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Integrative genomics unveils basement 
membrane‑related diagnostic markers 
and therapeutic targets in esophageal 
squamous cell carcinoma
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Abstract 

Background  Esophageal squamous cell carcinoma (ESCC) is often diagnosed at advanced stages due to the inher-
ent limitations of current screening methodologies. Central to evaluating tumor invasion and prognostic assessment 
in ESCC is the integrity of the basement membrane (BM). However, current research on the implications of BM-related 
genes (BMRGs) in diagnosing ESCC remains sparse.

Methods  We performed a comprehensive analysis using single-cell RNA-sequencing (scRNA-seq) data 
from the Gene Expression Omnibus (GEO) database, alongside gene expression profiles acquired from GEO and The 
Cancer Genome Atlas (TCGA) databases. This identified differentially expressed BMRGs in ESCC. Employing LASSO, RF, 
and SVM-RFE, we selected potential BM biomarkers and crafted a diagnostic nomogram for ESCC, validated by ROC 
curves and AUC values. We also explored immune infiltration and biological mechanisms through consensus clus-
tering and GSVA, and utilized single cell trajectory analysis and GSCALite to study gene distributions and pathways. 
In vitro experiments further elucidated the role of these genes in ESCC carcinogenesis.

Results  Here, we discovered that ESCC cell types exhibited markedly elevated BM-related scores. Our analysis 
pinpointed seven BM genes upregulated and linked to immune infiltration, showcasing unique gene expression 
profiles and varying immune cell densities across the BM-related subtypes. Furthermore, a robust positive correlation 
was observed between these genes expression and EMT activity. The knockdown of BGN significantly suppressed cell 
proliferation, migration, invasion, while also augmenting cell viability following chemotherapy drug treatment.

Conclusion  Our study identified seven key BMRGs (BGN, LAMB3, SPARC​, MMP1, LUM, COL4A1, and NELL2) and estab-
lished a diagnostic nomogram for ESCC. Of noteworthy significance is the discovery of BGN as a promising drug 
target, indicating a novel strategy for future clinical combination therapies in ESCC.
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Introduction
Esophageal cancer is a prevalent malignant carcinoma, 
ranking seventh in global incidence and sixth in cancer-
related mortality [1]. It comprises two primary subtypes, 
esophageal adenocarcinoma (EAC) and esophageal squa-
mous cell carcinoma (ESCC), distinguished by etiology 
and epidemiological distributions. With ESCC account-
ing for over 90%, China has the highest incidence rate of 
esophageal cancer globally [2, 3]. Unfortunately, ESCC 
often presents without symptoms in its early stages, lead-
ing to late diagnoses and a loss of opportunities for con-
ventional treatment [4]. Hence, there is an urgent need 
to identify novel and reliable biomarkers to enhance early 
ESCC diagnosis and screening.

Invasion and metastasis are the leading causes of 
cancer-related morbidity and mortality [5, 6], constitut-
ing fundamental ’hallmarks of cancer’ as described by 
Hanahan and Weinberg [7, 8]. Basement membranes 
(BMs) are intricate layers of extracellular matrix (ECM) 
that act as a barrier between tumor cells and the stroma, 
playing a crucial role in preventing malignant cell inva-
sion and metastasis [9]. The ECM is a vital non-cellular 
component of the tumor microenvironment (TME), with 
the capacity to influence immune cell recruitment and 
the progression of tumors. The breaching of the epithe-
lial BM by tumor cells during the metastatic phase is a 
critical point in their dissemination to distant organs 
[10]. The alteration of ECM architecture by neoplas-
tic invasion is crucial to tumorigenesis, malignant cell 
metastasis, and the remodeling of the TME [11]. BMs 
are primarily composed of laminin, which facilitates cel-
lular interaction and collagen IV, which maintains mem-
brane structure [12, 13]. They also harbor growth factors, 
heparan sulfate proteoglycans, and nidogen [14]. The 
complex composition of BMs is essential for sustaining 
cell polarity, promoting cell adhesion, and enabling cell 
migration. The distinct protein expressions and densities 
of BMs in normal versus pathophysiological conditions, 
such as cancer, are particularly noteworthy. Furthermore, 
the upregulation of matrix metalloproteinases (MMPs), 
enzymes that can degrade BMs, is closely linked to tumor 
invasion and metastasis [15]. Extensive studies have 
uncovered significant correlations between BM-related 
genes (BMRGs) and a variety of malignancies, including 
breast cancer [16], lung adenocarcinomas [17], bladder 
cancer [18] and renal cell carcinoma [19].

