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Abstract
Shannon entropy is used to provide an estimate of the number of interpretable components in a
principal component analysis. In addition, several ad hoc stopping rules for dimension
determination are reviewed and a modification of the broken stick model is presented. The
modification incorporates a test for the presence of an "effective degeneracy" among the subspaces
spanned by the eigenvectors of the correlation matrix of the data set then allocates the total
variance among subspaces. A summary of the performance of the methods applied to both
published microarray data sets and to simulated data is given.

This article was reviewed by Orly Alter, John Spouge (nominated by Eugene Koonin), David Horn and Roy
Varshavsky (both nominated by O. Alter).

1 Background
Principal component analysis (PCA) is a 100 year old
mathematical technique credited to Karl Pearson [1] and
its properties as well as the interpretation of components
have been investigated extensively [2-9]. The technique
has found application in many diverse fields such as ecol-
ogy, economics, psychology, meteorology, oceanography,
and zoology. More recently it has been applied to the
analysis of data obtained from cDNA microarray experi-
ments [10-18]. cDNA microarray experiments provide a
snapshot in time of gene expression levels across poten-
tially thousands of genes and several time steps [19]. To
assist in the data analysis, PCA (among other techniques)
is generally employed as both a descriptive and data
reduction technique. The focus of this letter will be on the
latter.

In his development of PCA, Pearson [1] was interested in
constructing a line or a plane that "best fits" a system of
points in q-dimensional space. Geometrically, this
amounts to repositioning the origin at the centroid of the
points in q-dimensional space and then rotating the coor-
dinate axes in such a way as to satisfy the maximal vari-
ance property. Statistically speaking, PCA represents a
transformation of a set of q correlated variables into linear
combinations of a set of q pair-wise uncorrelated variables
called principal components. Components are con-
structed so that the first component explains the largest
amount of total variance in the data and each subsequent
component is constructed so as to explain the largest
amount of the remaining variance while remaining uncor-
related with (orthogonal to) previously constructed com-
ponents.
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We define the dimension of the data set to be equal to the
number of principal components. The set of q principal
components is often reduced to a set of size k, where 1 ≤ k
<<> q. The objective of dimension reduction is to make
analysis and interpretation easier, while at the same time
retaining most of the information (variation) contained
in the data. Clearly, the closer the value of k is to q the bet-
ter the PCA model will fit the data since more information
has been retained, while the closer k is to 1, the simpler
the model.

Many methods, both heuristic and statistically based,
have been proposed to determine the number k, that is,
the number of "meaningful" components. Some methods
can be easily computed while others are computationally
intensive. Methods include (among others): the broken
stick model, the Kaiser-Guttman test, Log-Eigenvalue
(LEV) diagram, Velicer's Partial Correlation Procedure,
Cattell's SCREE test, cross-validation, bootstrapping tech-
niques, cumulative percentage of total of variance, and
Bartlett's test for equality of eigenvalues. For a description
of these and other methods see [[7], Section 2.8] and [[9],
Section 6.1]. For convenience, a brief overview of the tech-
niques considered in this paper is given in the appendices.

Most techniques either suffer from an inherent subjectiv-
ity or have a tendency to under estimate or over estimate
the true dimension of the data [20]. Ferré [21] concludes
that there is no ideal solution to the problem of dimen-
sionality in a PCA, while Jolliffe [9] notes "... it remains
true that attempts to construct rules having more sound
statistical foundations seem, at present, to offer little
advantage over simpler rules in most circumstances." A
comparison of the accuracy of certain methods based on
real and simulated data can be found in [20-24].

Data reduction is frequently instrumental in revealing
mathematical structure. The challenge is to balance the
accuracy (or fit) of the model with ease of analysis and the
potential loss of information. To confound matters, even
random data may appear to have structure due to sam-
pling variation. Karr and Martin [25] note that the percent
variance attributed to principal components derived from
real data may not be substantially greater than that
derived from randomly generated data. They caution that
most biologists could, given a set of random data, gener-
ate plausible "post-facto" explanations for high loadings
in "variables." Basilevsky [26] cautions that it is not neces-
sarily true that mathematical structure implies a physical
process; however, the articles mentioned above provide
examples of the successful implementation of the tech-
nique.

In this report, we apply nine ad-hoc methods to previ-
ously published and publicly available microarray data

and summarize the results. We also introduce a modifica-
tion of the broken stick model which incorporates the
notion of degenerate subspaces in component retention.
Finally, we introduce and include in the summary a novel
application of statistical entropy to provide a new heuris-
tic measure of the number of interpretable components.

2 Mathematical methods
2.1 Principal component analysis
Each principal component represents a linear combina-
tion of the original variables with the first principal com-
ponent defined as the linear combination with maximal
sample variance among all linear combinations of the var-
iables. The next principal component represents the linear
combination that explains the maximal sample variance
that remains unexplained by the first with the additional
condition that it is orthogonal to the first [27]. Each sub-
sequent component is determined in a similar fashion. If
we have a q-dimensional space, we expect to have q prin-
cipal components due to sampling variation.

The following derivation can be found in [[27], pp. 373–
374], Jolliffe [9] or Basilevsky [26]. Let X be a (p × q)
matrix that contains the observed expression of the i-th
gene in its i-th row. Denote by gi the i-th observation and
let S be the sample covariance matrix of X. For a particular
observation gi, we seek

z = a1gi,1 + a2gi,2 + ... + apgi,p =   (1)

such that var(z) = var( ) is maximal subject to  =

1. That is, we maximize the expression

where λ is a Lagrange multiplier. Differentiating with

respect to  leads to the familiar eigenvalue problem

So λ is an eigenvalue of S and

 is its correspond-

ing eigenvector. Since

we see that to maximize the expression we should choose
the largest eigenvalue and its associated eigenvector. Pro-
ceed in a similar fashion to determine all q eigenvalues
and eigenvectors.
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2.1.1 Data preprocessing
Data obtained from cDNA microarray experiments are fre-
quently "polished" or pre-processed. This may include,
but is not limited to: log transformations, the use of
weights and metrics, mean centering of rows (genes) or
columns (arrays), and normalization, which sets the mag-
nitude of a row or column vector equal to one. The term
data preprocessing varies from author to author and its
merits and implications can be found in [28-32].

