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Abstract
Background: Fitness landscapes, the dependences of fitness on the genotype, are of critical
importance for the evolution of living beings. Unfortunately, fitness landscapes that are relevant to
the evolution of complex biological functions are very poorly known. As a result, the existing
theory of evolution is mostly based on postulated fitness landscapes, which diminishes its
usefulness. Attempts to deduce fitness landscapes from models of actual biological processes led,
so far, to only limited success.

Results: We present a model system for studying the evolution of biological function, which makes
it possible to attribute fitness to genotypes in a natural way. The system mimics a very simple cell
and takes into account the basic properties of gene regulation and enzyme kinetics. A virtual cell
contains only two small molecules, an organic nutrient A and an energy carrier X, and proteins of
five types – two transcription factors, two enzymes, and a membrane transporter. The metabolism
of the cell consists of importing A from the environment and utilizing it in order to produce X and
an unspecified end product. The genome may carry an arbitrary number of genes, each one
encoding a protein of one of the five types. Both major mutations that affect whole genes and minor
mutations that affect individual characteristics of genes are possible. Fitness is determined by the
ability of the cell to maintain homeostasis when its environment changes. The system has been
implemented as a computer program, and several numerical experiments have been performed on
it. Evolution of the virtual cells usually involves a rapid initial increase of fitness, which eventually
slows down, until a fitness plateau is reached. The origin of a wide variety of genetic networks is
routinely observed in independent experiments performed under the same conditions. These
networks can have different, including very high, levels of complexity and often include large
numbers of non-essential genes.

Conclusion: The described system displays a rich repertoire of biologically sensible behaviors and,
thus, can be useful for investigating a number of unresolved issues in evolutionary biology, including
evolution of complexity, modularity and redundancy, as well as for studying the general properties
of genotype-to-fitness maps.
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Background
Among the fields of biology, evolutionary biology enjoys
one of the highest levels of theoretical sophistication.
However, theoretical treatments of evolution are mostly
confined to the level of populations, where organisms are
represented as black boxes and, thus, the genotype-to-fit-
ness maps (fitness landscapes) must be simply postulated,
because they cannot be inferred. Population-level theory
has been very successful in studying the dynamics of gen-
otype frequencies [1] but can never address the key issues
concerned with evolution of functioning phenotypes,
such as optimality, complexity, modularity, robustness,
and evolve-ability. Unfortunately, organism-level theory
of evolution, which does not ignore the internal workings
of organisms and derives the fitness of a genotype from an
explicit model of functioning of the corresponding phe-
notype, is still in its infancy.

Most of organism-level theoretical analyses of evolution
have been performed on "organisms" which hardly repre-
sent real life as it is known to laymen or, for that matter,
to biologists. Instead of models of cells or of multicellular
organisms, these analyses deal with mathematical algo-
rithms. Computer scientists, impressed by the beauty and
apparent universality of Darwin's theory, proposed a con-
cept of genetic algorithm, a software environment in
which strings of information ("chromosomes") undergo
repetitive cycles of fitness determination, selection, and
mutation/recombination [2,3]. Gradually, the strings
evolve and become increasingly fit to the goal set by the
experimenter. Genetic algorithms proved to be efficient in
diverse optimization tasks in engineering [4,5] and soft-
ware design [6].

This methodology, together with some other achieve-
ments such as theory of automata, led to creation of what
became known as "artificial life" (see ref. 7 for review).
Virtual organisms which constitute artificial life ("Life",
"Polyworld", "Tierra", "Avida", etc.) consist of pieces of
program code that either compete for computer memory
or try to outperform each other in logical operations or
mathematical calculations. Thus, definitions of fitness in
artificial life experiments are usually biologically mean-
ingless. Such experiments firmly demonstrated the possi-
bility of creating evolving entities in the computer, but it
is probably fair to say that their impact on biology has so
far been rather limited. Even the potential importance of
artificial life for mainstream evolutionary biology [8-11]
is not obvious, due to profound differences between arti-
ficial and real life.

In contrast, there are only a handful of organism-level
models of evolution which are inspired by real biochemi-
cal and physiological processes. In particular, a system of
mutually regulating virtual DNA-binding proteins was
shown to evolve certain patterns in its dynamic, for exam-
ple to form a bi-stable switch resembling the cI-cro switch
that controls lysogenic state of bacteriophage λ [12]. In
[13] the authors demonstrated the possibility to evolve an
enzymatic cascade capable of performing a mathematical
operation, such as producing a reaction product in the
amount equal to the cubic root of the amount of the reac-
tion substrate.

The time is clearly ripe for more work of this kind. Math-
ematical and computational models of real biological
phenomena, such as interactions of proteins in regulatory
networks (see, for example, ref. 14) or fluxes of organic
substances in well-characterized metabolic pathways
(reviewed in ref. 15), are becoming more and more suc-
cessful. Models of biochemical networks in microorgan-
isms became trustable enough to make computational
predictions about the paths of evolutionary adaptation of
these networks to various sources of energy, carbon, nitro-
gen, etc. [16]. However, these predictions are based not on
explicit modeling of evolution, but on constraints that the
structure of the network and the nature of its components
impose on possible evolutionary paths. This approach
depends on a reasonable assumption that evolution
would be able to optimize the biochemistry in any way
that does not violate these constraints. Such modeling
studies are very instructive from a biochemical perspective
and will likely have a strong impact on biotechnology, but
they tell us little about evolution of life per se.

Here we propose a system for studying evolution of virtual
unicellular organisms. This system is based on a rather
simple model of a cell, which, nevertheless, includes
intracellular processes at all levels. Numerous evolution-
ary experiments with this system revealed a rich variety of
behaviors. Some of the observations we made can shed
light on the evolution of complexity and on the origin of
non-essential genes. Further investigations of this, and
similar, systems can help to elucidate a wide variety of
issues concerned with the evolution of life.

Results
A system for modelling evolution of a very simple cell
Our general approach is to consider unicellular virtual
organisms with a simple structure, which resembles the
structure of only a small subsystem of a real cell. Never-
theless, processes along the whole path from genotype to
phenotype to fitness are present in these model cells. We
explicitly model inheritance with mutation, genes and
regulation of their expression, gene-to-gene interactions
mediated by DNA-protein interactions, enzymatic cataly-
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sis, cellular homeostasis, membrane transport, and pro-
tein degradation. Let us describe how all these processes
are represented in our system.

Informal overview
Major features of the virtual unicellular organisms that we
designed (from now on we will omit the word "virtual")
are shown in Fig. 1. The properties of an organism are
determined by its genome, which consists of a set of
genes. Each gene is a collection of characteristics: the type
of the encoded protein (a pump, an enzyme of either of
the two types, or a transcription factor of either of the two
types), the promoter strength, the operator type, and sev-
eral numerical constants which describe the encoded pro-
tein. In particular, if the protein is a transcription factor
(TF), it has a type, which determines the type(s) of opera-
tors it can bind.

The rate of synthesis of a protein encoded by the gene is
determined by the strength of its promoter and the effects
of TFs (circles in Fig. 1) binding its operator. A TF is mod-
ulated by the binding of a ligand, which is either molecule
A (light blue circle) or molecule X (dark blue circle), and

the strength of this binding is determined by the corre-
sponding constant of dissociation. The effect of a TF on
transcription is described by two constants, EffApo (the
effect of a ligand-free apo-form of the TF) and EffBound
(the effect of a TF bound to the ligand). The EffApo con-
stant determines whether the ligand-free TF is a repressor
(EffApo < 1) or an activator (EffApo > 1) of transcription.
The ligand can either stimulate (EffBound > EffApo) or
inhibit (EffBound < EffApo) transcription of the regulated
gene. Posttranscriptional regulation of gene expression is
not modeled.

An organism has a very simple metabolism: molecule A,
which serves as a source of both energy and carbon, is
imported and an energy carrier molecule X is synthesised.
For example, A can represent glucose and X can represent
ATP in real organisms. A can diffuse in and out of an
organism at a low rate, and can also be pumped into the
organism by protein pumps (yellow square) that use
energy stored in X. Metabolism involves enzymes of two
types. Enzymes of the first type (red ellipse) uses energy
stored in one molecule of A to synthesize several mole-
cules of X. Enzymes of the second type (magenta ellipse)

Scheme of processes in the model organismFigure 1
Scheme of processes in the model organism. A gene, proteins of five different types and all the reactions that involve 
molecules A and X are shown (see text). Insets show differential equations which describe fluxes of A and X and of the pro-
teins.
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consume both A and X to synthesize other, unspecified,
organic molecules. Pumps and enzymes follow Michaelis-
Menten kinetics and the fluxes of A and X through each of
these proteins are therefore described by differential equa-
tions which contain the protein-specific constants, KMA,
KMX and Vmax, and the concentration of the protein.

