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Abstract
Background: One of the mechanisms that ensure cancer robustness is tumor heterogeneity, and
its effects on tumor cells dynamics have to be taken into account when studying cancer
progression. There is no unifying theoretical framework in mathematical modeling of
carcinogenesis that would account for parametric heterogeneity.

Results: Here we formulate a modeling approach that naturally takes stock of inherent cancer cell
heterogeneity and illustrate it with a model of interaction between a tumor and an oncolytic virus.
We show that several phenomena that are absent in homogeneous models, such as cancer
recurrence, tumor dormancy, and others, appear in heterogeneous setting. We also demonstrate
that, within the applied modeling framework, to overcome the adverse effect of tumor cell
heterogeneity on the outcome of cancer treatment, a heterogeneous population of an oncolytic
virus must be used. Heterogeneity in parameters of the model, such as tumor cell susceptibility to
virus infection and the ability of an oncolytic virus to infect tumor cells, can lead to complex,
irregular evolution of the tumor. Thus, quasi-chaotic behavior of the tumor-virus system can be
caused not only by random perturbations but also by the heterogeneity of the tumor and the virus.

Conclusion: The modeling approach described here reveals the importance of tumor cell and
virus heterogeneity for the outcome of cancer therapy. It should be straightforward to apply these
techniques to mathematical modeling of other types of anticancer therapy.
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Background
Cancers are extremely complex systems that possess many
features of robustness, i.e., they are systems that tend to
maintain stable functioning despite various perturbations
[1,2]. The main two mechanisms that enable cancer
robustness are functional redundancy, that comes from
inherent heterogeneity of tumor cells, and feedback-con-
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trol systems that facilitate survival of a tumor under
adverse conditions, e.g., caused by anticancer drugs [3-6].
Many approaches to anticancer treatment have had lim-
ited success due to cancer robustness. An important chal-
lenge is to identify fragilities of cancers as robust
biological systems and develop treatment strategies that
take advantage of these weak links. Thus, a better under-
standing of the mechanisms that yield cancer robustness,
particularly, functional redundancy, is vital.

Redundancy in cancers occurs at two levels. First, multiple
copies of identical cells increase the likelihood of restora-
tion of a tumor after treatment. Second, functional redun-
dancy can be mediated by functionally equivalent but
heterogeneous components (known as heterogeneous
redundancy). Heterogeneous redundancy is thought to be
central to tumor robustness. Although heterogeneity is a
well-recognized characteristic of tumors that can lead to
drug resistance, the current body of experimental and clin-
ical data that relate to dynamic changes in intratumoral
heterogeneity during progression, as well as to responses
to various therapeutic strategies, is insufficient [2].

The term 'tumor heterogeneity' means the existence of dis-
tinct subpopulations of tumor cells with specific charac-
teristics within a single neoplasm [7,8]; in particular,
surviving subpopulations of cells with metastatic poten-
tial after anticancer therapy can lead to tumor recurrence
[9-11]. Tumor heterogeneity is a well documented phe-
nomenon [3] as demonstrated by extensive cytogenetic
analysis [12,13]. Furthermore, many tumors are character-
ized by heterogeneous, often non-random, spatio-tempo-
ral distribution of genetically heterogeneous tumor cells
[4]. Distinct subpopulations of cells have been isolated
from experimental and human neoplasms of every major
histological type and location. These subpopulations are
heterogeneous for many characteristics, such as morphol-
ogy, growth rate, metastatic potential, karyotype, anti-
genicity, immunogenicity, biochemical properties,
sensitivity to chemotherapeutic agents and radiation, etc.
Genetic heterogeneity is, arguably, a major cause of
acquired drug resistance of tumors [14,15].

The dynamics of host-tumor system, which entails co-evo-
lution under the selective pressure that is imposed by host
environments, including antitumor drugs, is highly com-
plex and nonlinear. Thus, to precisely define the condi-
tions for successful therapy, mathematical models are
needed. Extensive efforts have been dedicated over many
years to mathematical modeling of cancer development
and anticancer therapy. Stochastic models that take into
account random mutations and cell proliferation proved
to be useful in the context of epidemiology and statistical
data [16], and for modeling cancer initiation and progres-
sion in terms of somatic evolution [17]. Deterministic

models of tumor growth have proved valuable as well.
Many of these have addressed avascular and vascular
tumor growth taking advantage of methods borrowed
from physics [18] but some use models from population
biology to treat a tumor as a dynamic society of interact-
ing cells [19-21]. A variety of mathematical approaches
contribute to modeling cancer progression from different
standpoints and take stock of various factors affecting
tumor growth [[22] and references therein, [23]]. Com-
bined analysis of tumor growth and anticancer therapies
within the framework of mathematical modeling also
produced a number of significant results [24,25].

Inasmuch as tumor heterogeneity is one of the crucial fac-
tors in determining possible outcomes of anticancer treat-
ment, it has to be incorporated and investigated in
mathematical models. Although heterogeneity of tumor
cell populations has been widely studied, there is no gen-
eral approach that would provide a comprehensive
description of intrinsic heterogeneity of tumors and
would be amenable to qualitative and quantitative math-
ematical analysis. The existing mathematical models of
anticancer therapy either do not include the effects of het-
erogeneity [e.g., [26,27]], or consider finite, usually,
small, number of subpopulations, e.g., sensitive and
resistant cells or proliferating and quiescent cells [e.g.,
[28,29]]. Other models take into account only spatial het-
erogeneity and do not address the important subject of
genetic heterogeneity [e.g., [30-32]], or use individual-
based approach and simulation techniques and thus are,
practically, not amenable to theoretical mathematical
analysis [e.g., [33-35]].

The main goal of the present paper is to introduce a novel
approach to model heterogeneity into the field of cancer
modeling. We show that heterogeneous models, although
still oversimplified, reflect qualitatively new phenomena,
some of which are observed in experiments and clinical
trials. We present an effective method to analyze these
models and examine the predictions that such heteroge-
neous models can yield.

We illustrate our approach by addressing a complex proc-
ess that involves both virus-cell interaction and tumor
growth, namely, the interaction of the so-called oncolytic
viruses with tumors. Oncolytic viruses are viruses that spe-
cifically infect and kill cancer cells but do not affect nor-
mal cells [36-39]. Many types of oncolytic viruses have
been studied as candidate therapeutic agents, including
adenoviruses, herpesviruses, poxviruses, reoviruses, para-
myxoviruses, and retroviruses [37,39]. Probably, the best-
characterized oncolytic virus, that has drawn much atten-
tion, is ONYX-015, an attenuated adenovirus that selec-
tively infects tumor cells with a defect in the p53 gene
[38,40]. This virus has been shown to possess substantial
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antitumor activity and has proven relatively effective at
reducing or eliminating tumors in clinical trials [41-43].
Although safety and efficacy remain major concerns, sev-
eral other oncolytic viruses acting on different principles,
including tumor-specific transcription of the viral
genome, have been developed, and some of these viruses
have entered or are about to enter clinical trials [37,44-
47]. Recently, synergistic use of immune therapy and onc-
olytic viruses has shown particular promise in cancer
treatment [48].