ESCC is a multifaceted disease characterized by a 
complex, multi-step progression. It initiates in nor-
mal epithelial cells, evolves through basal cell hyper-
plasia, and escalates through multiple phases of 
intraepithelial neoplasia, culminating in an aggressive, 
invasive cancer [20]. This progression encompasses the 

epithelial-mesenchymal transition (EMT) within the 
basement membrane, facilitating metastasis through 
the lymphovascular system [21]. Spatial transcriptomic 
analyses  on multistage ESCC samples have elucidated 
that aberrant interactions among epithelial cells in the 
basal layer initiate EMT and expedite [22]. In the realms 
of diagnosis and treatment, comprehending the role of 
BMs is indispensable. Carcinoma in  situ, confined to 
the epithelium, can be managed effectively. However, 
once the disease breaches the BMs, it infiltrates deeper 
tissue. The relevance of BMs is further underscored in 
therapeutic approaches such as radiotherapy, chemo-
therapy, and immunotherapy. Consequently, identify-
ing genes associated with BMs is paramount for precise 
diagnosis and treatment, averting the dire metastatic 
outcomes in ESCC.

In the current report, we commenced by procur-
ing ESCC single-cell RNA-sequencing (scRNA-seq) 
data from the Gene Expression Omnibus (GEO) data-
base, employing a set of hallmark genes to compute the 
BM scores. We then performed differential expression 
analysis of BM-related genes, contrasting ESCC with 
normal tissues, utilizing gene expression profiles from 
GEO and TCGA databases. Subsequently, we harnessed 
three distinct machine learning algorithms to pinpoint 
the seven potential biomarkers, around which we con-
structed a diagnostic nomogram model for the predic-
tion of ESCC. The expression profiles and diagnostic 
accuracy of these seven hub genes were corroborated 
using external databases. Building upon preliminary 
evaluations that included assessments of immune cell 
infiltration, immune expression signatures and their 
correlation with EMT, we advanced to functionally 
delineate the role of the BGN gene in ESCC carcino-
genesis through a series of experimental approaches.

Our study unveils novel diagnostic biomarkers for 
ESCC by identifying previously unreported BMRGs. 
The limitations of bulk technologies in discerning sig-
nals from heterogeneous cell populations are well rec-
ognized. In contrast, scRNA-seq offers unprecedented 
resolution in mapping cellular compositions within 
complex microenvironments. Leveraging this technol-
ogy, we adopted an interdisciplinary strategy to iden-
tify candidate genes with enhanced diagnostic efficacy 
and specificity, surpassing the reliability of biomarkers 
identified in prior studies that did not undergo ROC 
analysis for diagnostic efficiency assessment [23, 24]. 
Furthermore, we have pinpointed a novel therapeutic 
target for ESCC through predictive drug sensitivity and 
in vitro cellular assays, laying the groundwork for per-
sonalized therapeutic strategies in ESCC.
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Materials and methods
Data collection
We acquired four microarray datasets (GSE53625, 
GSE44021, GSE23400, GSE20347) and one scRNA-seq 
data (GSE188900) from the GEO database. Additionally, 
we obtained RNA expression profiles of ESCC samples 
(n = 81) from the TCGA database.