Organisms form populations of moderate size and are
subject to mutation and selection. Initially, we attempted
to select our organisms for the most efficient production
of biomass, by maximizing the product of concentrations
of A and X. This, however, yielded rather trivial results: the
pumps and enzymes quickly evolved the lowest possible
values of KM and the highest possible values of Vmax. More
interesting results were obtained when fitness of an organ-
ism was determined by its ability to maintain homeosta-
sis. Let us now describe the system more formally.

Level of genotypes
1) Genome
An organism can possess an arbitrary number of genes.
The order of these genes on one or many chromosomes,
either linear or circular, can be specified.

2) Mutation
Both point mutations and major mutations are possible.
A point mutation changes one of the parameters which
describe an individual gene. A major mutation affects
complete gene(s) and can be a duplication, deletion,
insertion, or reversible inactivation of one gene or a block
of successive genes on a chromosome.

3) Reproduction
Reproduction can be either asexual or sexual, in which
case one of several possible kinds of genetic exchange
between organisms take place.

4) An individual gene
A gene consists of the following components: one pro-
moter Pr, one operator Op (a binding site with which
transcription factors can interact), and a protein-coding
region. Orientation of a gene on the chromosome is not
specified and, generally, the nucleotide sequences are not
considered explicitly. Instead, a gene directly encodes the
following parameters:

(a) A promoter is described by one parameter, its strength
Pst, which is a non-negative real number. Pst determines
the rate of transcription of the gene, which can also be
affected by operator-mediated regulation.

(b) An operator is described by one parameter, its type Ty,
which is an integer number determining which transcrip-
tion factors can bind the operator. There is no "strength"
parameter corresponding to an operator.

(c) A protein-coding region is described by the following
parameters:

(i) The type of the encoded protein. Currently, there are
five possible protein types.

(ii) The properties of the encoded protein, described by
the protein type-specific set of parameters (see below).

Level of phenotypes
5) Small molecules
There are two small molecules, A ("glucose") and X
("ATP").

6) Protein types and cellular processes
There are five biological activities in our organisms, each
one mediated by proteins of the corresponding type. The
first two types of proteins are TFs, which regulate gene
expression, and the remaining three types of proteins con-
stitute the metabolism (Fig. 1). A protein of each type is
described by the corresponding set of parameters, deter-
mined by the gene which encodes the protein. A genome
can contain an arbitrary number of genes, each with its
own set of parameters, all encoding proteins of one partic-
ular type. These types are characterized as follows:

(a) A-responsive TF (TF-A) can regulate expression of
genes, has molecule A as its ligand, and is characterized by
five parameters:

(i) Type, an integer number. TF-A interacts only with oper-
ators having the matching (exactly or approximately)
type(s).

(ii) Kd, constant of dissociation, inverse concentration at
which 50% of the ligand is bound, which describes how
TF-A binds its ligand A,

(iii) Kb, binding constant, inverse concentration of the TF
at which 50% the available binding sites are bound,
which describes how TF-A binds operators of the match-
ing type(s). Binding to operators is not affected by the lig-
and.

(iv) An effect constant EffApo-A, which describes the
effect of a ligand-free TF-A on transcription.

(v) Another effect constant EffBound-A, which describes
the effect of a ligand-bound TF-A on transcription.

(b) X-responsive TF (TF-X) has analogous properties,
except that X, and not A, is the ligand.

(c) A-pump imports molecule A into the cell, using energy
stored in X. An A-pump is characterized by two Michaelis
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constants, Kp-A and Kp-X, for outside A and for inside X,
respectively, as well as by Vmax-P, the maximal rate of A
import.

(d) A → X (catabolism) enzyme which synthesizes X from
A, is characterized by Michaelis constant Kc-A for A and by
the maximal rate Vmax-c, but has no Michaelis constant for
X, because the reaction is assumed to be irreversible.

(e) A,X → product (anabolism) enzyme which synthesizes
an unspecified product from A and X, is characterized by
Michaelis constants for A and X, Ka-A, and Ka-X, and by the
maximal rate Vmax-a. The reaction is assumed to be irre-
versible.

We also consider two processes which are not driven by
proteins:

f) Passive import and export of A through the cell mem-
brane is described by the rate Perm.

g) Protein degradation is described by rate Degr, the same
for proteins of all types.

7) Dynamics of the cell
At a particular moment of time, the cell is described by the
following dynamical variables: concentrations of the two
small molecules, [A] and [X], and concentrations of the
product of each of its genes. Thus, we do not model any
internal structure of the cell. The following processes are
considered.

a) Binding of a TF to a ligand. We assume that this process
is much faster than changes in concentrations of proteins
and of small molecules. Thus, we use the framework of
fast-slow dynamics [17] and do not consider this process
explicitly. Instead, we assume that W, the fraction of the
TF molecules bound to its ligand, is simply the function of
the current concentration of the ligand:

W = [ligand] × Kd/(1+ [ligand] × Kd)  (1)

b) Binding of a TF to an operator. Again, we assume that
this process is very fast, so that V, the fraction of time dur-
ing which a particular operator is bound by a particular
TF, in either apo or ligand-bound form, is simply the func-
tion of the current concentration of all the TFs which can
bind this operator.

V = [TF in a particular form] × Kb/binding polynomial
(2)

where binding polynomial is 1 plus the sum of [TF in a
particular form] × Kb terms for all TFs which can bind the

operator. We neglect small declines in concentrations of
TFs due to their binding to operators.

c) Changes in protein concentrations. The dynamics of
[Prot], the concentration of the protein encoded by a par-
ticular gene, are described by the corresponding differen-
tial equation in Fig. 1, in which the first term on the right-
hand side describes protein synthesis and the second term
describes protein degradation. The multiplier Reg
describes the impact of operator-mediated regulation of
transcription and is given by

Reg = Σ Vi × Ei  (3)

where Vi is the fraction of time the operator is in a partic-
ular state (i. e., unbound or bound by a particular TF, in
either apo or ligand-bound form; Σ Vi = 1), and Ei is the
effect of the corresponding state on the rate of transcrip-
tion (i. e., 1 or either EffApo or EffBound, for the corre-
sponding TFs).

d) Active intake of molecule A. The dynamics of [A] and
[X] due to import of molecule A by A-pump protein
encoded by one particular type of a gene are described by
the corresponding differential equations in Fig. 1. The
total active intake of A (and the corresponding expendi-
ture of X,) is the sum of contributions of all the pump pro-
teins available in the cell, which are generally
characterized by different values of Vmax-p, Kp-A, and Kp-X.

e) Passive diffusion of A through the membrane. The
dynamics of [A] due to this process are described by the
corresponding differential equation in Fig. 1.

f) Synthesis of molecule X. The dynamics of [X] and [A]
due to action of the catabolism enzyme encoded by one
particular gene are described by the corresponding differ-
ential equations in Fig. 1. The total rate of synthesis of X,
and of the corresponding expenditure of A, is the sum of
contributions of all the catabolism enzyme proteins avail-
able in the cell.

g) Consumption of molecules A and X for anabolism. The
dynamics of [A] and [X] due to action of the anabolism
enzyme encoded by one particular gene are described by
the corresponding differential equations in Fig. 1. The
total rate of A and X consumptions is the sum of contribu-
tions of all the anabolism enzyme proteins available in
the cell.

h) Changes of concentrations of molecules A and X. The
dynamics of [A] and [X] are described by differential equa-
tions with right-hand sides which are sums of all the rele-
vant contributions:
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d [A]/dt = Active intake + Passive transport + Consump-
tion for catabolism + Consumption for anabolism  (4)

d [X]/dt = Consumption for active import + Synthesis in
catabolism + Consumption for anabolism  (5)

Environment and fitness
8) Environment
The environment of a cell is described by a single param-
eter [Aout], the outside concentration of molecule A.