The oncolytic effect can result from at least three distinct
modes of virus-host interaction [37,39]. The first mode
involves repeated cycles of viral replication in the tumor
cells leading to cell death and, consequently, to tumor
reduction and, potentially, elimination. The second mode
involves low-level virus reproduction that, however,
results in the production of a cytotoxic protein that causes
cell damage. The third mode consists in induction of anti-
tumor immunity by virus infection of cancer cells. Cancer
cells possess weak antigens for host immune sensitization.
Virus infection causes inflammation and lymphocyte pen-
etration into the tumor, with the virus antigens eliciting
increased sensitivity to tumor necrosis factor-mediated
killing.

Although the indirect modes of virus cancer therapy based
on production of cytotoxic proteins or antitumor immu-
nity might be promising, direct lysis of tumor cells by an
oncolytic virus is the current mainstream strategy. Experi-
ments on human tumor xenografts in nude mice have
shown that the effect of oncolytic virus infection on
tumors can range from no apparent effect, to reduction
and stabilization of the tumor load (i.e., the overall size of
a tumor), to elimination of the tumor [49]. Complete
regression of tumors has been reported also in some
patients treated with oncolytic viruses as part of clinical
trials [50]. In a previous study [51], we presented a con-
ceptual mathematical model of tumor cells-virus interac-
tion which, depending on system parameter values,
exhibits various behaviors including deterministic elimi-
nation of the cancer cells. Here, we further examine this
model in conjunction with different possible heterogenei-
ties of tumor cells, such as different susceptibility to infec-
tion, different death rates of infected cells, and others.

Results
Homogeneous mathematical models (phase-parameter 
portrait)
In this section, we briefly present the main results of the
analysis of a simple conceptual model of virus-tumor
interaction [51]; these will be important for the further
analysis described in the present work. The model allows
for two populations of cells: uninfected tumor cells and
infected tumor cells and is an extension of the previous

work of Wodarz [52] to include an alternative non-linear
functional response for infection rate.

The model, which considers two types of cells growing in
the logistic fashion, has the following form:

where X is the size of the uninfected cell population; Y is
the size of the infected cell population; r1 and r2 are the
maximum per capita growth rates of uninfected and
infected cells, respectively; K is the carrying capacity; b is
the transmission coefficient (this parameter may also
include the replication rate of the virus); and a is the rate
of infected cell killing by the virus (cytotoxicity). All the
parameters of the model are supposed to be non-negative.
Model (1) is subject to initial conditions X(0) = X0 > 0 and
Y(0) = Y0 > 0. The concentration of viral particles is not
explicitly included; it is assumed that virus abundance is
proportional to infected cell abundance [53].

Rescaling model (1) by letting X* (t*) = X(t)/K, Y* (t*) = Y
(t)/K, t* = r1t leads to the system

where β = b/r1, γ = r2/r1, and δ = a/r1. In the following anal-
ysis, we suppress the asterisks to simplify the notations,
but it should be clear that we use non-dimensional
parameters and scaled sizes of cell populations, so that X
+ Y ≤ 1 for any t.

The complete phase-parameter portrait of system (2) is
shown in Fig. 1.

The model (2) exhibits all possible outcomes of oncolytic
virus infection, i.e., no effect on the tumor (domains I and
II in Fig. 1), stabilization or reduction of the tumor load
(domains IV and V), and complete elimination of the
tumor (domain VIII). Moreover there are two domains
(domains III and VII) where the final outcome crucially
depends on the initial conditions and can result either in
failure of virus therapy or in stabilization (domain III)
and elimination (domain VII) of the tumor.

Heterogeneous model
General consideration
The model (1) consists of two coupled, deterministic dif-
ferential equations allowing for cell reproduction and
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death, and cell infection. This model is one of the concep-
tual mathematical models of tumor growth that treat a
tumor as a dynamic society of interacting cells (e.g.,
[19,20,22]). Most population models suppose that all
individuals have identical attributes, in particular, identi-
cal rates of growth, death and birth. This assumption sim-
plifies computation, albeit at the cost of realism.

There are different ways to model heterogeneity. If it is
assumed that heterogeneity of population is mediated by
a structured variable (such as explicit space or age), we
have to deal with partial differential equations (PDEs)
(for application of space explicit models to tumor-virus
interaction, see [54] and references therein; cell age is
modeled, e.g., in [55]). By contrast, here, we explore het-
erogeneity of parameters (such as birth and death rates,
and infection rate), i.e., we consider parameters as inher-
ent and invariable properties of individuals, whereas
parameter values can vary between individuals; any
changes of mean, variance and other characteristics of the
parameter distribution with time are caused only by vari-
ation of the population structure due to the system
dynamics; the distribution of parameter values changes
with time because different subpopulations evolve with

different, non-constant rates. This type of heterogeneity
has been designated 'parametric' by Dushoff [56].

The most common method to take account of parametric
heterogeneity is to divide a population into groups
[28,57,58]. An important disadvantage of this approach is
that heterogeneity within a group cannot be incorporated
and the number of groups usually should be small
because, otherwise, the dimension of the model is too
large for qualitative analysis. Another approach is to con-
sider the population as having a continuous distribution
of parameters [59-62]. In the latter case, one usually has
to deal with infinite-dimensional dynamical systems but,
in a wide range of specific cases, there is an efficient ana-
lytical theory that allows one to reduce an initial distrib-
uted system to a system of ordinary differential equations
(ODEs) [61,62] (see also Mathematical Appendix (herein-
after MA) [see Additional file 1]). Here, we adopted this
approach and emphasize that the applied reduction per-
mits us to follow not only the total sizes of the popula-
tions, but also the time-dependent dynamics of the
distributions, i.e., no information is lost when we switch
from infinite-dimensional dynamical system to system of
ODEs. It should be further emphasized that this reduction
is not an approximation but results in an equivalent

Phase-parameter portrait of system (2) given as a cut of the positive parameter space (γ, β, δ) for an arbitrary fixed value of 0 <γ < 1 (a) and 1 <γ (b)Figure 1
Phase-parameter portrait of system (2) given as a cut of the positive parameter space (γ, β, δ) for an arbitrary fixed value of 0 
<γ < 1 (a) and 1 <γ (b). The boundaries of domains are α1 = {(δ, β, γ): δ - β = 0},α2 = {(δ, β, γ): γ -δ = 0}, α3 = {(δ, β, γ): γβ -δ = 
0}, and α4 = {(δ, β, γ): γ - δ - 1 + β = 0}.
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model, in contrast to the approaches commonly used to
solve similar systems numerically [59,63,64]. Moreover,
this approach can be used for arbitrary distributions, both
continuous and discrete, with the mathematical formal-
ism remaining the same.

The starting point of our analysis is the model (2) which
is a non-dimensional version of the initial model (1). As
a matter of fact, by assuming that one or more parameters
are distributed through the populations of cells, we have
to deal with the initial system (1) with dimensional
parameters. However, the two parameters that are of par-
ticular interest are transmission coefficient b and cytotox-
icity a, and in the following we assume that these
parameters (or either of them) are distributed, whereas
the net growth rates and carrying capacity are supposed to
be the same for all tumor cells. Since non-dimensional
parameters β and δ differ from b and a only by linear scal-
ing, the system with distributed non-dimensional param-
eters β and δ can be analyzed without loss of generality.

Distributed susceptibility

Let us assume that transmission coefficient β is distributed
through the population of uninfected tumor cells. Denote

B the set of possible values of β and x(t, β) the density of

uninfected cells that have a given value of β at moment t

(i.e., for any subset  ⊆ B, the part of the population with

trait values belonging to  is given by , and

the total size of the population, X (t), is given by

).