It is important to note that such operations will affect the
eigensystem of the data matrix. A simple example is pro-
vided by comparing the singular spectrum from a singular
value decomposition (SVD) with that of a traditional
PCA. Note that PCA can be considered as a special case of
singular value decomposition [32]. In SVD one computes
the eigensystem of XTX, where the p × q matrix X contains
the gene expression data. In PCA one computes the eigen-
system of S = MTM/(p - 1), where M equals the re-scaled
and column centered (column means are zero) matrix X.
The matrix S is recognized as the sample covariance matrix
of the data. Figure 1 illustrates the eigenvalues (expressed
as a percent of total dispersion) obtained from a PCA and
an SVD on both the raw and log base-two transformed
[33] elutriation data set of the budding yeast Saccharomy-
ces cerevisiae [34]. Note the robustness of PCA. In Figure
1.a, which is an SVD performed on the raw data, we see
the dominance of the first mode. In general, the further
the mean is from the origin, the larger the largest singular
value will be in a SVD relative to the others [7].

2.2 Broken stick model
The so-called broken stick model has been referred to as a
resource apportionment model [35] and was first pre-
sented as such by MacArthur [36] in the study of the struc-
ture of animal communities, specifically, bird species
from various regions. Frontier [37] proposed comparing
eigenvalues from a PCA to values given by the broken
stick distribution. The apportioned resource is the total
variance of the data set (the variance is considered a
resource shared among the principal components). Since
each eigenvalue of a PCA represents a measure of each
components' variance, a component is retained if its asso-
ciated eigenvalue is larger than the value given by the bro-
ken stick distribution. An example of broken stick
distribution with a plot can be found in Section 3.2.

As with all methods currently in use, the broken stick
model has drawbacks and advantages. Since the model
does not consider sample size, Franklin et al. [23] con-
tends that the broken stick distribution cannot really
model sampling distributions of eigenvalues. The model
also has a tendency to underestimate the dimension of the
data [20-22]. However, Jackson [20] claims that the bro-
ken stick model accurately determined the correct dimen-

sionality in three of the four patterned matrices used in his
study, giving underestimates in the other. He reported
that overall, the model was one of the two most accurate
under consideration. Bartkowiak [22] claims that the bro-
ken stick model applied to hydro-meteorical data pro-
vided an underestimate of the dimensionality of the data.
Her claim is based on the fact that other heuristic tech-
niques generally gave higher numbers (2 versus 5 to 6).
However, it should be noted that the true dimension of
the data is unknown. Ferré [21] suggests that since PCA is
used primarily for descriptive rather than predictive pur-
poses, which has been the case with microarray data anal-
ysis, any solution less than the true dimension is
acceptable.

The broken-stick model has the advantage of being
extremely easy to calculate and implement. Consider the
closed interval J = [0,1]. Suppose J is partitioned into n
subintervals by randomly selecting n - 1 points from a uni-
form distribution in the same interval. Arrange the subin-
tervals according to length in descending order and
denote by Lk the length of the k-th subinterval. Then the
expected value of Lk is [37]

Figure 2 provides an illustration of the broken stick distri-
bution for n = 20 subintervals graphed along with eigen-
values obtained from the covariance matrix of a random
matrix. The elements of the random matrix are drawn
from a uniform distribution on the interval [0,1]. The bars
represent the values from the broken stick distribution;
the circles represent the eigenvalues of the random matrix.
In this case, no component would be retained since the
proportion of variance explained by the first (largest)
eigenvalue falls below the first value given by the broken
stick model.

2.3 Modified broken stick model
Consider a subspace spanned by eigenvectors associated
with a set of "nearly equal" eigenvalues that are "well sep-
arated" from all other eigenvalues. Such a subspace is well
defined in that it is orthogonal to the subspaces spanned
by the remaining eigenvectors; however, individual prin-
cipal components within that subspace are unstable [9].
This instability is described in North et al. [38] where a
first order approximation to estimate how sample eigen-
values and eigenvectors differ from their exact quantities
is derived. This "rule of thumb" estimate is

δλ ~ λ (2/N)1/2  (6)

where N is the sample size and λ is an eigenvalue. The
interpretation given by North et al. [38] is that "... if a
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group of true eigenvalues lie within one or two δλ of each
other then they form an 'effectively degenerate multiplex,'
and sample eigenvectors are a random mixture of the true
eigenvectors."

As noted previously, the broken stick model has been
referred to as a resource apportionment model, and in
particular, the resource to be apportioned among the
components is the total variance. We modify this
approach by considering the variance as apportioned
among individual subspaces.

Once the eigenvalues, λi, have been computed, the spac-
ing between them, λi+1 - λi, is calculated. Using Equation

(6), an estimate of the sampling error is determined and
those eigenvalues which lie within 1.5 of each other is
noted (note that the value of the spacing, 1.5, is somewhat
arbitrary. In their report, North et al. [38] suggest using a
value between 1 and 2.) Components are then grouped
into subspaces preserving the order determined by the
maximum variance property of PCA. Subspaces are
spanned by either a single eigenvector, or in the case of an
"effective degeneracy," by multiple eigenvectors. Denote
these subspaces by Wi. For each Wi we sum the eigenval-
ues associated with the eigenvectors spanning that space.
We then repartition the broken stick model to match the
subspaces and then apply the broken stick model to each
subspace, requiring that the sum of the eigenvalues asso-

SVD and PCAFigure 1
SVD and PCA. (a) SVD performed on the elutriation data set; (b) PCA on the elutriation data set; (c) SVD on the log base 
two transformed data; (d) PCA on the log base two data.
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ciated with that subspace exceed the value given by the
broken stick model.

2.4 Statistical entropy and dimensionality
In physics, the entropy of a closed system is a measure of
disorder. An increase in entropy corresponds to an
increase in disorder which is accompanied by a decrease
in information. In the branch of applied probability
known as information theory [39-42], the concept of
entropy is used to provide a measure of the uncertainty or
information of a system. Note that uncertainty and infor-
mation are used synonymously, the reason for which is
explained below. The word system is used to imply a com-
plete discrete random experiment.

2.4.1 Information and uncertainty
In the context of information theory, information is a
measure of what can be communicated rather than what
is communicated [42]. Information can also be though of
as a term used to describe a process that selects one or
more objects from a set of object. For example, consider a
balanced six-sided die. We will consider the die as a
device, D, that can produce with equal probability any ele-
ment of the set SD = {1, 2, 3,4, 5, 6}. Of course, observing
a tossed die and noting the number of the top face is a
finite discrete probability experiment with sample space
SD where each sample point is equally likely to occur.