9) Fitness
We assume that the fitness of an organism depends on its
ability to maintain homeostasis while the environment
changes. Specifically, organisms are supposed to keep [A]
and [X] close to 1 mM, regardless of [Aout]. For an organ-
ism, we calculate equilibrium concentrations [Aeq] and
[Xeq], reached at three values of [Aout], 0.1 mM, 1.0 mM,
and 10 mM and assay deviations of the corresponding val-
ues of [Aeq] and [Xeq] from the desired 1 mM value. This is
done as follows: if [A] ([X]) exceeds 1, then ∆[A] = [A]
(∆[X] = [X]), otherwise, ∆[A] = 1/[A] (∆[X] = 1/[X]). For a
given [Aout], we define f[Aout] = 1/(∆[A] × ∆[X]), where ∆[A]
and ∆[X] correspond to [Aeq] and [Xeq] reached under this
[Aout]. Then, the fitness potential [18] of the organism is
defined as Fp = f0.1 × f1.0 × f10. Obviously, Fp can vary
between 0, for the least fit organisms, and 1, for the fittest
organisms. Finally, F, the fitness of the organism, its
expected number of offspring, can be any (non-decreas-
ing) function of its fitness potential.

Numerical experiments
Typically, there are 1000 individuals in a population, and
a run lasts for 5000 discrete generations. A generation
consists of a selection (differential reproduction) step fol-
lowed by a mutation step. Before the first generation, an
initial population is created by assigning a random geno-
type to each individual. In the course of a selection step,
organisms reproduce, and an organism produces a ran-
dom number of offspring, with the expectation deter-
mined by its fitness potential. In the course of mutation,
all the parameters determined by the gene, except protein
type, are subject to point mutation. Major mutations can
also occur.

Some results of experiments on the evolution of the system
Computational experiments with the system just
described revealed a number of behaviors, some conform-
ing to simple biological intuitions and some others,
which may appear counterintuitive. The full potential of
the system obviously cannot be investigated within the
framework of this initial report. Thus, here we describe
only a sample of the observed patterns, which appear to
be general and may have interesting biological implica-
tions.

General patterns
Although the system has been investigated under a wide
variety of parameters and often demonstrated remarkably
different dynamics, several patterns have been observed in
all, or almost all, computer experiments. Below, we
describe four such patterns, which at this point appear to
be of primary importance.

1) Dynamics of fitness potential
Fitness potentials of randomly created organisms, used to
initialize the population, are rather low (~10-3). Without
exceptions, evolution leads to a dramatic increase of the
mean fitness potential within the population, as well as of
fitness potentials of the most and the least fit members of
the population (Fig. 2A,B). As a rule, the growth of fitness
potential involves a relatively short initial rapid phase
(Fig. 2A), followed by a slow-down and by eventual pla-
teau, usually reached after several thousands of genera-
tions (Fig. 2B).

Organisms that represent the population at the plateau
phase are, in fact, rather well adapted. This is evident both
from their high fitness potentials (0.25–0.60, in different
runs; thus, the fitness potential in the course of a run
increases by the factor of ~1000), and also from explicit
consideration of their metabolism. Figure 2C shows that
equilibrium values of [A] and [X] indeed remain rather
close to 1 mM when [Aout] varies between 0.1 and 10 mM,
i. e. within the range which is relevant to fitness potential.
Thus, the goal of selection – homeostasis of [A] and [X] –
has been successfully achieved.

2) Repeatability of the outcomes of evolution
When different runs are initialized with different seeds of
the random number generator, they always follow differ-
ent courses and the structures of evolved organisms may
differ dramatically. We never observed exactly the same
phenotype twice. Still, some patterns appear repeatedly
and essentially every organism possesses them after long
enough evolution. In particular, gene regulation through
negative feedbacks is universally present in high-fitness
organisms (Fig. 3).

3) Impact of the population size
When different runs were performed for populations of
different sizes with all other parameters being the same,
fitness potential in large populations usually grew faster
and eventually reached a higher plateau. However, the
impact of the population size was substantial only when
it was below ~1000; after that the effect reaches satura-
tion, i. e. populations of 1000 or more organisms all
evolve in approximately the same way (Fig. 4). Thus, we
usually studied populations of 1000 organisms.
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4) General properties of the evolved organisms
Organisms which emerge in our system after the mean fit-
ness potential of the population reaches a plateau can
have very different levels of complexity, despite their
rather similar fitness potentials. Organisms with small
genomes are intelligible throughout. Fig. 3 presents the
organization of one of such simple organisms, which car-
ries 9 genes. All the regulatory interactions in this organ-
ism are highly logical. The three A-dependent TFs are at
the center form a clever regulatory switch that ensures that
expression of the A-pump is enhanced at low [A] and
inhibited at high [A]. Expression of the catabolism
enzyme is positively controlled by the substrate (A) and
negatively controlled by the product (X), as it should.
Finally, expression of the two anabolism enzymes is nor-
mally inhibited but is enhanced by X when [X] becomes
too high.

However, not all evolved organisms are so simple and log-
ical, and most of them contain many more genes. Fig. 5
shows the structure of one of such complex organism. It
contains 51 genes (the maximum number we observed is
153 genes) and has a rather high fitness potential of 0.63,
although a bird's eye view on the entire network of its reg-
ulatory interactions reveals an astounding and unintelligi-
ble complexity that is similar in many ways to the
organization of many real biological regulatory networks.
Still, a closer analysis shows that each particular regula-

tory interaction is logical: regulatory proteins create a vari-
ety of feedback loops that should stabilize [A] and [X].

The emergence of highly complex organisms would be
understandable if they had higher fitness potentials than
simple organisms. This, however, is not always the case.
We performed multiple runs of evolution where a penalty
for the number of genes was imposed. This penalty was n/
N, where n is the number of genes in the organism, and N
is a parameter determining severity of the penalty. The
penalty was subtracted from f0.1, f1.0, and f10. Fig. 6A
shows how the number of genes in evolved organisms is
affected by N: as expected, the higher N is, the larger is the
number of genes in evolved organisms.

This predictable effect was used to obtain evolved organ-
isms with different numbers of genes. Fig. 6B shows that
fitness potentials of these organisms are only mildly
affected by the number of genes: after 5,000 generations,
they all achieve fitness potential values within the 0.25 –
0.65 range. Indeed, selection in favor of increased com-
plexity cannot be strong because a penalty of only ~0.001
for adding a gene is enough to prevent a substantial
growth of complexity (Fig. 6A). Still, some factor encour-
aged the increase of complexity, which occurred even
when deletions were more common than mutations
which increase the number of genes (deletion bias),
although mute genes which do nothing were removed

Typical course and outcomes of evolutionFigure 2
Typical course and outcomes of evolution. Dynamics of fitness potential (A, B) and equilibrium concentrations 
of molecules A and X in one of the evolved organisms (C). A. Dynamics of fitness potential at the beginning of an 
experiment. B. Dynamics of fitness potential of the best organism in the population in the course of a whole experiment. Data 
from five independent populations are shown. C. The dependencies of equilibrium concentrations of molecules A and X on the 
concentration of A outside the cell in one of the organisms produced as the result of evolution.
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from the genome under this bias, as expected. Data pre-
sented in Fig. 6 were obtained with such deletion bias.

Dynamics and possible irreversibility of complexity
As long as all organisms are simple at the beginning, ini-
tially their complexity (the number of genes in the
genome) can only grow or, perhaps, stay roughly con-
stant. Very complex organisms can appear only after a
considerable number of generations. Still, monotonous,
decelerating increase of complexity was not the only pat-
tern we observed. Quite often, complexity rapidly
increased initially, and, after reaching a temporary peak,
slowly declined to a reach a lower plateau.

Fig. 7 shows changes in fitness potential and in the
number of genes in two evolving lineages. The entire evo-
lutionary path of a lineage in these two cases contained

200 – 250 fixations of mutations, which were more fre-
quent at the beginning. This bias likely occurs because
mutations happening in organisms that have already
reached a fitness potential plateau are much more likely to
reduce fitness than increase it. In contrast, there is a higher
chance for a mutation to be beneficial at the beginning,
and beneficial mutations become fixed. This is not to say
that all mutations fixed in the course of evolution are ben-
eficial. Grey curves in Fig. 7 show that beneficial muta-
tions comprise a majority of fixations, but neutral and
even mildly deleterious mutations can also become fixed,
due to low population size.