Analysis of scRNA‑seq data and calculation 
of BM‑related gene module score
The R package “Seurat” was used to filter, normalize and 
cluster the scRNA-seq raw data. We employed the uni-
versal manifold approximation and projection (UMAP) 
method for dimensionality reduction. To annotate cell 
clusters, we referred to cell markers obtained from the 
CellMarker and PanglaoDB databases. The AUCell 
and ssGSEA algorithms were utilized to calculate the 
BM scores. A total of 222 BM-related genes have been 
reported elsewhere, including genes encoding proteins 
of the BM matrix and components of the BM zone (Sup-
plementary Table S1) [25]. However, in these scRNA-seq 
data, 10 of these genes were not detected. Subsequently, 
the BM-related gene module score was computed for 
each cell type using 212 hallmark genes. Additionally, 
Monocle was employed for trajectory analysis to predict 
cell differentiation and visualize gene expression profiles 
within each cell state.

Screening of BM‑related biomarkers by machine 
learning
The R package “limma” was used to identify differentially 
expressed genes (DEGs) between the tumor and normal 
groups, applying thresholds of an adjusted P < 0.05 and | 
log2 FC |> 1. Initially, we screened for the intersection of 
BM-related DEGs in TCGA, GSE53625, and GSE44021. 
Then, three machine learning algorithms, namely the 
least absolute shrinkage and selection operator (LASSO) 
algorithm [26], support vector machine-recursive fea-
ture elimination (SVM-RFE) algorithm [27], and random 
forest (RF) algorithm [28], were employed to identify 
characteristic BMRGs. LASSO analysis was conducted 
using ten-fold cross-validated penalty parameters via 
the R package “glmnet” with the minimal lambda value 
considered optimal. The SVM-RFE classifier was imple-
mented with the minimum cross-validation error using 
the “e1071” package. RF algorithm analysis was executed 
via the “randomForest” package and genes with a Mean 
Decrease Gini value greater than two designated as char-
acteristic genes. Finally, receiver operating characteris-
tic (ROC) analysis was performed using the “pROC” R 
package and the area under the curve (AUC) was used to 
estimate the diagnostic efficacy of candidate BM genes in 
both training and validation GEO datasets.

Functional enrichment analysis
The R package “clusterProfiler” was employed to perform 
Gene Ontology (GO) annotation and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analy-
sis [29]. The GO categories encompassed three sections: 
biological processes (BP), molecular functions (MF), and 
cellular components (CC), with a significance thresh-
old set at an adjusted P-value < 0.05 for the enrichment 
pathways. GSCALite database (http://​bioin​fo.​life.​hust.​
edu.​cn/​web/​GSCAL​ite/) was employed to investigate 
the cancer pathway activity associated with candidate 
BM genes. Additionally, the EMTome database (http://​
www.​emtome.​org/) was used to analyze the correlation 
between gene expression and EMT signature in pan-can-
cer. The GeneMANIA (http://​www.​genem​ania.​org) was 
employed as a flexible online resource to visualize the 
interaction network of key BM genes and predict gene 
function and interactions [30].

Drug sensitivity analysis
The “calcPhenotype” function of the “oncoPredict” R 
package was selected to calculate predicted sensitivity 
values for each tumor sample, leveraging the training 
drug sensitivity data sourced from the Genomics of Drug 
Sensitivity in Cancer database and training expression 
data from the Cancer Therapeutics Response Portal [31]. 
Tumor samples were stratified into high and low expres-
sion groups based on the median expression level of each 
gene. A sensitivity score was used to assess drug respon-
siveness between these groups, where a lower score indi-
cated a higher sensitivity to potential drugs.

Immune cell infiltration analysis
To evaluate the correlation between BM genes and the 
tumor immune microenvironment, we employed the 
R package “estimate” to calculate the stromal score, 
immune score, and estimate score for each ESCC patient 
[32]. The CIBERSORT algorithm was used to estimate 
the abundance of 22 distinct immune cells based on gene 
expression profiles [33]. The MCPcounter algorithm 
was applied to quantify the relative abundance of eight 
immune cells and two stromal cells within a tissue sam-
ple derived from transcriptomic data [34]. In addition, we 
also examined the association between BM genes and 40 
immune checkpoint genes. In this study, the expression 
profile of candidate genes in patients was acquired from 
GSE53625.