Denote the probability model for an experiment with out-
comes e1,...,en with associated probabilities p1,...,pn as

The broken stick methodFigure 2
The broken stick method. The broken stick distribution (bars) with eigenvalues obtained from a uniform random matrix of 
size 500 × 20.
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In the example of the balanced six-sided die we have

Prior to performing the experiment, we are uncertain as to
its outcome. Once the die is tossed and we receive infor-
mation regarding the outcome, the uncertainty decreases.
As a measure of this uncertainty we can say that the device
has an "uncertainty of six symbols" [43]. Now consider a
"fair" coin. This "device," which we will call C, produces
two symbols with equal likelihood from the set SC = {h, t}
and we say this device has an "uncertainty of two sym-
bols." We denote this probability model as

Both models represent uniform distributions (the out-
comes in the respective models have equal probabilities),
but it is inferred that device D is a finite scheme with
greater uncertainty than device C (an "uncertainty of six
symbols" versus an "uncertainty of two symbols"). Conse-
quently, we expect device D to convey more information.
To see this, consider (as an approximation to the amount
of information conveyed) the average minimum number
of binary questions that would be required to ascertain
the outcome of each experiment. In the case of device D,
the average minimum number of questions is 2.4 while in
the case of device C only one question is required. Now
consider an oddly minted coin with identical sides (say
heads on either side). The model for this device is

Since heads, h, is the only possible outcome, we consider
this as a "device of one symbol." Notice that this device
carries no information and contains no element of uncer-
tainty. We need not pose a question to ascertain the out-
come of the experiment. Thus, a function that attempts to
quantify the information or uncertainty of a system will
depend on the cardinality of the sample space and the
probability distribution.

2.4.2 Entropy: a measure of information content (or uncertainty)
Every probability model (or device) describes a state of
uncertainty [41]. Shannon [42] provided a measure for
such uncertainty, which is known as statistical entropy
(often referred to as Shannon's entropy). Its functional
form is given by

Equation (11) represents the average information content
or average uncertainty of a discrete system. The quantity is
considered a measure of information or uncertainty
depending upon whether we consider ourselves in the
moment before the experiment (uncertainty) or in a
moment after the experiment (information), [54].

2.4.3 Derivation of H
Statistical entropy is derived from the negative binomial
distribution where an experiment with two equally likely
outcomes, labeled success or failure, is considered. Basi-
levsky [26] shows that with x representing the first
number on which a "success" is observed, the probability
of observing success on the xth trial is given by f(x) = p = (l/
2)x. Upon solving for x we have x = -log2 p, and the
expected or total entropy of a system, H, is

where pk log2  is defined to be 0 if pk = 0.

2.4.4 Basic properties

It is possible to derive the form of the function H by
assuming it possesses four basic properties, [41]: (i) con-
tinuity, (ii) symmetry, (iii) an extremal property, and (iv)
additivity. Continuity requires that the measure of uncer-
tainty varies continuously if the probabilities of the out-
comes of an experiment are varied in a continuous way.
Symmetry states that the measure must be invariant to the

order of the s, that is, H(p1, p2,...,pN) = H(p2, p1,...,pN).

Additivity requires that given the following three H func-
tions defined on the same probability space

H1(p1, p2,...,pN),

H2(p1, p2,...,pN, q1, q2,...,qM),  (13)

H3(q1/pN, q2/pN,...,qM/pN),

the relationship H2 = H1 + pNH3 holds. Notice that this
implies H2 ≥ H3, that is, partitioning events into sub-
events cannot decrease the entropy of the system [39]. The
extremal property, which we now describe, will be used in
our development of the information dimension described
below. First, notice that since 0 ≤ pk ≤ 1 for all k, a mini-
mum value of 0 is attained when p1 = 1 and p2 = p3 = � =
pN = 0, so H ≥ 0. As an upper bound, we have
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that is, a uniform distribution of probabilities provides an
upper bound on the uncertainty measure of all discrete
probability models whose sample space has cardinality of
at most N. This relationship can be proved either with dif-
ferential calculus [39] or from Jensen's inequality

which is valid for any convex function ϕ [41].

2.4.5 The information dimension, n0
What we coin as, the "information dimension," n0, is pre-
sented as a novel (but heuristic) measure for the interpret-
able components in a principal component analysis. We
assume that a principal component analysis has been per-
formed on a microarray data set and that our objective is
to reduce the dimension of the data by retaining "mean-
ingful" components. This involves setting one or more of
the eigenvalues associated with the low variance compo-
nents to zero. Let λ1, λ2,...,λN represent the eigenvalues
from a PCA of the data. Define for each k

The s satisfy 0 ≤ pk ≤ 1, (k = 1,...,N) and .

We view the distribution of the eigenvalues expressed as a
proportion of total variance as a discrete probability
model.

We begin by normalizing the entropy measure [10] for
some fixed n = N using its extremal property to get

The values of  will vary between 0 and 1 inclusive.

We calculate the entropy of the probability space using

Equation (17) to obtain the functional value , where 0

≤  ≤ 1. (Note that at either extreme the dimension is
known.) Next, we deform the original distribution of
eigenvalues so that the following holds

Inserting these values into  and solving for n0 yields

2.4.6 A geometric example
Consider the following geometric example. The surface of
a three-dimensional ellipsoid is parameterized by the
equations

x(φ,θ) = Rxsin(φ)cos(θ),

y(φ,θ) = Rysin(φ)sin(θ),  (21)

z(φ,θ) = Rzcos(φ).

Points are distributed along the surface of the ellipsoid
according to the above parametrization and are tabulated
in the matrix X of size (4584 × 3). Set Rx = Ry = Rz = 1, then
(21) is a parametrization representing the surface of the
unit sphere centered at the origin. Gradually deform the
sphere by changing the values of Ri subject to the con-
straint RxRyRz = 1, which gives ellipsoids of constant vol-
ume (equal to 4π/3). We summarize the results in Table 1.

Notice that for the case Rx = Ry = Rz = 1, which represents
the unit sphere, n0 = 3. The gradual deformation of the
sphere has an information dimension of approximately
two for the values: Rx = 2, Ry = 1, Rz = 1/2. This suggests that
the magnitude along the z-axis has become sufficiently
small relative to the x- and y-axes, that it may be discarded
for information purposes. Thus, a projection onto the xy-
plane may provide sufficient information regarding the
shape of the object. For Rx = 8, Ry = 1, Rz = 1/8 the object
begins to "look" one dimensional with n0 = 1.09. With
this configuration, most of the variance lies along the x-
axis.