Red curves in Fig. 7 show how genome complexity
changes in two individual evolving lineages. Both lineages
began their evolution from 10 genes and in both cases the
ancestor organisms in the initial population contained

Regulatory interactions within one of the evolved organismsFigure 3
Regulatory interactions within one of the evolved organisms. Labels representing transcription factors are organized 
in the following way: numbers indicate Kd (constant of ligand dissociation) of the TF; signs to the left of Kd symbolize the value 
of EffApo (effect of a free TF on transcription), with "-" meaning 0.1 – 0.33 (strong inhibition), "- " meaning 0.33 – 0.85 (weak 
inhibition), "= " meaning 0.85 – 1.15 (no effect), "+ " meaning 1.15 – 3.33 (weak activation, and "++" meaning 3.33 – 10 (strong 
activation). Signs to the right of Kd symbolize EffBound (the effect of the TF bound to the ligand). Fitness potential of this organ-
ism is 0.57.

A-dependent transcription factor

X-dependent transcription factor

X-dependent A-pump

A => X 

A, X => product
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genes encoding all five protein types. Very quickly, within
the first 500 generations, the number of genes rose to 35
– 40, reaching a peak, and then remained at the same level
(Fig. 7A) or declined (Fig. 7B).

Analysis of 15 similarly obtained evolutionary paths
revealed that the initial rapid rise in complexity occurred
in 13 cases. In 2 cases, the number of genes in an evolving
lineage remained at the level of 9 – 13 throughout 5000
generations, even though these lineages ultimately
achieved reasonably high fitness potentials of 0.35 – 0.55.
Among 13 lineages whose complexity has risen, the
number of genes reached quite diverse maximum values
within the first 2000 generations, from 24 to 67. The sub-
sequent behavior of lineages also varied: some kept nearly
the same complexities that were attained during their ini-
tial rises, while others became considerably simpler. In
three cases, the number of genes ultimately fell to as few
as 8 – 13.

Origin of non-essential genes
Different genes make very different contributions to fit-
ness potentials of organisms which evolve in our simula-
tions. The contribution of a gene to the fitness potential
can be defined as its relative change when the gene is
deleted. Let us call genes whose deletion reduce fitness
potential by more than 3% essential, and the remaining

genes nonessential. We investigated contributions of
genes to fitness potentials in a number of evolved organ-
isms, with highly consistent results.

In simple organisms (almost) every gene is essential.
However, in complex organisms like the one shown in
Fig. 5 the story is entirely different. Only a small number
of genes, indicated by red squares to the left of them, are
critical: deletion of any of these genes reduces fitness
potential by at least 80%. A few other genes, marked by
pink squares, are significantly less important: their dele-
tion reduces fitness potential by 3 – 15%. The majority of
genes, however, are nearly dispensable: their deletion
reduces fitness by less than 3%, and in most cases by less
than 0.5%. There are even some genes, marked by green
squares, whose deletion increases fitness potential by up
to 0.5%.

Fig. 8 shows the data on a lineage which evolved for
20,000 generations. We consider one gene, which encodes
an X-responsive TF. This TF inhibits expression of two
catabolism enzymes upon binding X, a reasonable func-
tion which stabilizes [X]. However, this TF is nonessential:
after it emerged in generation 2344, fitness potential of
artificially generated deletion mutants comprises 98.7%
of the fitness potential of wild type organisms. Red sym-
bols in Fig. 8 show how the contribution of this gene to

Dynamics of the average fitness potential in populations of different sizeFigure 4
Dynamics of the average fitness potential in populations of different size. Each curve represents average of 10 popu-
lations. The population size is shown to the right of the corresponding curves.
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fitness potential evolved with time. The essentiality of this
gene changed repeatedly. At different times, the gene was
either critical (its deletion reduced fitness potential more
than 10-fold), slightly beneficial, or even detrimental (its
deletion increased fitness potential slightly). Similar fre-
quent switches of essentiality were detected in all the
genes that were studied in detail, including those encod-
ing TFs, enzymes, and A-pump.

Discussion
We pursued an ambitious goal: to use a variant of a
genetic algorithm to evolve a virtual but biologically rele-
vant function, with components that mimic real biologi-
cal entities (promoters, operators, enzymes, membrane
transporters, transcriptional regulators) and follow the
basic laws of biochemistry. Our attempt was crowned
with some success: not only did our virtual organisms
develop the desired function, but the ways in which this
was accomplished were remarkably similar to what appar-
ently happens in nature. Evolved organisms established
appropriate combinations of negative and positive feed-

back loops, which sometimes had rather elegant designs
but more frequently appeared to be excessively complex.
Maybe most strikingly, a large number of nonessential
genes were often present. Whereas the excessive complex-
ity and the presence of nonessential genes in living organ-
isms can be explained by invoking multiple unknown
selective factors, with virtual organisms this explanation is
impossible, since we imposed the selection criteria our-
selves. Our results suggest that many peculiar and some-
times counterintuitive properties of real biological
systems may represent as yet unexplored by-products of
the Darwinian evolution and do not necessarily implicate
unknown biological mechanisms or selective factors. Let
us review our findings systematically.

General patterns
The maximum value of the fitness potential we have ever
observed for a random organism is 0.07, but usually it is
below 10-4. This means that it is essentially impossible to
stochastically generate an organism capable of keeping
concentrations of A and X close to 1.0 mM. In other

Structure of one of complex evolved organismsFigure 5
Structure of one of complex evolved organisms. All proteins are color-coded in the same way as in Fig. 3. Numbers on 
the protein labels indicate gene number in the organism.
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words, we were asking the organisms to evolve a rather
difficult function, and initializing the population with
random organisms leaves ample room for improvement.

Overall dynamics of fitness potential is highly consistent
in different experiments and is what one would expect: an
initially rapid increase is followed by a slow-down, and
eventually a plateau is reached (Fig. 2A,B). In fact, since
the slow-down is slow itself, asymptotic behavior of fit-
ness potential is hard to investigate, and we cannot rule
out its marginal growth even after ~5000 generations.
However, it seems certain that most of the increase of fit-
ness potential occurs in the first several thousands of gen-
erations, a dynamics expected if the population climbs a
smooth fitness peak.

Obviously, the number of fitness potential peaks in the
space of all possible genotypes of our organisms must be
huge, and chance plays a significant role in which trajec-
tory an evolving population will choose. Indeed, inde-
pendent runs performed under the same parameters never
yielded identical outcomes, so that, at the very least, the
number of peaks greatly exceeds the number of experi-
ments performed so far. The existence of multiple solu-
tions for the same complex problem appears to be a
ubiquitous phenomenon (e. g., [19]), and very different
alternative solutions are often of similar quality. For

example, many substantially different neural networks
can recognize a pattern with approximately the same suc-
cess [20]. In our case, different solutions of the problem
of maintaining homeostasis often involve very different
levels of complexity.

Adaptive evolution in our experiments was always facili-
tated when the size of the evolving population increased.
One can expect that a higher population size should
increase the rate of adaptation, since positive selection is
more efficient in large populations. However, it seems
that not only the rate of the growth of fitness, but even the
height of the plateau, to be reached eventually, increased
with the population size (Fig. 4). This second observation,
if correct, may be explained in at least three ways. First, a
large population explores a larger space of initial condi-
tions and, thus, can reach a higher peak. Second, more
efficient selection in a large population can prevent
slightly deleterious mutations from being irreversibly
incorporated into the design of organisms, which could
trap them on relatively lower fitness peaks. Third, more
efficient selection in a large population means that,
among several beneficial mutations, the best one will be
fixed with high probability, making sure that the optimal
design and the highest fitness peak will be reached. Addi-
tional experiments are necessary to figure out which of
these, not mutually exclusive, mechanisms are responsi-

Evolution of the genome sizeFigure 6
Evolution of the genome size. Randomly generated organisms containing ~10 genes evolved as described in the text for 
5,000 generations. A. Dependence of the number of genes in the resulting organisms on the value of genome size penalty N 
(see text). B. Dependence of the fitness potential of evolved organisms, calculated without imposing penalty for the genome 
size, on the number of genes in their genomes.
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ble for higher asymptotic fitness values reached by larger
populations. However, increasing the population size
past several thousands of individuals did not result in fur-
ther increase of the asymptotic fitness.

Dynamics of complexity: initial increase with subsequent 
simplification
There is an ingrained belief among experimental biolo-
gists that living beings are structured in an orderly way
and that the goal of biology is to uncover this order. This
belief does not come from nowhere: many well-studied
systems are indeed highly ordered and efficient, to the
point that they even look like a product of engineering
design. In every area of biology we see multiple examples
of hierarchical modular organization that resembles the
design of man-made machines and mechanisms. In such
systems it is usually easy to assign specific functions to
particular genes, proteins, protein complexes, cells, tis-
sues, and organs.

