of mutations generated while the allele
drifts to fixation, and let n, . (s) be the expected number
of mutations generated while the allele drifts to extinc-
tion. We calculate these two quantities using diffusion
theory, by integrating the sojourn times of the allele over
all frequencies.

http://www.biology-direct.com/content/3/1/18

For an allele with selective coefficient s and starting at fre-
quency p = 1/N, [50] calculated its mean sojourn time z{y)
between frequencies y and y + dy as

o) = 2[VIN GO 105 (1/N)g(0, Y) A1/N - y) + ugy(1/

N)g(y, 1)y - 1/N)]. (A4)
Here,
V()G(y) =y1-p)e ™ /N, (A5)
—2Nsa —2Nsb
by="¢ —¢ ) (A6)
8(a,b) NS
—2Nsp__—2Ns
e —e
u oss(p) = N. (A7)
! 1— e_2NS
—2Nsp
1_
uﬁx(p) =1- uloss(p) = 16_721\15 ’ (AS)
—e

and #(z) is the Heaviside step function. We want to inte-
grate expressions involving 7(y) from y = 0 to y = 1. Since
y=1/N corresponds to a single copy of the allele that drifts
to fixation, values of y less than 1/N are not relevant for
our analysis. Therefore, we discard the term proportional
to (1/N -y) in Eq. (A4), and use in what follows

ay) = 2ug(1/N)g(y, 1)/[V(V)G()] fory>1/N.
(A9)

A.3 Number of mutations conditional on fixation
For the sojourn time conditional on fixation, z4,(y), [50]
finds

i (y) = oV uge(¥)/ s (P)- (A10)
Using this expression, we have
1

m)=NU[ enpd (A1)

Plugging the expressions for V(y)G(y), g(a, b), ug(p), and
7(y) into 7 (y), we arrive at

1 (1_e—2Nsy)(1_e—2Ns(l—y))
—e 72N y(1-) '

Tﬁx(y) =

s(1

(A12)

This expression corresponds to the one by [51]. Note that
Y%x(¥) = 0 for y — 0. Therefore, we can extend the lower
limit of integration to 0 in Eq. (A11), and rewrite ng,(s) as
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NU
ney(s) = ml(ﬂ\k) (A13)
with
— —_ 1_
I(a):J‘ol (1-e “Y)(11_—ye a( Y))dy. (A14)

The integral I(a) can be rewritten as

I(a) = y- Ei(-a) + In(a) + e [y- Ei(a) + In(a)],
(A15)

where y = 0.5772 is the Euler-Mascheroni constant and
Ei(z) is the exponential integral,

o e—t
Ei(2) = - j ¢ (A16)
Lt
Fors < 1/N, we find
nee(s) = N°U + O(s?). (A17)
For Ns > 1, we obtain the asymptotic expansion
1) = o [In(2Ns) + 7], (A18)
s

using [52] 5.1.51,

Zzz z3

-z
. 1 2
Ei(-z) ~ —e(l 1,26 ] for large z.
z
(A19)
A.4 Number of mutations conditional on extinction
For the sojourn time conditional on extinction, 7,(y),

[50] finds

Tloss(y) = 2-(y)uloss(y)/uloss(p) . (A20)
Using this expression, we have
1

nloss(s) = NUJ.I/NTIOSS(}/)ydy~ (A21)

Plugging the expressions for V(y)G(y), g(a, b), ujos(p), and
oy) into 7og,(y), we find

1 e
s(lfe_ZNs) 1-¢2 (N-1)s

(6—2Nsy _e—ZNs)(l_e—ZNs(l—y))

Tloss(}’) = }/(1*)/)

(A22)

We rewrite n,, as
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2s
NU e’ -1
Nogs = J(N,s
loss s(1—e2Ns) 1_6—2([\1—1)5( )

(A23)
with

—2Nsy _,—2Ns ) (l_e—2Ns(1—y)) &

1
JIN.9)= J-l/N ¢ 1-y

(A24)

The integral can be rewritten as

J(N, s) = -2¢2N5(y - Chi[2(N - 1)s] + In [2(N - 1)s]),
(A25)

where Chi(z) is the hyperbolic cosine integral,

Chi(z) =7 +In(z) + f %dt. (A26)
0
For s < 1/N, we find
Mloss(5) = (N = 1)U +O(s?). (A27)
For Ns > 1, we obtain the asymptotic expansion
u -
nloss(s) = 72(1 —e 25)1 (A28)
2s
using
: z
Chi(z) = Eiz) _ e for large z. (A29)

[This expansion follows directly from the definitions of
Chi(z), cosh(z), and Ei(z).]

A.5 Number of mutations within a given time interval

We now extend the derivations in Section A.3 to calculate
the number of mutations to allele 2 generated within a
certain time interval T, conditional on fixation of allele 1.
We assume that T is sufficiently large so that allele 1 has
time to reach fixation within this interval. We only con-
sider the case conditional on fixation because no new
mutations are generated once allele 1 has gone extinct.

We calculate n(s) = ng,(s) + np(s), where n(s) is the total
number of mutations generated once the first mutation
has reached fixation. We have

nr(s) = NU[T - tg4(s)], (A30)
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where t; (s) is the time to fixation of a mutation with
selective advantage s. This time is given by the integral
over all sojourn times,

1
rmm=ﬁgmmw=(f9§l) (A31)
S{1l—e
with
_ (e )~y A32
12(a)_J0 o(1y] dy.  (A32)

A partial fraction decomposition of the integrand reveals
that I,(a) = 2I(a), and thus we have

21(2Ns)
5(1_6—2[\]5)
Combining this result with Egs. (A13) and (A30), we find

tﬁx(s) = (A33)

n(s) =ng(s) +np(s)=NU| T - %
s(1-e )
= NUT — ng($).
(A34)
Note that n(s) = ng,(s) for T = tg,(s).
Fors < 1/N, we find
n(s) = NU(T = N) + O(s?). (A35)

For Ns » 1, using Egs. (A15) and (A19), we obtain the
asymptotic expansion

n(s) = NU(T—ln(st)ﬂ/). (A36)
N

A.6 & forsP << |
From Eq. (4), using Egs. (A27), (A35), and (A2), we
obtain to first order in 5B

,~NUuU(s)_,~NU(T~N)u(s)

b1+ 43(s0)

sB+O(s*B?).

(A37)

If further NU(T - N)u(s) << 1, we obtain

E~1+N(1-N/T)sp +0(s*B?), (A38)

and for T — o,

E~1+NsB +0(s*B?). (A39)
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A7 & for Nsp > |
For Nsf3> 1, only the first term contributes to Eq. (2), and
we obtain from Egs. (A36) and (A3)

u,(s, B) =(1—e—2sﬁ)[1—exp[—NU|:T_ln(ZNSﬁ)ﬂ/](l_e—Zs)]:l.

sB
(A40)
Likewise, in this limit we can simplify Eq. (3) to
1,(s,0) = % —exp[-NU(T = N)(1 —e )]/ N —exp[-NU(1 —e™)],
(A41)

giving

i o e )

) (N+1) / N—exp[-NU(T-N)(1-¢~2%)] / N—exp[-NU(1-e~2%)]
(A42)

Furthermore, for T — o, this expression simplifies to

(1-e~25P)

(N+1)/ N—exp[-NU(1—e~2%)]
If NU << 1, then £ — N in the limit s — oo,

(A43)
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