3 Results and discussion
In this section we apply the information dimension, the
broken stick model, the modified broken stick model,
Bartlett's Test, Kaiser-Guttman, Jolliffe's modification of
Kaiser-Guttman, Velicer's minimum average partial
(MAP) criteria, Cattell's scree test, parallel analysis, cumu-
lative percent of variance explained, and Log-eigenvalue
diagram techniques to published yeast cdc15 cell-cycle
and elutriation-synchronized cell cycle data sets [34],
sporulation data set [44], serum-treated human fibroblast
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data set [45], and the cancer cell lines data sets [46]. These
data sets have been previously explored [10-12,47].

Before attempting to reduce the dimension of the data, we
first consider whether a PCA is appropriate, that is, a data
set with very high information content will not lend itself
to significant dimension reduction, at least not without
some non-trivial loss of information. In their study, Alter
et al. [10] addresses the issue by considering the normal-
ized entropy (presented above) of a data set, which is a
measure of the complexity or redundancy of the data. The
index ranges in value from 0 to 1 with values near zero
indicating low information content versus values near 1
which indicate a highly disordered or random data set. In
this form, the entropy can only be use to give the
researcher a "feeling" for the potential for dimension
reduction. For example, what level of dimension reduc-
tion is implied by an entropy reading of 0.3 versus 0.4?

Another measure is presented in Jackson [7] and credited
to Gleason and Staelin for use with the q × q correlation
matrix, R, and is given by

The statistic also ranges in value from 0 to 1. If there is lit-
tle or no correlation among the variables, the statistic will
be close to 0; a set of highly correlated variables will have
a statistic close to 1. The statistic is given by Jackson [7]
asserts that the distribution of the statistic is unknown,
but may be useful in comparing data sets.

3.1 Stopping rules applied to synthetic data
In this section we apply the stopping criteria to a (6000 ×
15) matrix, Xσ, where Xσ is populated with simulated data.
The simulation model can be expressed as Xσ = Y + Nσ,
where Nσ is a random matrix representing Gaussian noise
and whose entries were drawn from a standard normal
distribution with zero mean and standard deviation, σ.
The matrix Y was constructed by populating the first 600
rows with values from six orthonormal polynomials. Each
polynomial populates 100 rows of the matrix. The poly-

nomials were constructed using a Gramm-Schmidt proc-
ess [48] with norm

where δjk is the Kronecker delta function. The functional
form of the polynomials are:

where the αi's are applied to each functional value and
represent uniform random variables drawn from the
interval [0.5,1.5]. The remaining 5,400 rows are popu-
lated with random numbers drawn from a uniform distri-
bution on the interval [-3,3]. Figure 3 provides an
illustration of the polynomials in the presence of Gaus-
sian noise (σ = 0.25).

A singular value decomposition was performed on Xσ, for
σ ranging from 0.0 to 1.0 by 0.1 increments. In the
absence of Gaussian noise (σ = 0), the information
dimension predicts the dimension of the data to be n0 =
5.9, which compares favorably with the true dimension of
6. It should be noted, however, that like other stopping
criteria, the information dimension is a function of the
noise present in the data. Figure 4 illustrates this depend-
ence when the number of assays is 15. The information
dimension (line with circle markers), Jolliffe's modifica-
tion of the Guttman-Kaiser rule (line with star markers)
and LEV (line with square markers) are plotted against
noise level, measured in standard deviations. The predic-
tions given by both the information dimension and Gutt-
man-Kaiser's rule increase as the noise level increases,
while LEV drops sharply. The reason LEV decreases is that
higher noise levels cause the distribution of the eigenval-
ues to look uniform. The results of applying all of the
stopping techniques to the matrix Xσ for σ = 0 and σ =
0.25 are summarized in Table 2.
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Table 1: Dimension suggested by the Information Dimension

(Rx, Ry, Rz) (1,1,1) (8/5,1,5/8) (2,1,1/2) (3,1,1/3) (8,1,1/8)

H(p1,p2,p3) 1.000 0.781 0.608 0.348 0.074
p1 = λ1/(λ1 + λ2 + λ3) 0.333 0.648 0.762 0.890 0.984
p2 = λ2/(λ1 + λ2 + λ3) 0.333 0.253 0.191 0.099 0.015
p3 = λ3/(λ1 + λ2 + λ3) 0.333 0.099 0.048 0.010 0.000
n0 3.00 2.36 1.95 1.47 1.09
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3.2 Yeast cdc15 cell-cycle data set
A PCA was performed on the genes identified in Spellman
[34] responsible for cell cycle regulation in yeast samples.
The cdc15 data set contains p = 799 rows (genes) and q =
15 columns representing equally spaced time points. The
unpolished data set appears to have a high information
content as suggested by the normalized entropy which is
.7264 and the Gleason-Staelin statistic which is 0.3683.
Therefore, we should expect the stopping criteria to indi-
cate that significant dimension reduction may not be pos-
sible.

Eigenvalues based on both the covariance and correlation
matrices are given in Table 2. From the given data we see

that it requires the first seven eigenvalues to account for
over 90% of the variance in the data. The Kaiser-Guttman
test retains the first four eigenvalues which represents the
number of eigenvalues obtained from the correlation
matrix that exceeds unity. To incorporate the effect of sam-
ple variance Jolliffe [9] suggests that the appropriate
number to retain are those eigenvalues whose value
exceed 0.7. Jolliffe's modification of Kaiser-Guttman
would indicate that the first five eigenvalues are signifi-
cant. Parallel analysis compares the eigenvalues obtained
from either the correlation or covariance matrix of the
data to those obtain from a matrix whose entries are
drawn from a uniform random distribution.

Simulated dataFigure 3
Simulated data. Six orthonormal polynomials with gaussian Noise.
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Cattell's scree test looks for an inflection point in the
graph of the eigenvalues, which are plotted in descending
order. Figure 5 illustrates Cattell's scree test for eigenval-
ues obtained from the correlation matrix and from the
covariance matrix respectively. By inspecting the differ-
ences of the differences between eigenvalues, we see that
the first inflection point occurs between the fourth and
fifth eigenvalues. Therefore, the scree test gives a dimen-
sion of five.

Figure 6 contains graphs of the Log-eigenvalue diagram,
LEV, where the eigenvalues are obtained from the correla-
tion matrix (Figure 6.a) and the covariance matrix (Figure

6.b). For each eigenvalue λj, we graph log (λj) against j and
look for the point at which the eigenvalues decay linearly.
The method is based on the conjecture that the eigenval-
ues associated with eigenvectors that are dominated by
noise will decay geometrically. The LEV diagram is subject
to interpretation and may suggest retaining 0, 3, or 9 com-
ponents.