However, there is another side to this coin. Even though
many biological systems appear to have rational designs,
others do not. For example, the majority of regulatory
pathways contain a multitude of interacting components
(the system of blood clotting, the system of complement,
the system of regulation of cell proliferation in multicellu-
lar organisms, to name just a few). Each particular interac-
tion in such systems makes sense, but it appears that a
much smaller and simpler overall design could have suf-

ficed. This apparently excessive complexity is further con-
founded by the relatively recent realization that close to
80% of genes in the genomes are nonessential, in the
sense that they can be individually knocked-out with only
limited effect on the organism fitness [21-26].

Two explanations of such excessive complexity are usually
invoked. According to the first of them, evolution is a
series of "frozen accidents" and excessive complexity is a
result of a pileup of adaptive mechanisms, with more
recent mechanisms using elements of the older ones [27].
The alternative explanation, preferred by many experi-
mental biologists, if sometimes only subconsciously, is
that we cannot reproduce in the laboratory all the details
of the environment in which an organism lives in nature.
Therefore, the seemingly nonessential genes and the
apparently overly complex organization of many biologi-
cal systems represent an adaptation to the complex com-
bination of largely unknown environmental factors.

This alternative explanation is a substantial departure
from the widely accepted paradigm of biology, according
to which there must be a biological necessity behind every
aspect of any living system. If, as our results appear to
imply, excessive complexity and nonessential genes can
arise due to circumstantial reasons and not in response to
direct evolutionary pressure, this may make biologists sus-
pect similar reasons behind the existence of numerous
control circuits and redundant genes in living organisms.

Dynamics of genome complexity in two lineagesFigure 7
Dynamics of genome complexity in two lineages. Grey symbols and left vertical axes show changes in the fitness poten-
tials of organisms in two evolving lineages. Red symbols and right vertical axes show changes in the number of genes in the 
organisms. The mutation rate was 0.03.
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These considerations prompted us to focus on elucidation
of the origins of excessive complexity and of nonessential
genes.

So, what drives the almost universally occurring increase
in the number of genes during evolution of our virtual
organisms? This increase occurs even when deletion
mutations in our system were more frequent than dupli-
cations, genetic exchange and random gene insertions put
together. It is not clear what evolutionary benefit organ-
isms achieve by becoming more complex since fitness of
evolved organisms does not seem to depend strongly on
the number of genes (Fig. 6B). Our results suggest that in
the argument between "adaptationists" and the adherents
of the theory of "frozen accidents" the latter are much
closer to the truth. Indeed, complex organisms arise in our
model without any overriding need for complexity since
the selective pressure that is applied to evolving organisms
is simple and well-defined. Furthermore, organisms
sometimes achieve good adaptation to this pressure in a
simple way, without accompanying complexity.

Still, the frozen accidents explanation does not seem to
describe fully the dynamics of complexity in our system.
Indeed, according to this explanation the rise of complex-
ity should accompany the rise of fitness, because new ele-
ments are added on top of the old ones in order to
improve the level of adaptation. This, however, does not
seem to be always the case in our model. Whereas in Fig.
7B the rise of complexity is concomitant with the rise of
fitness potential, in Fig. 7A they are correlated very poorly.
The very abrupt complexity burst in this case corresponds
to a relatively modest rise of fitness potential, while sub-
sequent, more pronounced rise of fitness potential hap-
pens when complexity is actually somewhat declining.
Similarly poor correlations were observed in many other
evolutionary paths that we examined, suggesting that the
rise of complexity is a process that does not necessarily
parallel adaptation and seems to abide its own laws.

Thus, our work may suggest that other mechanisms, dif-
ferent from both adaptation to complex environments
and from accumulation of frozen accidents, also play a

Dynamics of essentiality of an X-responsive transcription factor gene in an evolving lineageFigure 8
Dynamics of essentiality of an X-responsive transcription factor gene in an evolving lineage. While fitness poten-
tial (grey line) increases, the impact of knocking-out of the gene (red line) fluctuates. Essentiality of the gene keeps changing 
even when fitness potential reached the plateau.
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role in the emergence of complex systems. Let us consider
four hypotheses on what these mechanisms might be. The
first two of them envision direct gain of fitness as a result
of an increase in genome size. The remaining two hypoth-
eses envision increased evolvability due to an increase in
genome size.

1) Multiple peaks and ridges
The best way to describe this hypothesis is to consider evo-
lutionary process as climbing of peaks on the fitness land-
scape. If we imagine that organisms with small and large
genomes climb the same mountain by hopping from peak
to peak or by following ridges on the fitness landscape,
then at the end all of them will both reach the same high-
est peak and achieve the same level of fitness, as it appears
to be the case (Fig. 6B). However, if small-genome organ-
isms have only a few peaks to hop on and only a few
ridges to follow, while large-genome organisms have an
opportunity to ascend along multiple peaks and ridges,
then in the process of climbing large-genome organisms
will have an advantage, due to a better chance to stumble
upon a peak or a ridge. In other words, we assume that a
fraction of beneficial mutations is higher among muta-
tions that increase the genome size than among muta-
tions that decrease or preserve it. If genome-increasing
mutations create more organisms with improved fitness,
there is a better chance for them to reach higher fitness
values. As a result, evolution will lead to increased com-
plexity.

This hypothesis rests on an assumption that fitness land-
scapes of organisms with larger genomes have a higher
density of peaks and ridges. This assumption can be tested
directly. Suppose that we create a large number of random
organisms of different genome sizes, e. g., with 10 genes
and 20 genes, and evaluate their fitness values, thus
obtaining sets F10 and F20. If the assumption is correct,
then F20 should contain more high points than F10. This
does not necessarily mean that the average of F20 must be
higher than of F10. We expect, however, the distribution of
fitness in F20 to have a significantly longer right-side tail
than in F10. This test is worth being performed.

2) Missing schema element
This hypothesis assumes that at the beginning of evolu-
tion organisms have a number of potential mechanisms
that could help them to achieve homeostasis of metabo-
lites but these mechanisms are not functioning or func-
tioning poorly because the genome is missing a gene
encoding an important component of the mechanism
(e.g., a transcriptional regulator, an enzyme, or a pump
with certain properties). In the language of evolutionary
computation theory, these organisms have potentially
beneficial schemata (see ref. 3, 4, 28) which are missing
one element. The more genes an organism acquires as a

result of mutation, the higher the chances that this miss-
ing element will be present among newly acquired genes
and the homeostasis mechanism will start working. Muta-
tions which do not change or even reduce the number of
genes do not bring new elements to the system and the
evolution can proceed only through a more complicated
path of circumventing the absence of a critical element by
adjusting parameters of the presumptive homeostasis
mechanism, making it to work without it. One advantage
of this hypothesis is that it readily explains the existence
of lineages that do not undergo a complexity burst: they
may initially lack the postulated nearly complete poten-
tial homeostasis mechanisms.

If this hypothesis is correct, than 1) randomly created
organisms with large genomes should have not-too-small
fitness values much more often than organisms with small
genomes, because there is a higher chance for them to
have a completely formed homeostasis mechanism and
2) large-genome organisms with low fitness values should
have more presumptive mechanisms of homeostasis than
small-genome organisms. Indeed, the number of possible
schemata in a genome with r genes is proportional to ar,
where a is the number of states in which a gene can exist
[10,11]. The same obviously applies to incomplete sche-
mata. Prediction 1 can be directly tested in the experiment
proposed for the hypothesis of "multiple peaks and
ridges". Prediction 2 will allow us to discriminate between
the two hypotheses and can be tested in the following
experiment.

Let us create two populations of random organisms with
10 and 20 genes and choose pairs of organisms with dif-
ferent number of genes but similar levels of fitness within
a pair. Then, each organism will be used to create a popu-
lation of 10,000 of its copies and each population will be
subject to random gene insertions so that each organism
receives one extra gene. If the hypothesis of "missing
schema element" is correct, we should expect a larger frac-
tion of beneficial mutations in organisms with 20 genes
than in organisms with 10 genes, since large-genome
organisms should have more incomplete schemata that
an additional gene can complete. This can be evaluated by
assessing the presence of a prominent right shoulder in
the distributions of fitness after insertions.