The number of uninfected cells with a given value of β that
become infected per time unit is given by ρx(t, β), where
ρ = ρ(β, X, Y) is the rate of infection. We assume that the
rate of infection depends only on the value of β and the
total sizes of the infected and uninfected cell subpopula-
tions. This assumption reflects the fact that different cells
can have different susceptibilities to virus infection, i.e.,
some of them can be infected with a relatively high prob-
ability whereas others are infected with a low or even arbi-
trary, close to zero probability; the latter case corresponds
to the situation when a particular subpopulation of tumor
cells can hardly be infected by the virus.

Using the nonlinear transmission function in (2) we
obtain that the change in subpopulation of uninfected

cells with parameter value β is given by βx(t, β)Y(t)/(X(t)
+ Y(t)). We also need to specify the law of growth of tumor

cells with a fixed value of β. Let us assume that uninfected

cells with a particular value of β beget daughter cells with
the same parameter value. For the net growth rate, we use

the logistic law that depends on the total population sizes,
X and Y. We do not consider heterogeneity in the infected
cell population, and, hence, the total amount of newly

infected cells per time unit is given by Y(t) /

X(t) + Y(t)), which should be taken into account when
writing down the equation for the change in the infected

cell population. By specifying initial conditions for x(t, β)
and Y(t), we obtain the model in the form

where the following notation was used: Eβ (t) =

( )/X(t).

The initial conditions are

x(0, β) = x0 (β) = X0p(0, β), Y(0) = Y0.    (4)

Here x0(β) is the initial distribution of β in the population

of uninfected cells, X0 is the total number of uninfected

cells at the initial moment, and p(0, β) is the probability

density function (pdf) of the initial distribution of. β.
Note that Eβ (t) can be rewritten in the form Eβ (t) =

, where p(t, β) is the pdf of the distribution

of β at time t, and, thus, Eβ (t) is the mean value of β at

moment t.

Integrating the first equation in (3) over β we obtain the
system

where we suppressed the dependence of phase variables
on t, and the initial conditions are X(0) = X0, Y(0) = Y0. In
order to solve this system, we only need to know the
explicit expression for Eβ (t). If we use the usual notation

for the moment generation function (mgf) of the initial
pdf, it can be shown ([61,62], see also MA) that the cur-
rent mean value of β can be calculated using the mgf of the
initial distribution of β ; the exact expression is
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where q(t) is an auxiliary variable that satisfies the equa-
tion

and Mβ (λ) is given as far as we specify the initial pdf p(0,
β).

In other words, if we want to keep track of the total popu-
lation sizes in the distributed model (3)–(4), then this
model implies the system of ODEs (5)–(6) that can be
analyzed in the usual way; moreover, it is very easy to
solve this system numerically (there are methods to
obtain the solution of (3)–(4), e.g., [59], but these meth-
ods are usually computationally intensive and not so
effective as numerical methods for ODEs). It is worth not-
ing that the current population density x(t, β) also can be
computed (see Theorem 1 in MA).

Note that system (5) differs from (2) in that the fixed
value of parameter β is replaced by its current mean value
Eβ (t) in the distributed model. This mean value, obvi-
ously, depends on the system dynamics and the popula-
tion sizes (see (6) and above), and its calculation at any
time moment gives us solution of problem (5).

It can be shown that, for model (3)–(4), the mean of the
parameter distribution decreases monotonically with
time (dEβ (t)/dt ≤ 0 for any t, see Corollary 2 in MA) from
the initial value Eβ (0) to the final value η, which shows
the direction of selection: the cells with lower parameter
values are selected for. More importantly, however, the
simultaneous knowledge of the time dependence of Eβ (t)
and the parametric portrait of the homogeneous model
(2) (Fig. 1) allows one to identify transient behavior of the
solutions of (5) (and, accordingly, of model (3)), i.e., the
behavior of solutions prior to the time moment when Eβ
(t) becomes constant. This behavior can be of particular
interest because this is one of the features that distin-
guishes model (3) from (2) and allows us to explore in
detail the temporal dynamics of inhomogeneous biologi-
cal systems.

Due to the non-negativity of β, we should consider only
distributions with support on half-axis β ≥ 0. To illustrate
the possible dynamical behavior of the cell populations,
we need the initial distribution of β, which is unknown in
practice. In the following, we assume that the initial pdf of
β is the gamma distribution on [η, ∞) with positive

parameters k, s and η ≥ 0. The choice of the gamma distri-
bution can be justified by the fact that it can well approx-
imate almost any unimodal distribution concentrated on
the positive half-line. Other possible initial distributions
include uniform, log-normal, Pareto, and many others;
any of them can be incorporated in the model as far as
there exist mgfs for the given q(t) (we note, however, that,
in some particular cases, mgf does not exist for some val-
ues of q(t), see MA).

For the case of gamma distributed β at the initial time
moment, it can be proved (see MA, Example 1) that β is
gamma-distributed at any time moment with Eβ (t) = η +
k /(s-q(t)). Typically, when Y(t) > const > 0, then q(t) → -∞
for t → ∞ (see (6)) and hence Eβ (t) → η. Thus, the knowl-
edge of the support of the initial distribution and the
direction of selection allows us, in a number of cases, to
predict the final state of the system.

In brief, we use the following approach to perform and
present numerical simulations. First, we need to specify

the initial conditions and the initial distribution of β, i.e.,

assign values of η, k, s. Here, for the sake of transparency,
we have chosen to set the values of the mean Eβ =

 and variance  =  - Eβ

(0)2 of the initial distribution, as well as the bounds of the
distribution if they are different from zero or infinity (for
the gamma distribution, the bound that has to be speci-

fied is its left boundary, η). In the analyzed case (when we
work with the distribution that has two free parameters, k
and s), this is sufficient to unambiguously determine the
values of the parameters (obviously, however, this is not
the case in the general situation).

Loosely speaking, during the simulation, the parametric
point with coordinates (γ, δ, Eβ (t)) travels in the parame-
ter space of model (2); the movement occurs along the
line connecting points (γ, δ, Eβ (0)) and (γ, δ, η) in the
parameter portrait of (2) (see Fig. 1 for the cut of the
parameter space for fixed γ). The speed of movement is
determined, together with the initial conditions X0 and Y0,
by the parameters of the initial distribution, or, equiva-
lently, by the initial mean and variance of the gamma dis-
tribution with the given left boundary.

Results of several numerical simulations of system (5)–
(6) are shown in Fig. 2. The parameter values were chosen
such that we start in domain VIII (Fig. 1) (eradication of
the tumor), cross domain VII (bistable situation), and end
up in domain I (no effect of virus therapy). The solutions
shown in Fig. 2 reflect the fact that the degree of heteroge-
neity plays an important role in the model dynamics. The
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parameter values and initial conditions are the same for
all four simulations; the difference comes from different
initial variances of β ; the greater the initial variance the
faster we reach the unfavorable domain I. Conversely, the
initial variance of the distribution can be small enough
such that the time during which the size of the tumor
remains negligible (X + Y is close to zero) is comparable
with the life-time of a patient; this emphasizes that we
need to know not only the final state of Eβ (t) but also its
transient behavior.