Figure 7 illustrates Velicer's minimum average partial cor-
relation statistic. It is based upon the average of the
squared partial correlations between q variables after the
first m components have been removed [52]. The sum-
mary statistic is given by

Predicted dimension for simulated dataFigure 4
Predicted dimension for simulated data. Predicted dimension versus noise Level. Shown is the information dimension 
(line with circle markers), Jolliffe's modification of the Guttman-Kaiser rule (line with star markers) and LEV (line with square 
markers) plotted against noise level, measured in standard deviations. Note that the predictions given by both the information 
dimension and Guttman-Kaiser's rule increase as the noise level increases, while LEV drops sharply (see Text).
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where  is the element in the i-th row and j-th column of

the matrix of partial correlations and co-variances. The
pattern of the statistic given in Figure 7 for cdc15 cell cycle
data is typical in that the statistic first declines then rises.
Once the statistic begins to rise it indicates that additional
principal components represent more variance than cov-
ariance [7]. Therefore, no components are retained after
the average squared partial correlation reaches a mini-
mum. Here the minimum occurs at j = 5, which suggests
retaining the first five principal components.

Figure 8. a shows the eigenvalues from the covariance
matrix along with error bars representing the sampling
error estimate suggested by North et al. [38] and presented
in Section 2.3 above. Figure 8.b shows the eigenvalues
obtained from the covariance matrix superimposed on the
broken stick distribution. Applying the rule of thumb
method given in North et al. [38], we find that the first six
eigenvalues are sufficiently separated and may be treated
as individual subspaces. The remaining eigenvalues are
close compared to their sampling error. Therefore, when
applying the broken stick model we require that the total
variance of the effectively degenerate subspace spanned by
the associated eigenvectors to exceed the value suggested
by the broken stick model for the sum of the seventh

through fifteen lengths. This would also suggest that we
accept or reject the entire subspace. Of course the tail of
the distribution can never exceed that suggested by the
broken stick distribution. The broken stick model suggests
a dimension of four for the cdc15 data.

3.3 Summary of results For six microarray data sets
Table 2 summarizes the results of the stopping criteria for
six microarray data sets. Note that Bartlett's test fails to dis-
card any components. The null hypothesis that all roots
are equal is rejected at every stage of the test. The large
sample size of each data set was a major factor for all roots
testing out to be significantly different. The broken stick
model consistently retained the fewest number of compo-
nents, which appears consistent with comments in the lit-
erature. The results of the modified broken stick model
were identical to that of the original model since the first
few eigenvalues in each data set appear to be well sepa-
rated, at least with respect to Equation (6). Since no effec-
tive degenerate subspaces were identified, all subspaces
matched those of the original model. The cumulative per-
cent of variance at the 90% level retains the greatest
number of components while components retained at the
80% level appear to be more consistent with other rules.
Regardless of the cutoff level chosen, this method is com-
pletely arbitrary and appears to be without merit. While
the LEV diagram is less subjective, it is often difficult to
interpret. Kaiser-Guttman, Jolliffe's modification of Kai-
ser-Guttman, Cattell's scree test, parallel analysis and
Velicer's MAP consistently retained similar numbers of
components. The information dimension gave compara-
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Table 2: Summary of results

Column No. 1 2 3 4 5 6 7 8
Data Set Y + N0 Y + N.25 alpha cdc15 elutriation fibro sporula tumor

Broken Stick, (BS) 1 1 2 4 3 2 1 3
Modified BS 1 1 2 4 3 2 1 3
Velicer's MAP 2/8 2 3 5 3 3 2 8/10
Kaiser-Guttman, (KG) 2 2 3 4 3 3 2 9
Jolliffe's KG 7 7 4 5 4 3 3 14
LEV Diagram 6/8 6/8 4/5 5 4/5 4/6 3 12/21
Parallel Analysis 1 1 5 4 3 3 2 8
Scree Test 8 8 5 5 4 6 4 7
Info Dimension 5.9 7.3 11.1 7.2 6.4 3.0 2.6 17.3

Gleason-Staelin Stat .525 .45 .34 .37 .38 .54 .58 .37
Normalized Entropy .917 .941 .779 .726 .706 .438 .493 .696

80% of Var. 4 4 9 4 5 3 3 19
90% of Var. 7 7 14 7 9 5 3 33
Bartlett's Test 15 15 22 15 14 12 7 60

The table contains the results of twelve stopping rules along with two measures of data information content for six cDNA microarray data sets. 
We recommend looking for a consensus among the rules given in the upper portion of the table, while avoiding rules based on cumulative percent 
of variation explained or Barlett's test. Synthetic data sets are summarized in columns 1 (no noise) and 2 (Gaussian noise, μ = 0 and σ = 0.25). The 
matrix sizes for columns 1 through 8 are : (6000 × 15), (6000 × 15), (4579 × 22), (799 × 15), (5981 × 14), (517 × 12), (6118 × 7), and (1375 × 60).
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ble results. It often retained the most components of the
five aforementioned rules suggesting that it may provides
an upper bound on the interpretable number of compo-
nents.

4 Conclusion
Principal component analysis is a powerful descriptive
and data reduction technique for the analysis of microar-
ray data. Twelve stopping rules to determine the appropri-
ate level of data reduction were presented including a new
heuristic model based on statistical entropy. While the
issue of component retention remains unresolved, the
information dimension provides a reasonable and con-
servative estimate of the upper bound of the true dimen-
sion of the data.

Our analysis shows that the broken stick model and
Velicer's MAP consistently retained the fewest number of
components while stopping rules based on percent varia-
tion explained and Bartlett's test retained the greatest
number of components. We do not recommend the use of
Bartlett's test (as presented here) or those based on the
cumulative percent of variation explained. Due to the
large sample size (typical of microarray data), Bartlett's
test failed to discard any components, while rules based
on percent variation explained are completely arbitrary in
nature.

For the analysis of cDNA microarray data, we do not rec-
ommend any one stopping technique. Instead, we suggest
that one look for a "consensus dimension" given by the

Cattell's scree testFigure 5
Cattell's scree test. Cattell's scree test using eigenvalues obtained from (a) the correlation matrix and from (b) the covari-
ance matrix of the yeast cdc15 cell-cycle data set. Since the first inflection point occurs between the fourth and fifth eigenval-
ues, the implied dimension is five. Cattell's scree test using eigenvalues obtained from (a) the correlation matrix and from (b) 
the covariance matrix of the yeast cdc15 cell-cycle data set. Since the first inflection point occurs between the fourth and fifth 
eigenvalues, the implied dimension is five.
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modified broken stick model, Velicer's MAP, Jolliffe mod-
ification of Kaiser-Guttman, the LEV diagram, parallel
analysis, the scree test and the information dimension
while using the information dimension as an upper
bound for the number of components to retain. Comput-
ing all seven stopping rules is an easy task and Matlab rou-
tines are available from the authors.