3) Higher mutation rate
This is probably the most straightforward hypothesis of all
and the one which is the easiest to test. It postulates that
since the rates of many mutations, namely duplications,
deletions, and point and operator mutations, were
defined per gene, an increase in the number of genes leads
to effective increase of the per genome mutation rate. This
gives an advantage to large-genome organisms, since they
make more attempts at gaining in fitness. Consequently,
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larger-genome organisms advance faster which leads to
increased average complexity. This hypothesis can be
tested by introducing mutations on per genome basis. If
this hypothesis is correct, we expect complete disappear-
ance of complexity bursts.

4) Better evolutionary memory
Evolving organisms need to be able to restructure their
genome without losing too much of the accumulated fit-
ness along the way. In other words, peaks and ridges on
the fitness landscape should not be separated by valleys
that are too deep. If this is the case, an evolving organism
could move from one peak or ridge to another with
greater ease, since stepping into a fitness valley will not
necessarily eliminate it from the population. This prop-
erty can be formulated as "evolutionary memory" – how
well do organisms remember past evolutionary achieve-
ments when they undergo a mutation. It seems natural to
assume that large-genome organisms should have better
evolutionary memory (more shallow fitness valleys) than
small-genome organisms, because the responsibility for
fitness is spread among more genes. Thus, a mutation is
less likely to have a devastating effect.

This hypothesis predicts that fitness of larger organisms
should be more resistant to the destructive effects of muta-
tions. This conclusion can be tested by creating popula-
tions from copies of moderately fit organisms (F ~0.1 –
0.2) and mutagenize them with mutations of different
types thus creating populations Gr+ 

i, Gr- 
i and Gr 

i. These
populations will be subjected to mutagenesis with a com-
bination of mutations used in our model at their standard
ratio. If the hypothesis is correct, an average fitness of
mutagenized population normalized by the average fit-
ness of the original population should be higher for
organisms with larger genomes.

5) Discriminating between the explanations for increased complexity
Above, each kind of hypotheses that explain the increase
in complexity was represented by only two examples,
whereas other hypotheses are also feasible. For example,
the same considerations that led us to introduce the
hypothesis of evolutionary memory allow one to hypoth-
esize that larger organisms have smoother fitness land-
scapes. Consequently, these organisms would be able to
move up the gradient of fitness in longer stretches that are
not interrupted by valleys and ravines. Also, the increased
complexity can be a purely selectively neutral phenome-
non: mutations that increase complexity have a higher
chance of being effectively neutral, while mutations that
reduce it are more likely to be deleterious. Further experi-
ments will be necessary to test all these hypotheses.
Indeed, it is quite possible that the burst of complexity has
many driving forces.

In addition, some lineages do not experience increased
complexity in the course of their evolution. It may be
interesting to find the reasons for this difference in behav-
iour by identifying structural similarities between organ-
isms whose evolution does not involve complexity burst.
This, in itself, may be sufficient to identify the mecha-
nisms underlying the increase in complexity.

6) Causes of secondary simplification of organisms
Our results show that complexity of fully evolved organ-
isms is determined by a combination of at least two evo-
lutionary trends (Fig. 7). First, there is a tendency of
organisms to become much more complex at the early
stages of evolution, and, second, there is a tendency of
complex organisms to become simpler at the later stages
of evolution. Neither of these trends is absolute: there are
lineages that do not become more complex at the begin-
ning, just like there are lineages that do not become sim-
pler at the end. Interestingly, organisms that possess
elegant and economical organization of their gene net-
work (like the one in Fig. 3) appear to arise in two differ-
ent ways: either by remaining simple throughout their
evolution and developing homeostasis of [A] and [X]
through adjustment of kinetic constants alone, or by first
becoming highly complex and then going through the
process of simplification.

What are the reasons for the reversal of the direction in
which complexity changes? Perhaps, in large-genome
organisms some force directed towards reduction of the
genome size becomes stronger. At some point, when the
drive to increase complexity declines due to diminishing
returns and the drive to reduce complexity increases due
to the large size of genome, the two competing forces
become equal and this stabilizes genome size. Later, with
the decline of the force that makes genomes grow, the
competing force causes their simplification.

What can be the nature of the force directed towards sim-
plification? One obvious candidate is the penalty
imposed on the fitness value of an organism for the large
genome size. However, although the size of the genome is
certainly affected by the penalty if it is high enough (Fig.
6A), it reaches a plateau and then declines even if this pen-
alty is very small or nonexistent (not shown). The second
possibility is the mutation load. Our preliminary results
show that with an increase of mutation rate to very high
levels (0.3 – 1.0 instead of 0.03 that we used in experi-
ments described here), the complexity of evolved organ-
isms becomes noticeably smaller (data not reported).
Then, small-genome organisms survive the destructive
effect of mutations on their fitness better than large-
genome ones, due to lower per genome mutation rates.
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However, we prefer a simpler explanation of the changing
genome complexity in the course of evolution. There may
be no special force that reduces genome size other than
the fact that, in the corresponding experiments, genome-
decreasing mutations were 10% more frequent than
genome-increasing mutations. The plateau and the fol-
lowing slow decline in complexity may ensue simply
because the driving force of the complexity burst, what-
ever it could be, disappears after a few hundred genera-
tions. Obviously, the way to test this hypothesis is to see
whether reduction of complexity will be observed in the
absence of this mutational bias.

It seems that functional biological systems sometimes
appear through simplification of systems that experienced
a temporal peak of complexity. Indeed, there may be no
direct path from something simple to something com-
plex, because the only evolutionarily feasible paths, alone
which fitness always goes up, go through a supercomplex
phase. Apparently, many overcomplicated pathways are
evolutionarily young (TNF, complement, coagulation,
etc.). If mature adaptations are secondarily streamlined,
this may contribute to irreversibility of their evolution.

Origin of non-essential genes
Our model organisms are prone to acquire large numbers
of non-essential genes, despite a rather simple criterion
that we used for selection. One could imagine that even in
a very complex genome all or almost all genes are, never-
theless, essential. However, this is not the case, and a large
fraction of genes is only marginally relevant to fitness.
Similar results were obtained in real biological experi-
ments that analyzed how gene knock-outs in yeast affect
the fitness [23]. In competition with the wild type, ~85%
of knock-outs led to less than 20% reduction of fitness
and a few knock outs even slightly increased fitness.

A trivial explanation for the existence of multiple nones-
sential genes is that deletions are not frequent enough to
eliminate them. However, evolved organisms only rarely
contain truly mute genes, such as genes encoding TFs not
interacting with any operators. On the contrary, practi-
cally all nonessential TFs seem to be fully involved in the
organism biochemistry and create entirely reasonable
negative and positive feedback loops that should lead to
stabilization of [A] and [X]. The organism shown in Fig. 5
is replete with regulators that control gene expression in a
seemingly beneficial manner, yet they can be deleted with
only minor effect on fitness. This result raises three ques-
tions: what factors lead to the persistence of these nones-
sential genes in the genome; if these genes are
nonessential and are not subject to selection, why and
how do they develop proper functions; and, conversely, if
they perform all the proper functions, why are they non-
essential?

Fig. 8 shows that genes that are nonessential in evolved
organisms could have spent a significant amount of time
during organism evolution being essential and protected
from deletions. This explains why a non-essential gene
may seem to perform a proper function and, nevertheless,
be nearly neutral. Apparently, the structure of organisms
frequently shifts during evolution, making some proc-
esses more important and some less important at different
moments. This strongly influences relative effects of dif-
ferent genes on fitness.

Thus, only a fraction of genes of the genome contributes
to fitness of any given organism. This is a rather novel
view on cell biochemistry. It is worthwhile to analyze how
the levels of essentiality of all the genes of an organism are
distributed. Do they tend to alternate between the
extremes, 0 and 1, as it appears from Fig. 8, or they can
also have intermediate values? As much as the preliminary
analysis of four organisms can be an indication, it appears
that the situation differs in different organisms. In some
organisms, most of genes do indeed have essentiality val-
ues close to either 0 or 1, while in others a majority of
genes have intermediate values of essentiality. It is con-
ceivable that at the beginning of evolution an organism
makes a choice between "collective biochemistry" where
every gene contributes somewhat to fitness, and "alternate
biochemistry" where fitness is determined by one of sev-
eral alternating pathways, and then sticks to this choice
throughout its evolution. It will be also interesting to see
if the type of biochemistry correlates with the presence or
absence of complexity burst and with the extent of simpli-
fication that organisms experience during evolution.