Fig. 2 shows the phenomenon of tumor recurrence after a
relatively long period of small tumor load, a phenome-

non that is not seen in the original homogeneous model
(2). Clearly, reappearance of the tumor is a probable out-
come of tumor-specific virus treatment if there are cancer
cells that are inaccessible to the virus (or are accessible at
an extremely slow rate compared to the characteristic time
of virus propagation): after the virus kills off the suscepti-
ble tumor cells and is cleared (given that it cannot infect
healthy tissues), these resistant cancer cells can develop
into a new tumor. It should be emphasized that, in the
simulations in Fig. 2, the final outcome is tumor recur-
rence, i.e., the tumor dynamics is strongly affected by cell
heterogeneity although all cells have a positive probabil-
ity to be infected (η > 0). This example shows that hetero-

Solutions of system (5)–(6) with gamma distributed parameter β on [1.5, ∞)Figure 2
Solutions of system (5)–(6) with gamma distributed parameter β on [1.5, ∞). Uninfected cells, X(t), infected cells, Y(t), and the 
total tumor load, X(t) + Y(t), are shown in blue, green and black, respectively. The initial conditions X(0) = 0.5, Y(0) = 0.1, 
parameter values γ = 1, δ = 2. The initial mean of distribution Eβ (0) = 2.5, the initial variances 0.06 (a), 0.1(b), 0.3(c), 0.4(d).
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geneous model (3), together with dynamical regimes
inherited from model (2), possesses new regimes, and,
thus, is more general.

The change of the mean parameter value for the cases pre-
sented in Fig. 2 is shown in Fig. 3. It can be seen that
higher rate of change corresponds to greater values of the
initial variance; in addition, in none of the analyzed cases
Eβ (t) reaches the final value η, because the speed of move-
ment is determined by two simultaneously acting factors:
the characteristics of the mgf and the equation for the aux-
iliary variable q(t) for which dq(t)/dt ≈ 0 starting from
some time t.

Other possible cases can be similarly analyzed; for exam-
ple, if we choose parameters such that the starting point
belongs to domain IV (Fig. 1a) and the final point belongs
to domain II, it is not difficult to predict that, first, there
will be a short period of time when the tumor load
remains constant, then the tumor starts growing linearly
(when Eβ (t) belongs to domain V), and in domain II, the
tumor grows under the logistic law (Fig. 4). Thus, accom-
modation of heterogeneity results in model dynamics that
reflects the phenomenon of temporary dormancy of the
tumor (Fig. 4).

Distributed susceptibility and distributed cytotoxicity
Together with differential susceptibility considered in the
previous section, parameter δ (the rate of killing of
infected cells) also may be assumed to take different val-
ues in the infected cell population. The population of
infected cells can be heterogeneous on its own such that
some cells are more likely to die faster than others when

infected by the virus. From different perspective, we can
attribute this heterogeneity to the virus, i.e., the virus pop-
ulation is assumed to consist of strains that differ in their
ability to kill cells. In previous work [51,52], it has been
shown that, in some parameter domains, there is an opti-
mal level of cytotoxicity that is necessary to maximally
reduce the tumor size if other parameter values are fixed.
In addition, it is sometimes desirable to kill as many cells
as possible during a short period of time; such situation
would favor using different viruses for therapeutic pur-
poses. Moreover, the latter assumption on virus heteroge-
neity can help one to interpret the model equations
which, assuming that δ takes values from set Δ, and y(t, δ)
is the density of infected cells having parameter value δ,
take the form:

where Eβ (t) is defined as above, and the initial conditions
are

x(0, β) = x0(β) = X0 p1 (0, β), y(0, δ) = y0(δ) = Y0 p2 (0, δ).
 (8)

Note that in (7) both cell populations are closed under
reproduction; that is, e.g., the uninfected cell that has
parameter value β* can produce daughter cells only with
the same parameter value (the same holds for the infected
cell population), moreover, if an uninfected cell was
infected by the virus from an infected cell with a parame-
ter value δ*, it falls into the same class. If we assume that
δ is an attribute of the cell population, this assumption is
difficult to justify, whereas if δ is an attribute of the virus,
the assumption follows from obvious considerations.

System (7)–(8) implies the following system of ODEs (see
MA, Corollary 1):

where the mean parameter values are

for the given mgf of p1 (0, β) and p2(0, δ), and the auxiliary
variables can be found from
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Eβ (t) versus time for the cases presented in Fig. 2Figure 3
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To analyze system (9)–(10), one has to specify initial con-
ditions and initial distributions for parameters β and δ. As
before, to obtain some insight into the possible dynami-
cal behavior of (9), we can consider the parameter portrait
(Fig. 1) and time-dependent changes of the mean param-
eter values. In the case under consideration Eβ (t), as
before, moves from top to bottom in Fig. 1, whereas Eδ (t)
goes from right to left. Note that the speed of movement
in the δ -direction is determined only by the properties of
the mgf, because q2 (t) = -t from (10) and q2(t) does not
depend on the population sizes.

Generally, the transient behavior of cell populations
(prior to reaching the final state – if it is ever reached) can
be quite complex. This can be seen in Fig. 4 where the
solutions of (9)–(10) are shown (Fig. 5a), and the path of
the mean parameter values depicted (Fig. 5b). Due to the
structure of the parametric portrait of (2), the mean
parameter values can pass through domains of qualita-
tively different behavior many times, thus resulting in
complex and unpredictable picture. Moreover, even if the
initial and final parameter points belong to the same
domain, during transient process, the mean parameter
values can visit other domains (Fig. 6).

In Fig. 6, the initial and final parameter values belong to
the most favorable domain VIII (Fig. 1), in which com-
plete eradication of the tumor cells occurs. On its way to
extinction, however, the tumor load behaves in an irregu-

lar, complex way. This example shows the possibility that
complex and erratic observational data can be explained
not only by random effects and noise but also by the
innate heterogeneity of the cell and virus populations.

In general, both distributed susceptibility of uninfected
cells and distributed cytotoxicity of the virus do not favor
the tumor treatment and decrease chances for effective
cure by increasing tumor robustness; one of the possible
ways to overcome this problem (within the framework of
the considered models) is suggested in the next section.

Distributed susceptibility and distributed virulence
The inherent heterogeneity of tumor cells implies that
cells differ in their susceptibility to virus infection, and
this situation was modeled in two previous sections. In
general, it can be assumed that the virus population is also
heterogeneous in the sense that it contains viruses with
different ability to infect tumor cells, which we denote vir-
ulence. Inasmuch as model (1) does not explicitly model
the virus dynamics, we can incorporate the effect of virus
heterogeneity into the infected cell population. Assuming
the susceptibility of uninfected cells β1 and the virus viru-
lence β2 to be independent, we can consider the transmis-
sion coefficient β as being proportional to the product of
β1 and β2 (moreover, the proportionality constant can be
incorporated in one of the parameters, thus we have β =
β1β2).

As before, denote B1 the set of possible values of β1 and x(t,

β1) the density of uninfected cells having the given value

of β1 at the moment t; similarly, denote B2 the set of pos-

dq

dt

Y

X Y

dq

dt
q q1 2
1 21 0 0 0 0 10= −

+
= − = = ( ), , ( ) , ( ) .