As a guiding example consider the results from the cdc15
cDNA data set given in Table 3. For the cdc15 data set, the
consensus is split between four and five; however, given
that the information dimension is seven, it appears rea-
sonable to choose five as the appropriate dimension in
which to work.

A A brief overview of stopping techniques
A.1 Introduction
Franklin et al. [23] suggests that when a researcher uses
PCA for data analysis, the most critical problem faced is
determining the number of components to retain. Indeed,
retaining too many components potentially leads to an
attempt to ascribe physical meaning to what may be noth-
ing more than noise in the data set, while retaining too
few components may cause the researcher to discard valu-
able information. Many methods have been proposed to
address the question of component selection and a brief
review is given here. A more extensive review can be found
in [[7], Section 2.8]; [[9], Section 6.1]; [[6], Chapter 5].
These methods may be categorized as either heuristic or
statistical approaches [20]. The statistical methods may be

The LEV DiagramFigure 6
The LEV Diagram. LEV Diagram using eigenvalues obtained from (a) the correlation matrix and from (b) the covariance 
matrix of the yeast cdc15 cell-cycle data set. The fifth through fifteen eigenvalues lie approximately on a line indicating a dimen-
sion of five.
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Velicer's minimum average partial statisticFigure 7
Velicer's minimum average partial statistic. Velicer's minimum average partial statistic displays a minimum value at five, 
indicating that the implied dimension is five.
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further partitioned into two groups: those that make
assumptions regarding the distribution of the data and
those that do not make such assumptions. Jolliffe [9] crit-
icizes the former stating that the distributional assump-
tions are often unrealistic and adds that these methods
tend to over-estimate the number of components. The lat-
ter methods tend to be computationally intensive (for
example, cross validation and bootstrapping). Our
approach is to consider only heuristic methods here with
the exception of Velicer's Partial Correlation test, which is
a statistical method that does not require distributional
assumptions nor is it computationally intensive. We
present below a brief discussion of the heuristic tech-
niques for determining the dimensionality of data sets as
well as Velicer's Partial Correlation test.

A. 2 Scree test
The scree test is a graphical technique attributed to Cattell
[49] who described it in term of retaining the correct
number of factors in a factor analysis. However, it is
widely used in PCA [9]. While a scree graph is simple to
construct, its interpretation may be highly subjective. Let
λk represent the k-th eigenvalue obtained from a covari-
ance or correlation matrix. A graph of λk against k is
known as a scree graph. The location on the graph where
a sharp change in slope occurs in the line segments join-
ing the points is referred to as an elbow. The value of k at
which this occurs represents the number of components
that should be retained in the PCA. Jackson [7] notes that
the scree test is a graphical substitute for a significance
test. He points out that interpretation might be con-

The cdc15 yeast cell-cycle data setFigure 8
The cdc15 yeast cell-cycle data set. (a) Error bars about the eigenvalues obtained from the covariance matrix of the cdc15 
yeast cell-cycle data set illustrating North et al. (1982) "rule of thumb" estimate with δ = 1.5. The spacing between the second 
and third eigenvalues indicate a possible degenerate subspace spanned by the associated eigenvectors, (b) is a graph of the bro-
ken stick model (circles) plotted against the eigenvalues (bars) obtained from the covariance matrix of the yeast cdc15 data set. 
The broken stick model (and the modified broken stick model) indicate a dimension of four.
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founded in cases where the scree graph either does not
have a clearly defined break or has more than one break.
Also, if the first few roots are widely separated, it may be
difficult to interpret where the elbow occurred due to a
loss in detail caused by scaling. This problem might be
remedied using the LEV described below.

A.3 Proportion of total variance explained
In a PCA model, each eigenvalue represents the level of
variation explained by the associated principal compo-
nent. A simple and popular stopping rule is based on the
proportion of the total variance explained by the principal
components retained in the model. If k components are
retained, then we may represent the cumulative variance
explained by the first k PC's by

where S is the sample covariance matrix. The researcher
decides on a satisfactory value for t(k) and then deter-
mines k accordingly. The obvious problem with the tech-
nique is deciding on an appropriate t(k). In practice it is
common to select levels between 70% to 95% [9]. Jackson
[7] argues strongly against the use of this method except
possibly for exploratory purposes when little is known
about the population of the data. An obvious problem
occurs when several eigenvalues are of similar magnitude.
For example, suppose for some k = k*, t(k*) = 0.50 and the

remaining q - k eigenvalues have approximately the same
magnitude. Can one justify adding more components
until some predetermined value of t(k) is reached? Jolliffe
[9] points out that the rule is equivalent to looking at the
spectral decomposition of S. Determining how many
terms to include in the decomposition is closely related to

t(k) because an appropriate measure of a lack-of-fit is

 (see Jolliffe 2002, pp. 113).

A.4 Average eigenvalue (Guttman-Kaiser rule and Jolliffe's 
Rule)
The most common stopping criterion in PCA is the Gutt-
man-Kaiser criterion [7]. Principal components associated
with eigenvalues derived from a covariance matrix, and
that are larger in magnitude than the average of the eigen-
values, are retained. In the case of eigenvalues derived
from a correlation matrix, the average is one. Therefore,
any principal component associated with an eigenvalue
whose magnitude is greater than one is retained.

Based on simulation studies, Jolliffe [9] modified this rule
using a cut-off of 70% of the average root to allow for sam-
pling variation. Rencher [27] states that this method
works well in practice but when it errs, it is likely to retain
too many components. It is also noted that in cases where
the data set contains a large number of variables that are
not highly correlated, the technique tends to over estimate
the number of components. Table 4 lists eigenvalues in
descending order of magnitude from the correlation
matrix associated with a (300 × 9) random data matrix.
The elements of the random matrix were drawn uniformly
over the interval [0, 1] and a PCA performed on the corre-
lation matrix. Note that the first four eigenvalues have val-
ues that exceed 1 and all nine eigenvalues have values that
exceed 0.7. Thus, Kaiser's rule and its modification suggest
the existence of "significant PCs" from randomly gener-
ated data – a criticism that calls into question its validity
[20,25,50,51].