The peculiar alternating behavior of essentiality of a gene
can be regarded as merely a fact of no particular impor-
tance other than as an explanation of the longevity of
genes that appear nonessential. Alternatively, it can be
seen as an important factor of evolution, which, for exam-
ple, provides a backup metabolism on which an organism
can rely if the pathway that is currently important is dam-
aged by mutation. There are also several other considera-
tions that suggest that having an extra set of functional
genes can be of help for successful evolution. It will be
interesting to determine if preservation of nonessential
genes facilitates evolution.

Our data indicate that simple Darwinian selection some-
how leads to the accumulation of genes with seemingly
logical but unimportant functions. Searching for func-
tions of uncharacterized genes, either discovered in
sequenced genomes or identified as genes encoding
"interactors" of known proteins, has become one of the
main activities of experimental biologists. Our results sug-
gest, however, that such a search can conceivably be futile
in many cases. Nonessential genes can be present in the
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genomes for no other reason than the quirky behavior of
the evolutionary process. In fact, experimental studies can
be even deceiving by suggesting an artifactual assignment
of a gene function. We found that in some cases deletion
of a gene in an evolved virtual organism does not change
the fitness but affects biochemistry of the organism at
extreme conditions. For example, deletion of some genes
significantly reduces [A] at [Aout] = 0.01 mM, but has little
effect with [Aout] within the 0.1 – 10 mM range, for which
the organisms were selected. If such an observation was
made in a real biological experiment, an investigator
would conclude that the role of the deleted gene is to
maintain [A] at a very low [Aout]. We know, however, that
our organisms have never encountered such a low [Aout],
and were never selected for this function. Therefore, this
assignment of a function would be entirely incorrect. It is
possible that many functions currently attributed to spe-
cific genes in real organisms on the basis of mutational
analysis have a similar artifactual nature.

A somewhat less trivial explanation for a high proportion
of non-essential genes is that they may be present in mul-
tiple copies, and therefore deletion of only one of these
copies causes very small effect. Indeed, evolved organisms
contain numerous genes that are exact or nearly exact cop-
ies of each other, thus forming identical regulatory con-
nections. We analyzed several such groups of paralogs,
with rather diverse results. In some cases (Fig. 5, marked
by red arrows) deletion of all sister genes dramatically
reduces fitness, clearly supporting this explanation. In the
majority of cases, however, the deletion of an entire group
of sister genes (enclosed by green squares) has only a
small effect on fitness (less than 0.5%). Conditional non-
essentiality of a gene, such that a non-essential gene
becomes essential after another gene is knocked-out, was
very rare in our experiments (data not reported).

Conclusion
We described a system that makes it possible to model
evolution of primitive but functional cells. Although
intentionally simple, this system involves all levels of
organization inside the cell, and computer experiments
demonstrates a remarkably rich variety of evolutionary
dynamics. Some of the phenomena we observed were
expected, while others, such as the tendency of many
evolving organisms to become very complex and to accu-
mulate a large number of non-essential genes, did not yet
receive a simple, certain explanation.

The potential applications of our system are not limited to
addressing the issues of complexity and gene redundancy,
and may include many other salient properties of living
systems, such as emergence of modularity and robustness.
The fact that we simulate evolution of life-like virtual
organisms rather than of purely abstract computer crea-

tions is, in our opinion, very important. First, the model
takes into account unique properties of biological sys-
tems. Second, the solutions provided by the model are
immediately expressed in the language of biological con-
cepts (genomes, genes, gene expression and its regulation,
proteins, fluxes of metabolites, etc.) rather than mathe-
matical abstractions and as such have infinitely better
chance to affect the thinking of biologists.

Methods
Computational details
1) Initialization
For each run, an initial population is created as follows.
Each organism has 10 ± √10 genes (with Gaussian distri-
bution). Each gene is chosen randomly, with equal prob-
ability, to encode a pump, an enzyme, or a TF. Again at
random, half of the enzymes are catabolism enzymes and
the rest are anabolism enzymes. Similarly, half of TFs are
A-dependent and the rest are X-dependent. Each gene is
assigned at random one of ten types of operators, and
each TF is assigned at random one of ten types of opera-
tors to which it binds. Finally, all quantitative constants:
Pst, KMA, KMX, Vmax for pumps and enzymes, and Pst, Kd,
Kb, EffApo and EffBound for TFs, are assigned at random
a value between 0.1 and 10, with the center of distribution
at 1.0. This latter operation was performed by assigning to
each constant a value of 10a, with a being a uniformly dis-
tributed random number between -1 and +1.

2) Selection
For each of the 3 outside concentrations of A ([Aout] = 0.1,
1.0, or 10.0), we determined equilibrium values of [A]
and [X] by integrating differential equations (4) and (5)
numerically, using the standard Runge-Kutta algorithm.
We assumed that an equilibrium is reached when the con-
centrations of proteins and of molecules A and X at the
subsequent time steps changed by less than 0.1%.

Different equilibria can be reached from different initial
concentrations, if the equations possess multiple stable
equilibria. We did not investigate this issue in detail and
mostly used just one set of initial concentrations: 0.5
mmol for [A] and [X] and 1 mmol for each gene product.
In fact, some observations suggest that equations (4) and
(5) often have only one stable equilibrium. Non-equilib-
rium stable attractors are also possible. Indeed, in ~25%
of cases, the concentrations oscillated indefinitely, and
the integrator did not converge to equilibrium after 5000
iterations. In such cases, an organism was assigned a zero
fitness potential.

After fitness potentials of all the organisms in the popula-
tion have been evaluated, their differential reproduction
occurs. We tested several ways for this process and all of
them produced similar results. In most of the experiments
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presented in this paper, the probability of an old organ-
ism being copied into the new generation is proportional
to the value of 2Fp-1, where Fp is its fitness potential. Thus,
organisms with Fp = 0 do not reproduce, and fitness is a
rapidly increasing function of fitness potential. Copying
continues until a new population of 1000 organisms is
recruited, which ensures that the population size remains
constant, without affecting relative fitness values of the
genotypes.

3) Mutation
Point mutations change constants encoded in genes. A
point mutation affecting a continuously-varying constant
is produced by multiplying the existing constants by 10a,
where a is a uniformly distributed random number bound
between -0.5 and +0.5. Thus, the value of these constants
can either increase or decrease but not more than by a fac-
tor of ~3.33. If, after a mutation, the value of a constant
falls below 0.1 or rises above 10, it is made equal to 0.1 or
10, respectively. A point mutation affecting either the type
of an operator or the type of a TF is produced by randomly
choosing the new value of the type (between 1 and 10),
regardless of its current value. In some experiments, dete-
rioration bias is introduced into point mutation, so that
Vmax and Pst decrease more often than increase and Km
more often increase than decrease.

Major mutations occur by randomly choosing a string of
1 – 5 genes within the genome and performing one of
three operations: transfer, where the string is copied into
a random position within the chromosome of a randomly
chosen organism of the population; duplication, where a
string is copied into a random position within the chro-
mosome of the same organism; and deletion, where the
string is deleted from the chromosome. We also consid-
ered insertions of a random gene, which is inserted into a
random position within the genome. This latter mutation
imitates either horizontal gene transfer or a situation
when some other protein of a given organism starts to
interact with A or X and thus becomes involved in the
function that is undergoing evolution. The combined fre-
quency of mutations adding genes to the population
(gene transfer, duplication and insertion) was approxi-
mately 10% lower than the frequency of deletions, so that
mutation on average results in slightly less complex
organisms.

The frequencies of all kinds of mutations are determined
by the global parameter Mutation Rate, with the rates of
different types of mutations being multiples of this
parameter. The coefficients of these multiples are chosen
in such a way that at Mutation Rate = 1.0 in one cycle of
mutagenesis each gene undergoes on average 0.1 major
mutations and 0.1 point mutation. A higher or lower

Mutation Rate proportionally increases or decreases this
number.

4) Some specific assumptions
In all our experiments several parameters did not change.
Catabolism always involved production of 4 X molecules
from one A molecule. This value was chosen as a compro-
mise between the efficiency of glycolysis (2 molecules of
ATP/molecule of glucose) and oxidative phosphorylation
(36 molecules of ATP/molecule of glucose). Anabolism
always involved consumption of equal numbers of A and
X molecules, and one molecule of X was always required
to import one molecule of A. Each TF could bind to oper-
ators of only one (matching) of the 10 possible types. We
set Perm = 0.1 and Degr = 1.0.