Solutions of system (5)–(6) with gamma distributed parameter β on [0.1, ∞)Figure 4
Solutions of system (5)–(6) with gamma distributed parameter β on [0.1, ∞). Uninfected cells, X(t), infected cells, Y(t), and the 
total tumor load, X(t) + Y(t), are shown in blue, green, and black, respectively. The initial conditions are X(0) = 0.5, Y(0) = 0.1, 
parameter values γ = 0.5, δ = 0.3. The initial mean of distribution Eβ (0) = 3.5, the initial variances 1.5 (a) and 0.5(b).
Page 9 of 19
(page number not for citation purposes)



Biology Direct 2006, 1:30 http://www.biology-direct.com/content/1/1/30
sible values of β2 and y(t, β2) the density of infected cells

with the given value of β2 at the time moment t. The

number of cells with susceptibility β1 newly infected by

the virus produced from previously infected cells with vir-

ulence β2 is given by β1β2x(t, β1) y (t, β2)/(X(t) + Y(t)). The

total number of cells that leave the uninfected population

(a) Solutions of system (9)–(10) with gamma-distributed parameters β on [2, ∞) and δ on [0.9, ∞)Figure 6
(a) Solutions of system (9)–(10) with gamma-distributed parameters β on [2, ∞) and δ on [0.9, ∞). Uninfected cells, X(t), 
infected cells, Y(t), and the total tumor load, X(t) + Y(t), are shown in blue, green and black, respectively. The initial means of 

distributions are Eβ (0) = 11 and Eδ (0) = 10, initial variances are  (0) = 8 and  (0) = 0.5. The initial conditions X(0) = 0.5, 

Y(0) = 0.1 and γ = 0.7. (b) The parametric curve (Eβ (t), Eδ (t)) in the parameter space

σ β
2 σδ

2

(a) Solutions of system (9)–(10) with gamma distributed parameters β on [1, ∞) and δ on [1, ∞)Figure 5
(a) Solutions of system (9)–(10) with gamma distributed parameters β on [1, ∞) and δ on [1, ∞). Uninfected cells, X(t), infected 
cells, Y(t), and the total tumor load, X(t) + Y(t), are shown in blue, green and black, respectively. The initial means of the distri-

butions are Eβ (0) = 11 and Eδ (0) = 10, initial variances are  (0) = 8 and  (0) = 0.5. The initial conditions are X(0) = 0.5, 

Y(0) = 0.1, and γ = 1. (b) The parametric curve (Eβ (t), Eδ (t)) in the parameter space (compare with Fig. 1b)
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and have susceptibility β1 is β1x(t, β1) /

(X(t) + Y(t)); and the total change in the infected cell pop-

ulation with parameter value β2 due to the infection proc-

ess is given by β2 y(t, β2) /(X(t) + Y(t)).

Combining the above assumptions, we obtain the model

where the notations  (t) = ( )/X(t),

 (t) = ( )/Y(t) were used for the cur-

rent mean values of the corresponding parameters, and
the initial conditions are

x(0, β1) = x0(β1) = X0 p1(0, β1), y(0, β2) = y0(β2) = Y0 p2(0,
β2),    (12)

The model (11)–(12) implies the system of ODEs (Corol-
lary 1, MA)

where the mean parameter value is E(t) =  (t)  (t),

and

are expressed with the mgfs of p1 (0, β1), p2 (0, β2). The
auxiliary variables can be found from the equations

As before, we have to specify the initial pdfs for β1 and β2

Now we have dq2 (t)/dt ≥ 0, and it can be shown that d

(t)/dt ≥ 0 (Corollary 2, MA), that is, formally, the move-

ment in the β2-direction goes from smaller to greater

mean values. In order not to deal with an infinitely large
coefficient, it is reasonable to assume that the initial dis-

tribution of β2 is determined on a closed interval [c1, c2].

In this case, we can choose as the initial distribution the
beta distribution on [c1, c2].

To get insight into the transient behavior of the model
solutions, we have to consider the product of the mean

parameter values. Again, we move along the line in the β-

direction (Fig. 1), starting from  (0)  (0), with the

asymptotic state ηc2. The important difference now is that

the function E(t) does not have to be monotonic (Fig. 7).

In Fig. 7, the results of numerical simulation of system

(13)–(14) are shown together with functions  (t),

 (t) and E(t) =  (t)  (t). We start in domain VIII

(elliptic sector in Fig. 1), and the asymptotic state is in
domain VII where two opposite outcomes are possible,
namely, complete tumor eradication or logistic tumor
growth. The initial conditions and parameter values are
the same for both cases; the two cases differ only in the

initial variance of the β2 distribution. It can be seen from

Fig. 7 that even a small difference in the variance of β2 may

yield dramatically different results: in the first case, the
tumor is cured, whereas, in the second case, virus therapy
fails. This example emphasizes that, to predict the out-
come of oncolytic virus therapy, it is necessary to know
not only the initial sizes of the cell populations but also
the degree of heterogeneity of all the parameters under
consideration.

Discussion and conclusions
We presented a general framework within which to con-
struct and analyze mathematical models of anticancer
treatment, with a special emphasis on tumor heterogene-
ity. Conceptually, this approach is connected to the theo-
retical considerations of Kitano on cancer robustness
[1,2]. At this initial step of analysis, it appears most
important that the mathematical models reproduce
important behaviors of tumors at the qualitative level.
Using the previously developed model of tumor cell-onc-
olytic virus interaction [51], we show that qualitatively
distinct behaviors that are absent in the homogeneous
model appear as natural consequences of tumor and onc-
olytic virus heterogeneity. For example, our model
accounts for cancer recurrence, and the time until reap-
pearance of the tumor crucially depends on the heteroge-
neity of the transmission coefficient (Fig. 2). It should be
emphasized that the effects of the tumor cell heterogene-
ity are not limited to trivial resistance of a subpopulation
of cells to the virus, i.e., recurrence might ensue even
when all cells have a non-zero probability to be infected.
Another phenomenon missing in the homogeneous
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model is constant tumor size during a particular period of
time (Fig. 4). Heterogeneity in parameters can lead to
complex, irregular evolution of the tumor (Fig. 5 and 6).
Thus, interpretation of the results of anticancer therapy
should take into account the possibility that irregular,
quasi-chaotic behavior can be caused not only by random
fluctuations but also by the heterogeneity of the tumor
and the virus (Fig. 6). All the simulations presented here
reveal the effect of the level of heterogeneity on tumor
dynamics. The most obvious case is shown in Fig. 7 where

different initial variances of parameter distribution lead
either to tumor eradication or to logistic tumor growth,
i.e., failure of virus therapy.

Analysis of the models proves that tumor heterogeneity
increases cancer robustness, in agreement with the theo-
retical considerations of Kitano [2]. The results presented
here further show that, to counter this adverse effect of
tumor heterogeneity, it should be possible to employ a
heterogeneous population of an oncolytic virus (see

Solutions of system (13)–(14) with both uninfected cell specific and infected cell specific distributions of transmission coeffi-cient βFigure 7
Solutions of system (13)–(14) with both uninfected cell specific and infected cell specific distributions of transmission coeffi-
cient β. β1 is gamma-distributed on [0.6, ∞) and β2 is beta-distributed on [0,2.5]. Uninfected cells, X(t), infected cells, Y(t), and 

the total tumor load, X(t) + Y(t), are shown in blue, green and black, respectively. The initial means of distributions are  (0) 

= 2.9 and  (0) = 0.6, initial variances are  (0) = 1.9 and  (0) = 0.12 (a)  (0) = 0.11 (b). In panels (c) and (d), the 

mean parameter values  (t),  (t) and E(t) =  (t)  (t) are shown for cases (a) and (b), respectively

Eβ1

Eβ2
σ β1

2 σ β2

2 σ β2

2

Eβ1
Eβ2

Eβ1
Eβ2
Page 12 of 19
(page number not for citation purposes)



Biology Direct 2006, 1:30 http://www.biology-direct.com/content/1/1/30
model (11) and Figure 7). The interaction of the two non-
homogeneous populations, the tumor and the oncolytic
virus, may result in complete elimination of the tumor.