A.5 Log-eigenvalue diagram, LEV
An adaptation of the scree graph is the log-eigenvalue dia-
gram, where log(λk) is plotted against k. It is based on the
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Table 3: Eigenvalues of yeast cdc15 cell cycle data

No. Eigenvalue (Covariance) Percent of Total Cumulated Percentage Eigenvalue (Correlation) Random

1 1.9162 32.25 32.25 5.0025 0.1004
2 1.1681 19.66 51.91 2.8896 0.0997
3 0.8560 14.41 66.32 2.4140 0.0975
4 0.8320 14.00 80.32 1.7371 0.0940
5 0.3295 5.55 85.87 0.7499 0.0905
6 0.2087 3.51 89.38 0.5495 0.0870
7 0.1490 2.51 91.89 0.3663 0.0841
8 0.1337 2.25 94.14 0.3064 0.0831
9 0.0881 1.48 95.62 0.2706 0.0808

10 0.0842 1.42 97.04 0.2206 0.0801
11 0.0580 0.98 98.02 0.1507 0.0779
12 0.0402 0.68 98.69 0.1292 0.0750
13 0.0341 0.57 99.27 0.0930 0.0727
14 0.0273 0.46 99.73 0.0731 0.0702
15 0.0162 0.27 100.00 0.0464 0.0650
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conjecture that eigenvalues corresponding to 'noise'
should decay geometrically, therefore, those eigenvalues
should appear linear. Farmer [50] investigated the proce-
dure by studying LEV diagrams from different groupings
of 6000 random numbers. He contends that the LEV dia-
gram is useful in determining the dimension of the data.

A.6 Velicer's partial correlation test
Velicer [52] proposed a test based on the partial correla-
tions among the q original variables with one or more
principal components removed. The criterion proposed is

where  is the partial correlation between the i-th and j-

th variables. Jackson [7] notes that the logic behind
Velicer's test is that as long as fk is decreasing, the partial

correlations are declining faster than the residual vari-
ances. This means that the test will terminate when, on the
average, additional principal components would repre-
sent more variance than covariance. Jolliffe [9] warns that
the procedure is plausible for use in a factor analysis, but
may underestimate the number of principal components
in a PCA. This is because it will not retain principal com-
ponents dominated by a single variable whose correla-
tions with other variables are close to zero.

A.7 Bartlett's equality of roots test
It has been argued in the literature (see North, [38]) that
eigenvalues that are equal to each other should be treated
as a unit, that is, they should either all be retained or all
discarded. A stopping rule can be formulated where the
last m eigenvalues are tested for equality. Jackson [7]
presents a form of a test developed by Bartlett [53] which
is

where χ2 has (1/2) (q - k - 1)(q - k - 2) degrees of freedom
and v represents the number of degrees of freedom associ-
ated with the covariance matrix.
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Reviewers' comments
Orly Alter review
R. Cangelosi and A. Goriely present two novel mathemat-
ical methods for estimating the statistically significant
dimension of a matrix. One method is based on the Shan-
non entropy of the matrix, and is derived from fundamen-
tal principles of information theory. The other method is
a modification of the "broken stick" model, and is derived
from fundamental principles of probability. Also pre-
sented are computational estimations of the dimensions
of six well-studied DNA microarray datasets using these
two novel methods as well as ten previous methods.

Estimating the statistically significant dimension of a
given matrix is a key step in the mathematical modeling of
data, e.g., as the authors note, for data interpretation as
well as for estimating missing data. The question of how
best to estimate the dimension of a matrix is still an open
question. This open question is faced in most analyses of
DNA microarray data (and other large-scale modern data-
sets). The work presented here is not only an extensive
analysis of this open question. It is also the first work, to
the best of my knowledge, to address this key open ques-
tion in the context of DNA microarray data analysis. I
expect it will have a significant impact on this field of
research, and recommend its publication.

For example, R. Cangelosi and A. Goriely show that, in
estimating the number of eigenvectors which are of statis-
tical significance in the PCA analysis of DNA microarray
data, the method of cumulative percent of variance
should not be used. Unfortunately, this very method is
used in an algorithm which estimates missing DNA
microarray data by fitting the available data with cumula-
tive-percent-of-variance- selected eigenvectors [Troyan-
skaya et al., Bioinformatics 17, 520 (2001)]. This might be
one explanation for the superior performance of other
PCA and SVD-based algorithms for estimating DNA
microarray data [e.g., Kim et al., Bioinformatics 15, 187
(2005)].

In another example, R. Cangelosi and A. Goriely estimate
that there are two eigenvectors which are of statistical sig-
nificance in the yeast cdc15 cell-cycle dataset of 799 genes
× 15 time points. Their mathematical estimation is in
agreement with the previous biological experimental
[Spellman et al., MBC 9, 3273 (1998)] as well as compu-
tational [Holter et al., PNAS 97, 8409 (2000)] interpreta-
tions of this dataset.
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Table 4: Eigenvalues from a random matrix.

No. 1 2 3 4 5 6 7 8 9

Eigenvalue 1.21 1.20 1.13 1.03 0.96 0.93 0.89 0.86 0.77
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John Spouge's review (John Spouge was nominated by 
Eugene Koonin)
This paper reviews several methods based on principal
component analysis (PCA) for determining the "true"
dimensionality of a matrix subject to statistical noise, with
specific application to microarray data. It also offers two
new candidates for estimating the dimensionality, called
"information dimension" and the " modified broken stick
model".

Section 2.1 nicely summarizes matrix methods for reduc-
ing dimensionality in microarray data. It describes why
PCA is preferable to a singular value decomposition (a
change in the intensities of microarray data affects the sin-
gular value decomposition, but not PCA).

Section 2.2 analyzes the broken stick model. Section 2.3
explains in intuitive terms the authors' "modified broken
stick model", but the algorithm became clear to me only
when it was applied to data later in the paper. The broken
stick model has the counterintuitive property of determin-
ing dimensionality without regard to the amount of data,
implicitly ignoring the ability of increased data to
improve signal-to-noise. The modified broken stick
model therefore has some intuitive appeal.

Section 2.4 explains the authors' information dimension.
The derivation is thorough, but the resulting measure is
purely heuristic, as the authors point out. In the end,
despite the theoretical gloss, it is a just formula, without
any desirable theoretical properties or intuitive interpreta-
tion.