Implementation of the software tool
The main body of the program has been implemented
with Python programming language [29] using version
2.4 by ActiveState [30]. The most computationally inten-
sive piece of code, namely the fifth-order Cash-Karp
Runge-Kutta method for integration of ordinary differen-
tial equations, was implemented in C++ after [31] as a
separate dynamic link library (dll) built using Microsoft
Visual C++ 6. A Python-compatibility layer was generated
using SWIG tool [32]. The software tool is available on
request.

Authors' contributions
AAN conceived and piloted the project, suggested the
model, participated in the software implementation, con-
ducted and interpreted the experiments. NNB conducted
and interpreted the experiments, participated in the soft-
ware implementation. LJM designed and implemented
the software, suggested experiments, participated in anal-
ysis and interpretation of the results. AAN wrote the initial
draft of the manuscript but has not lived to see it in its
final form. NNB and LJM produced the final version of the
manuscript.

Reviewers' comments
Authors' response:

The authors wish to thank the three reviewers for their
thoughtful suggestions. A number of these suggestions
have been taken into account. However, because the first
author could not participate in the process, we wanted to
be conservative with our revisions.

Reviewer's report 1

Dr. Eugene V. Koonin, National Center for Biotechnology
Information, NIH, Bethesda, MD
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This is a decidedly fascinating paper, even if the results
and conclusions, in my opinion, should be viewed as pre-
liminary. The object of study is "virtual life" but, unlike
many other studies in this area, where the evolving enti-
ties are abstract algorithms or strings of symbols, the
model here, although very simple, is rendered in biologi-
cal terms. The richness of the model, which includes of
just 5 virtual proteins, is astonishing – a huge variety of
evolutionary trajectories. Probably, the single most inter-
esting results is the frequent, rapid emergence of excessive
complexity, with subsequent simplification as the systems
is optimized by selection. It does not seem to be the case,
however, that this or any other particular regime domi-
nates the evolution of this system, rather, it seems that the
evolutionary trajectories are chosen purely stochastically.
Should we make a leap of faith (admittedly, it is a consid-
erable one) and accept that the evolutionary modalities of
this simple, virtual system reflects those of real biological
systems, this gives us a genuinely novel outlook at the evo-
lution of complexity. As I understand this new view, evo-
lution of complexity (and, more specifically, modularity,
redundancy, robustness etc etc) is neither an inevitable
adaptation nor a "syndrome" caused by relaxed selection
(as in the popular hypothesis of Lynch and Conery) but
rather just one of the modes of evolution that is ran-
domly, i.e., supposedly, due to imperceptible fluctuations
(as far as we can say), chosen by some lineages but not
others.

I think it is too early to subscribe to this new concept of
biological complexity (in a sense, a new vision of biolog-
ical evolution in general) but what seems to be beyond
doubt and is, probably, the main result of this work is that
the model described here has a vast potential for further
development and analysis. Thus, the present work is likely
to spawn a novel, major research direction and, in that
sense at least, is a striking success.

Aside from these general considerations, here are several
questions and comments that the authors might consider
when revising the manuscript.

1. It is hard for me to fully understand the logic of the dis-
course in the "Dynamics and possible irreversibility of
complexity" section of the Discussion. The authors con-
sider two alternative explanations of the "excessive" com-
plexity of some biological systems:

i) the contingent nature of evolution

ii) hidden, conditional essentiality of many genes

They then claim that the second explanation contradicts
"naïve pan-adaptationism" (my wording but I think this
is the gist of what is said). Either I misunderstand some-

thing or it is the other way around, i.e., the first explana-
tion is, more or less, non-adaptationist, and this is what
follows from the next paragraph. I believe this deserves
attention.

2. Also, with regard to the same issue of the role of contin-
gency in evolution, I think it would make a lot of sense to
cite not only Gould-Lewontin but also equally (if not
more) relevant papers by Francois Jacob on "evolution
and tinkering" (Science. 1977 Jun 10;196(4295):1161-6;
Ann N Y Acad Sci. 2001 Apr;929:71-3)

3. In the discussion of the possible causes of the decrease
in complexity, we read:

"However, although the size of the genome is certainly
affected by the penalty if it is high enough (Fig. 6A), it
reaches a plateau and then declines even if this penalty is
very small or nonexistent (not shown)." This is a really
important issue, and the way it is treated leaves some dis-
satisfaction – why not showing these results as long as
they have been obtained? I think the paper would sub-
stantially gain if the authors made an effort to be more
specific about the effect of genome-size penalty (this is
one of the main problems that make me believe that these
results should be considered preliminary).

Reviewer's report 2

Dr. Shamil Sunyaev, Harvard Medical School, Boston, MA

This very interesting manuscript presents a toy computa-
tional model of an evolving cell. Although the model has
a high level of abstraction, it incorporates many features
of a real living cell. Several types of mutational events are
allowed. Fitness of an organism is somewhat arbitrary,
although reasonably, defined as the ability to maintain
homeostasis.

The model allows investigating the gene network structure
of organisms reaching high fitness. These structures
appear to be surprisingly diverse given relative simplicity
of the model. The authors specifically focus on number of
genes, which they consider a proxy to "complexity". This
analysis provided a few interesting counterintuitive
results.

The discussion section of the manuscript is interesting but
sometimes speculative. It probably can be made clearer
and concise. Some explanations of the "complexity burst"
can be possibly merged. Also, high per genome mutation
rate is proposed to explain both increase and reduction of
complexity.
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In sum, the manuscript convincingly shows that simple
computational models can contribute greatly to current
studies on evolution of biochemical and regulatory net-
works.

Reviewer's report 3

Dr. Arcady Mushegian, Stowers Institute for Medical Research
and University of Kansas Medical Center, Kansas City, MO

Abstract
Background
None of the properties discussed here (optimality, com-
plexity, modularity, robustness, and evolvability) are
exclusively organism-level; cf Andreas Wagner's book
(Robustness and Evolvability in Living Systems; Princeton
University Press, 2005)

I do not think these paragraphs are germane to the paper.
Indeed, consider condensing them into one sentence:

"Computer scientists, impressed by the beauty and appar-
ent universality of Darwin's theory, proposed a concept of
genetic algorithm, a software environment in which
strings of information ("chromosomes") undergo repeti-
tive cycles of fitness determination, selection, multiplica-
tion, and mutation/recombination [2,3]. Gradually, the
strings evolve and become increasingly fit to the goal set
by the experimenter. Genetic algorithms proved to be effi-
cient in diverse optimization tasks in engineering [4,5]
and software design [6].

This methodology, together with some other achieve-
ments such as theory of automata, led to creation of what
became known as "artificial life" (see ref. 7 for review).
Virtual organisms which constitute artificial life ("Life",
"Polyworld", "Tierra", "Avida", etc.) consist of pieces of
program code that either compete for computer memory
or try to outperform each other in logical operations or
mathematical calculations. Thus, definitions of fitness in
artificial life experiments are usually biologically mean-
ingless."

"Such modeling studies are instructive from a biochemi-
cal perspective and will likely have a strong impact on bio-
technology, but they tell us little about evolution of life
per se." – What does this mean – evolution as it actually
took place to produce the observed life forms? Or behav-
ior of other models, such as yours?

Results
Some results of experiments on the evolution of the system
General patterns

2) Repeatability of the outcomes of evolution

The reported results require some statistics: if, say, all var-
iables describing phenotypes are independent, how non-
trivial is the observation that phenotypes were not
observed twice? On the other hand, when 'some patterns
appear repeatedly', how does that compare with random
generation of phenotypes?

3) Impact of the population size

These observations should be related to Michael Lynch's
work (pubmed 14631042 and 16280547) In fact, much
of the following is best discussed in light of Lynch/Conery
theory.

Origin of non-essential genes
An optional but perhaps an interesting question, in line
with A. Wagner's thinking about fitness: if some of these
non-essential genes are knocked out, are contributions of
the remaining genes to fitness affected (sudden appear-
ance of new essential genes maybe?)

Discussion
Did authors check distribution of different types of loops/
motifs viz. what is observed in real cells (cf. Uri Alon's
work on network motif frequencies in E.coli network)?
Authors may want to indicate that this should be done at
least.

General patterns

"Adaptive evolution in our experiments was always facili-
tated when the size of the evolving population increased
"-above 1000; but the Lynch zone may be important, see
above.

Irreversible evolution of complexity
4) Better evolutionary memory

Role of duplications (also Lynch, Wagner, and many oth-
ers) should be discussed here.
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