We applied a previously developed, general mathematical
technique [61,62] to investigate non-homogeneous mod-
els of complex tumor cells-virus interaction. The advan-
tages of this modeling approach are as follows. This
approach can account for different types of parametric
heterogeneity of the analyzed populations. To infer the
consequences of heterogeneity, we use well-known math-
ematical tools, such as bifurcation analysis, which identi-
fies points of qualitative change in the system dynamics.
The theory of heterogeneous populations [61,62,65]
allows one to reduce the models to systems of ODEs that,
in many cases, can be explored analytically or, if this is not
possible, can be solved numerically with high precision.

Cancer is an evolving system, and the main evolutionary
forces are selection, mutation and random drift. It should
be noticed that our approach explicitly examines only
selection. The techniques is applied to deterministic sys-
tems, and it is our belief that such system are important
for modeling purposes, although analysis of extinction
phenomena, such as tumor eradication, may require sto-
chastic factors to be considered. The principal obstacle to
the validation of these models against empirical data and
their use for prediction purposes is the necessity to know
the initial distribution of the model parameters. It should
be emphasized that knowledge of mean, variance, and
any finite number of the moments of the distribution is
not sufficient to describe the evolution of the system over
indefinite time [62]. The entire distributions have to be
known. However, there is a way to bypass this problem.
First, knowledge of several first moments is sufficient to
estimate tumor evolution over short time spans. Second,
to model the evolutionary process, we need to know how
the mean parameter values behave with time. Using the
theory of heterogeneous populations, we can infer generic
properties of these functions and identify them from
empirical data [66].

To conclude, the approach developed here allows one to
take stock of such a complex aspect of cancer as tumor het-
erogeneity and apply effective analytical techniques to the
analysis of heterogeneous models of tumor evolution.
Although, in this study, we analyzed the specific case of a
tumor interaction with an oncolytic virus, it is our hope
that these techniques will prove useful in other systems
that include interaction between tumor cells and antican-
cer agents.
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Reviewers' comments
Reviewer's report 1
Leonid Hanin, Department of Mathematics, Idaho State Uni-
versity (nominated by Arcady Mushegian)

Comments for the authors
The paper deals with mathematical modeling of a novel
mode of cancer therapy whereby a tumor is treated with
oncolytic viruses that have a selective affinity to cancer
cells. The model is couched as a system of coupled differ-
ential equations for the sizes of populations of uninfected
an infected cancer cells. The main thrust of the work is on
introducing parametric heterogeneity and analytic/
numerical study of its effects on the dynamics of tumor
cell populations. The problems in questions are of signif-
icant theoretical and practical interest. The authors sug-
gested a few compelling general ideas, demonstrated a
good knowledge of both biomedical and mathematical
aspects of the general field, and provided ample refer-
ences.

However, the paper concerns me on several levels.

1. The model was derived not from a detailed theoretical
or experimental study of the underlying biological phe-
nomena but rather from "general considerations." Also, it
was not fitted to any set of real data on the sizes of tumor
cell populations interacting with oncolytic viruses in vivo
or in vitro. Thus, the model lacks biological specificity, and
its adequacy has not been established. In particular, is
there any strong evidence of the assumed heterogeneity of
tumor cell populations with regard to killing action of
oncolytic viruses, and does this assumption improve the
quality of the model and its predictive power?

Author response: The model was developed to describe qual-
itative behaviors of the system "tumor cells – oncolytic virus",
and we by no means claim that this model should be used for
quantitative predictions. The current empirical data is insuffi-
cient to obtain robust estimates of the model parameters. These
points are addressed in greater detail in our previous paper in
this series (Ref. [51]).

The hypothesis that tumor cell populations are heterogeneous
with regard to the killing action of oncolytic viruses is a general
one, and our model strongly suggests that the assumption of
homogeneity(that is, that all the tumor cells behave in the
same way under oncolytic virus infection) is an oversimplifica-
tion. Indeed, there is no strong evidence that tumors are heter-
ogeneous in terms of their response to oncolytic virus infection
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but this seems highly likely given the well-demonstrated heter-
ogeneity of tumors in other respects, in particular, chemother-
apy. We investigate the implications of heterogeneity for the
outcome of oncolytic virus treatment and hope that our model
stimulates experimental studies in this direction.

2. The way parametric heterogeneity was introduced has a
fundamental flaw. Speaking about the distribution xβ of
the susceptibility parameter β (that is, the rate of virus
transmission from infected to uninfected tumor cells) in
the population of uninfected tumor cells of size X, the
authors assumed that the distribution of β is a function of
time t alone. In reality, this distribution depends on the
population size X:xβ = xβ (·, X) or more generally, xβ = xβ
(·, X, t). For example, even in the simplest case of a uni-
formly distributed β, its density is given by X/|B|1B and
thus depends on X. Omission of the dependence of the
distribution of β on X is tantamount to assuming that
every first order ODE is of the form y = f(t), where t is inde-
pendent variable and y is unknown function, on the
grounds that for each solution the right-hand side of such
an ODE is a function of t. As a result, the model of distrib-
uted susceptibility, which in reality is non-linear, is trivi-
alized to a linear model which, naturally, boils down to
the time course of the expected value of parameter β.
Treatment of the heterogeneity of other parameters (cyto-
toxicity and virulence) suffers from the same defect.

Author response: This is, in our opinion, the main objection
of the reviewer to the subject and conclusions of our work, and
the only one with which we completely disagree.

i) We never stated or assumed "that the distribution of β is
a function of time t alone"; as a matter of fact, we do not
make any explicit assumptions on the distribution dynamics
except for the given initial distribution and the form of the
model equations. Under the proposed mathematical formalism
(Theorem 1 in MA [see Additional file 1]) and equations
used to describe the system, we can unambiguously determine
the evolution of the parameter distribution given the initial dis-
tribution. In particular, we never assumed that the parameter
(β) is gamma-distributed at any time moment with a time-
dependent mean and variance; on the contrary, we suppose only
that β is gamma-distributed at the initial moment and prove
that then it must be gamma-distributed at any time moment
due to the system dynamics, and compute its mean and vari-
ance depending on time (Theorem 1 and Example 1, MA [see
Additional file 1]).

ii) We emphasize that xβ is not a probability density function,
that is, its integral equals the total population size and not 1.
Theorem 1 and its corollary show how one can calculate the
density xβ , the total population size X(t), the probability density
function xβ/X(t) and its moment generation function. To cal-
culate all these quantities we use nonlinear systems ((A.4)–

(A.6) in MA [see Additional file 1]) which evidently depend
on the current population sizes in a complex way. The same is
true for all other parameters and versions of the model.

3. The model formulation contains arbitrary assumptions
that are not justified and at times not even explicitly
stated:

(a) The authors assume logistic growth of the sizes X and
Y of infected and uninfected tumor cell populations,
respectively. Why logistic and not Gompertz, which is
generally believed to be more adequate?