The evaluation of the novel measures therefore depends
on their empirical performance, found in the Results and
Discussion. Systematic responses to variables irrelevant to
the (known) dimensionality of synthetic data become of
central interest. In particular, the authors show data that
their information dimension increases systematically with
noise, clearly an undesirable property. The authors also
test the dimensionality estimators on real microarray
data. They conclude that six dimensionality measures are
in rough accord, with three outliers: Bartlett's test, cumu-
lative percent of variation explained, and the information
dimension (which tends to be higher than other estima-
tors). They therefore propose the information dimension
as an upper bound for the true dimensionality, with a
consensus estimate being derived from the remaining
measures.

The choice of dimensionality measure is purely empirical.
While it is desirable to check all estimators (and report

them in general accord, if that is the case), it is undesirable
to report all estimators for any large set of results. The
information dimension's property of increasing with
noise makes it undesirable as an estimator, and it can not
be recommended. The main value of the paper therefore
resides in its useful review and its software tools.

Answers to John Spouge's review
The main point of the reviewer is the suggestion that the
information dimension's undesirable property of increas-
ing with noise makes it undesirable as an estimator. We
analyze the information in detail and indeed reached the
conclusion that its prediction increases with noise. In the
preprint reviewed by Dr. Spouge, we only considered the
effect of noise on the information dimension. It is crucial
to note that ALL methods are functions of the noise level
present in the data. In the new and final version of the
manuscript, we study the effect of noise on two other
methods (Jolliffe's modification of he Guttman-Kaiser
rule and LEV). It clearly appears that in one case the esti-
mator increases with noise and in the other one, it
decreases with noise (both effects are undesirable and
unavoidable). The message to the practitioner is the same,
understand the signal to noise ratio of the data and act
accordingly. We conclude that the information dimension
could still be of interest as an estimator.

David Horn and Roy Varshavsky joint review (both 
reviewers were nominated by O. Alter)
This paper discusses an important problem in data analy-
sis using PCA. The term 'component retention' that the
authors use in the title is usually referred to as dimen-
sional truncation or, in more general terms, as data com-
pression. The problem is to find the desired truncation
level to assure optimal results for applications such as
clustering, classification or various prediction tasks.

The paper contains a very exhaustive review of the history
of PCA and describes many recipes for truncation pro-
posed over the 100 years since PCA was introduced. The
authors propose also one method of their own, based on
the use of the entropy of correlation eigenvalues. A com-
parison of all methods is presented in Table 2, including
14 criteria applied to 6 microarray experiments. This table
demonstrates that the results of their proposed 'informa-
tion dimension' are very different from those of most
other truncation methods.

We appreciate the quality of the review presented in this
paper, and we recommend that it should be viewed and
presented as such. But we have quite a few reservations
regarding the presentation in general and their novel
method in particular.
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1. The motivation for dimensional reduction is briefly
mentioned in the introduction, but this point is not elab-
orated later on in the paper. As a result, the paper lacks a
target function according to which one could measure the
performance of the various methods displayed in Table 2.
We believe one should test methods according to how
well they perform, rather than according to consensus.
Performance can be measured on data, but only if a per-
formance function is defined, e.g. the best Jaccard score
achieved for classification of the data within an SVM
approach. Clearly many other criteria can be suggested,
and results may vary from one dataset to another, but this
is the only valid scientific approach to decide on what
methods should be used. We believe that it is necessary for
the authors to discuss this issue before the paper is
accepted for publication.

2. All truncation methods are heuristic. Also the new sta-
tistical method proposed here is heuristic, as the authors
admit. An example presented in Table 1 looks nice, and
should be regarded as some justification; however the
novel method's disagreement with most other methods
(in Table 2) raises the suspicion that the performance of
the new method, once scrutinized by some performance
criterion on real data, may be bad. The authors are aware
of this point and they suggest using their method as an
upper bound criterion, with which to decide if their pro-
posed 'consensus dimension' makes sense. This, by itself,
has a very limited advantage.

3. The abstract does not represent faithfully the paper. The
new method is based on an 'entropy' measure but this is
not really Shannon entropy because no probability is
involved. It gives the impression that the new method is
based on some 'truth' whereas others are ad-hoc which, in
our opinion, is wrong (see item 2 above). We suggest that
once this paper is recognized as a review paper the abstract
will reflect the broad review work done here.

4. Some methods are described in the body of the article
(e.g., broken stick model), while others are moved to the
appendix (e.g., portion of total variance). This separation
is not clear. Unifying these two sections can contribute to
the paper readability.

In conclusion, since the authors admit that information
dimension cannot serve as a stopping criterion for PCA
compression, this paper should not be regarded as pro-
moting a useful truncation method. Nevertheless, we
believe that it may be very useful and informative in
reviewing and describing the existing methods, once the
modifications mentioned above are made. We believe this
could then serve well the interested mathematical biology
community.

Answers to Horn's and Varshavsky's review
We would like to thank the reviewers for their careful
reading of our manuscript and their positive criticisms.
We have modified our manuscript and follow most of
their recommendations.

Specifically, we answer each comment by the reviewer:

1. The status of the paper as a review or a regular article.

It is true that the paper contains a comprehensive survey
of the literature and many references. Nevertheless, we
believe that the article contains sufficiently many new
results to be seen as a regular journal article. Both the
modified broken-stick method and the information
dimension are new and important results for the field of
cDNA analysis.

2. The main criticism of the paper is that we did not test
the performance of the different methods against some
benchmark.

To answer this problem we performed extensive bench-
marking of the different methods against noisy simulated
data for which the true signal and its dimension was
known. We have added this analysis in the paper where
we provide an explicit example. This example clearly
establishes our previous claim that the information
dimension provides a useful upper bound for the true sig-
nal dimension (whereas other traditional methods such
as Velicer's underestimate the true dimension). Upper
bounds are extremely important in data analysis as they
provide a reference point with respect to which other
methods can be compared.

3. The abstract does not represent the paper.

We did modify the abstract to clarify the relationship of
information dimension that we propose with respect to
other methods (it is also a heuristic approach!). Now,
with the added analysis and wording, we believe that the
abstract is indeed a faithful representation of the paper.

4. Some methods appear in the appendix.

Indeed, the methods presented in the appendix are the
one that we review. Since we present a modification of the
broken-stick method along with a new heuristic tech-
nique, we believe it is appropriate to describe the broken-
stick method in the main body of the text while relegating
other known approaches (only used for comparison) to
the appendix. Keeping in mind that this is a regular article
rather than a review, we believe it is justified.
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