Author response: This issue was considered in our previous
work. In short, it is quite disputable that "Gompertz's growth
is generally believed to be more adequate". We chose the
logistic law because it is the simplest form whose predictions
agree with the empirical data. Moreover, it seems most unlikely
that qualitative results change if we use the Gompertz growth
law instead of the generalized logistic law.

(b) The interaction between the two populations is
assumed to be governed by the term βXY/(X + Y). Why is
the infection rate assumed proportional to the relative size
Y/(X + Y) of the infected population rather than to its
absolute size Y? Is there any theoretical or experimental
rationale for such an assumption?

Author response: This issue was discussed in detail in Ref.
[51].

(c) The assumption that "transmission coefficient β is the
product of the susceptibility of uninfected cells β1 and the
virus replication rate β2" (Section Distributed susceptibility
...) is quite problematic because it contradicts the structure
of the model. Imagine the virus replication rate is dou-
bled. However, the term βXY/(X + Y) would not necessar-
ily double! Therefore, model (11) is also incorrect. The
above assumption would be plausible only if the interac-
tion term in the model were βXY.

Author response: We would like to clarify that the system
(11) is correct if the parameter β2 is attributed to any trait that
describes the ability of the virus to infect tumor cells. To justify
the use of model (11), we slightly changed the text, in particu-
lar, by replacing the term 'virus replication rate' with the more
abstract term 'virus virulence' that reflects the general ability of
a virus to infect tumor cells. In this setting, the model (11) is
correct.

(d) The formula E(t) = Eβ1 (t) Eβ2 (t) on p. 17 means that
the authors tacitly assumed that parameters β1 and β2,
viewed as random variables, are independent. Are they? It
seems likely that "virulence" of the virus may affect both
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virus replication rate β2 and susceptibility of uninfected
cells β1.

Author response: Yes, it was assumed that the two parame-
ters are independent. We do not know anything about the
dependence between these parameters although it is a natural
extension of the model to assume some form of dependence. The
independence assumption was chosen to simplify the math.
More general situations are also amenable to mathematical
analysis given the initial joint distribution (similar to Ref.
[62]).

4. Moment generating function MP(λ) of a probability dis-
tribution P is generally not defined for all real λ. This
brings about artificial difficulties that are not properly
accounted for in the paper. Also, why not to deal with the
characteristic function instead and avoid these difficulties
altogether?

Author response: Importantly, the current parameter distri-
bution is determined through the mgf of the initial distribution,
and not through the characteristic function. Indeed, a mgf can-
not be defined for all real λ, but this does not amount to "arti-
ficial difficulties". We would like to emphasize that, in some
cases, the non-existence of the mgf reflects intrinsic and impor-
tant problems. In brief, in the MA, it is shown that heterogene-
ous model (A.2) is equivalent to the Cauchy problem (A.4)–
(A.5) if the latter has a unique global solution in [0, T). Obvi-
ously, this solution does not exist if the corresponding mgf M(λ)
does not exist for some λ = q(t), and, consequently, solution of
the heterogeneous model does not exist at this t (e.g., there can
be a blow-up; for a simple example, see ref. [2]in the MA). This
is now mentioned in the text (section on Distributed suscep-
tibility).

5. The authors should draw a careful distinction between
mathematical results (in which case they should be
proved) and the results of their simulation studies.

Author response: All new mathematical results that are used
in the text are now proved in the MA.

6. Bifurcation analysis and phase portraits of the homoge-
neous model are too sketchy for their validity to be evalu-
ated. The authors should describe the types I-VIII of
system behavior in more detail. Are all of them observed
in reality? Also, what happens in the case γ = 1?

Author response: Detailed bifurcation analysis of the homo-
geneous model is presented in our recent publication (Ref.
[51]), so we did not perceive it necessary to reiterate the
descriptions here.

7. How were parameters for the numerical simulations
selected? Are they representative of the outcomes?

Author response: The parameters for the numerical simula-
tions were selected such as to illustrate new dynamical regimes
of heterogeneous models which are unobservable in homogene-
ous settings. The parameters used are representative in the sense
that a set of close parameter values yields qualitatively similar
results.

8. The content of the appendix provides some mathemat-
ical background for the main text but does not seem to
support it in more specific ways. In particular, asymptotic
analysis that was discussed in the main text was not car-
ried out in the appendix.

Author response: The corresponding changes were made in
the main text (section on Distributed susceptibility) and in the
Mathematical Appendix)

Reviewer's report 2
Natalia Komarova, Department of Mathematics, University of
California-Irvine (nominated by Orly Alter)

The paper by Karev et al "Mathematical modeling of
tumor therapy with oncolytic viruses: Effects of parametric
heterogeneity on cell dynamics" creates a mathematical
framework for studying dynamical systems with distrib-
uted parameters. This is used to model treatment regimes
of cancer with oncolytic viruses. There, tumor heterogene-
ity is shown to play an important role. It is demonstrated
that, depending on the distribution width of the parame-
ters, very complex behaviors can be observed, including
tumor dormancy, tumor recurrence and a reversal of treat-
ment success.

I believe that developing a systematic modeling frame-
work for systems with continuously distributed parame-
ters is very important. I therefore recommend the paper
for publication. However, I would like the authors to clar-
ify the following points.

(1) The authors emphasized the importance of the vari-
ance of the initial distribution of the heterogeneous
parameter. I believe that in this model, there is a charac-
teristic of the initial distribution which is even more
important than that. It is the support of the initial distri-
bution of the parameter. Simply speaking, since there are
no mutations in the model, knowing the types present in
the system initially reveals with certainty what will hap-
pen in the end.

In fact, the behavior of the system with a distributed
parameter can be predicted qualitatively from the follow-
ing two pieces of information: (i) the direction of selec-
tion and (ii) the support of the initial distribution
function. For instance, if the transmission coefficient,
beta, exhibits heterogeneity, then we know that (i) cells
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with a lower beta values will be selected for and (ii) the
lowest beta from the initial distribution is given by η.
Therefore, we know that eventually the cells with β = η
will outcompete the rest, and the dynamics of the system
can thus be predicted.

Author response: We agree that the support of initial distri-
bution is an equally important characteristic of the system.
While the parameters of the initial distribution together with
system dynamics determine the speed with which the final state
is reached, the support determines, in the models considered in
the text, the final outcome. We added some text to clarify this
point.

In general, the assertion that the behavior of the system with a
distributed parameter can be predicted given that the direction
of selection and the support are known is not valid (although it
is true for our particular models). The simplifying fact in our
presentation was that the mean parameter values are monotone
functions (i.e., we can unambiguously identify the direction of
selection). In general, these functions depend on the system
dynamics and can be arbitrary (e.g., it is possible to construct a
system where they are periodic (Ref. [65])).

(2) Intuitively speaking, the extreme values of the distrib-
uted parameter (e.g. η in the gamma-distribution used by
the authors) must be responsible for the final outcome of
the dynamics, and the width of the distribution should
correlate with the speed with which the system attains its
final homogeneous state. Is this true? Is this possible to
demonstrate?

Author response: The final outcome in our models depends,
as correctly stated in Komarova's remark (1), on the direction
of selection and the extreme values of the distributed parame-
ters. E.g., if we have a gamma-distribution on [η, ∞), then the
value of η determines the final outcome if individuals with
smaller parameter values are more fit, but is not essential for
the asymptotic system dynamics in the opposite case.

We do not have an analytical solution to the question on corre-
lation between the speed of movement in the parameter space
and the width of the distribution. It is generally true, however,
that the speed with which the system attains its final state
depends on the width of the distribution and on the current
parameter values, and the sizes of the cell populations.

(3) The elegant model presented by the authors deals with
continuously distributed parameters. In reality, many
parameters can only attain a discrete (and small) set of
values. It would be very nice to see (and easy to show)
how the mathematical analysis should be modified to
deal with discrete distributions. Some of the conse-
quences of the analysis may look more intuitive in this
case.

Author response: We explicitly indicate in the revised text
that the mathematical framework can equally be applied to con-
tinuous or discrete distributions. The mathematical analysis
does not have be modified (discrete distributions were used,
e.g., in (Karev, 2003, Ecol. Model. 160, 23–37). For example,
if we assume that the initial distribution of the parameter β that
describes susceptibility of uninfected tumor cells is Poissonian
with initial mean β0 then, using mgf for the Poisson distribu-
tion, we obtain Eβ (t) = β0 exp(q(t)). The latter expression can
be used in system (5)–(6).

(4) I found the mathematical derivation presented in the
appendix a little hard to read. It would help if the authors
showed that the distribution x(t, β) (normalized) is equal
to the distribution exp(β q) p (0, β) (normalized) if the
variables x and q satisfy the given equations.

Author response: The proof of Theorem 1 contained some
typos which might have led to confusion; this was corrected [see
Additional file 1].

Reviewer's report 3
David Krakauer, Santa Fe Institute

In this paper Karev et al extend their earlier work on the
dynamical properties of an implicit oncolytic dynamic
(virus is not treated and assumed through a separation of
time scales to be stationary) to include continuous varia-
tion in the viral traits transmission coefficients and cyto-
toxicity. The model comprises a system of ODEs tracking
mean densities of uninfected and infected cells including
time varying mean transmissibility and cytotoxicity.

In this more complex model with heterogeneity, the range
of dynamical behaviors is expanded, manifesting patterns
of tumor recurrence, and quasi-periodic orbits in cell den-
sities. The paper raises interesting questions about the
possibility of systematic, positive intervention into such a
complex system.

While the distributional approach of this paper is timely
and expands the range of model behaviors, it remains a
continuous, deterministic treatment and the stochastic
implication of rare events stemming from the tails of dis-
tributions can not be understood. And I would hypothe-
size that it is these improbable events that are more
typically associated with recurrence expanding from small
populations of concealed cells.

Author response: Indeed, stochastic implications of rare ran-
dom events cannot be understood within the framework of this
paper because the models are deterministic. We use a probabi-
listic distribution to describe the parametric heterogeneity of
tumor cells. The tails of distributions considered in the paper
show only that there are subpopulations of cells with relatively
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high or low parameter values, and the proportion of these sub-
populations is small. We agree that "improbable events" impli-
cated by Krakauer are important in carcinogenesis, and in
cancer recurrence in particular. However, we would like to
stress that our model shows that not only such events can lead
to, e.g., tumor recurrence, but also existence of small popula-
tions of cells whose probability to be infected by an oncolytic
virus is relatively small but still essentially non-zero.

A general problem I have with the paper, that will proba-
bly diminish its impact, is that no clearly important
insights are generated by the model, but rather a range of
complex behaviors which probably need further analysis.
Since this paper offers qualitative results, I view this as a
failing, as the purpose of such models is largely to sharpen
intuition. One problem throughout is identifying clearly
the source of heterogeneity – is this of viral or cellular ori-
gin? In the model this remains ambiguous.

Author response: Obviously, most biological systems are het-
erogeneous including the population of tumor cells. The whole
point of this paper is whether a heterogeneous model allows to
describe qualitatively new phenomena in comparison to the cor-
responding homogeneous model. The models described here
possess, e.g., regimes of i) tumor recurrence, ii) transiently con-
stant tumor size, iii) quasi-chaotic behavior. Thus, it seems that
this work, actually, does sharpen intuition and even yields
results that might not be intuitively obvious. Furthermore, we
would like to emphasize that we propose a new modeling
approach to deal with parametric heterogeneity, which is com-
putationally and, in some cases, analytically feasible, and
which can hopefully be applied to other existing models of
ODEs for cancer progression and treatment.

The source of heterogeneity in our models can be of viral or cel-
lar origin. When describing each specific model, we tried to
explain possible sources of heterogeneity. For instance, when we
deal with distributed susceptibility, the source is cellular. Viral
heterogeneity is included in the models through the infected cell
population because we do not treat the virus population explic-
itly. We agree that explicit virus dynamics would improve and
clarify the models, but it also would complicate considerably the
full parametric analysis of the homogeneous model.

I wonder if the authors could not shorten the paper and
really focus on its most important insights. I think that
these would include: (1) Increased resilience of tumors
stemming from heterogeneity, (2) The increased success
of oncolytic treatment with heterogeneous virus (if this is
a real result of the model), (3) the impact of variance of
heterogeneity on dynamics, (4) the impact of the distribu-
tion, (5) the clearly stated implications for therapy.

Author response: We believe that all these issues are
addressed in the paper; we do not see how the article could be
shortened significantly without losing information.

I also have some specific comments which overlap with
those I made in a review of the author's previous paper in
this series.

1. I feel that not explicitly treating the virus misses impor-
tant problems and would make the interpretation of
model parameters much clearer.

Author response: As indicated above, we agree but this would
make the model substantially less tractable.

2. I am worried about the requirement that complete
information about the distributions needs to be known in
order to track the means in the ODEs. I am guessing that
not only the shape but the form of the distributions could
change over the course of infection.

Author response: Formally, to obtain a solution of the system
at any time moment, including t → ∞, we have to know the
exact form of initial distributions. It should be noted, however,
that, to predict the behavior of the system on relatively short
time spans, several moments of the distribution might be
enough.

The question on the form of distributions can be treated math-
ematically (for a closely related model, see Ref. [62]. The fact
is that a number of important distributions maintain their form
over time. For example, if the initial distribution is gamma-dis-
tribution, it can be rigorously proved that it will always remain
a gamma-distribution with parameters changing with time.
The same statement is valid for normal distribution and others.
However, there are distributions that change their form. For
example, a uniform distribution becomes exponential.

3. The model is strictly speaking ecological as all variants
are assumed to be present at t0. My understanding is that
cancer progresses through mutational events and these are
not treated in this model.

Author response: We agree with this remark. Our model does
not consider mutations. In our model, all variants are present
at the initial time moment, perhaps, with extremely low densi-
ties.

4. Typically heterogeneity is spatial across a tissue.

Author response: The question on relation of spatial and par-
ametric heterogeneity is important and interesting. However, in
this work, we do not consider the spatial structure.
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5. I still feel that a very important aspect of oncolytic ther-
apy is the problem of target-degeneracy leading to infec-
tion of non-cancer cells. As these are not treated in this
paper I remain suspicious of the efficacy of the complete
clearance equilibrium. I think it would be interesting to
explicitly include cell heterogeneity in order to treat both
cell populations – healthy and cancerous.

Author response: This issue was, actually, addressed in our
response to Krakauer's comments on our previous paper (Ref.
[51]). There are, indeed, many ways to expand these models.
We stuck to a minimal version in order to keep the model
within analytic solvability.

Additional material
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