Consensus clustering analysis
The unsupervised consensus clustering approach was 
applied to divide ESCC patients into the optimal num-
ber of clusters based on BM gene expression, utilizing the 
R package “ConsensusClusterPlus” [35]. Subsequently, 

http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://www.emtome.org/
http://www.emtome.org/
http://www.genemania.org
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Gene Set Variation Analysis (GSVA) analysis was con-
ducted with the gene set “c5.all.v2023.2.Hs.symbols” as 
input. GSVA scores were calculated using the R pack-
age limma to identify differentially enriched GO terms 
between the two subtypes, with |t values|> 2 serving as 
the threshold for significance.

Cell culture
The human normal esophageal epithelial cell line HEEC 
and ESCC cell line TE-1 used in this study were obtained 
from the Cell Bank of the Chinese Academy of Sciences 
(Shanghai, China). The cells were cultured in Dulbecco’s 
modified eagle medium (DMEM, ThermoFisher Sci-
entific, USA) and RPMI-1640 medium (Gibco, USA), 
respectively. Both mediums were supplemented with 10% 

fetal bovine serum (FBS, Gibco, USA) and maintained at 
a temperature of 37℃ in a humidified environment with 
5% CO2. Additionally, the cells were regularly checked 
for mycoplasma contamination as needed.

Cell transfection and drug treatment
Two small interfering RNA (siRNA) sequences target-
ing human BGN were synthesized by Hanbio Biotech-
nology (Shanghai, China). A scrambled siRNA was also 
synthesized as a control. The plasmids were then trans-
fected into the TE-1 cell line using Lipofectamine®3000 
(ThermoFisher Scientific, USA) according to the manu-
facturer’s instructions and incubated at 37  °C for 24  h. 
Docetaxel, paclitaxel, oxaliplatin and OSI-027 were pur-
chased from MCE, USA.

Fig. 1  Single-cell analysis revealed abnormally elevated BM-related module scores in ESCC cells. (A) The scRNA-seq data was analyzed using 
the UMAP algorithm, resulting in eight cell types. (B) The identification and classification of cell types were performed utilizing a set of specific 
cell markers that enabled accurate annotation of each cell type. (C) The BM-related module score was calculated using the AUCell algorithm. (D) 
Computation of the BM-related module score utilizing the ssGSEA algorithm. ** P < 0.01, *** P < 0.001, **** P < 0.0001, ns, no significance
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Western blot analysis
The cells were treated with ice-cold RIPA lysis buffer 
(Beyotime, China) to extract total protein. The protein 
concentration was measured using the BCA Protein 
Assay Kit (Beyotime Biotechnology, Shanghai, China). 
Subsequently, the proteins were separated by 10% sodium 
dodecyl sulphate polyacrylamide gel electrophoresis 
(PAGE) and transferred onto a polyvinylidene difluoride 
(PVDF) membrane (Millipore, USA). After blocking 
with 5% (w/v) non-fat milk for one hour at 25  °C, the 
PVDF membranes were incubated overnight at 4 °C with 
appropriately diluted primary antibodies against BGN 
(ab109369, 1: 1000 dilution, Abcam, USA), GAPDH 
(60004–1, 1:3000 dilution, Proteintech, China), N-cad-
herin (4061S, 1: 1000 dilution, CST, USA) and E-cadherin 
(ab314063, 1: 1000 dilution, Abcam, USA), respectively. 
The PVDF membranes were then washed several times 
with TBST buffer (10  mM Tris–HCl pH 8.0, 150  mM 
NaCl, 0.05% Tween 20) and incubated with diluted 
HRP-conjugated IgG secondary antibodies (ab205719, 
1: 10,000 dilution, Abcam, USA) for two hours at 25 °C. 
Finally, Protein bands were detected using enhanced 
chemiluminescence detection reagents (Thermo Pierce, 
Cramlington, UK) and quantified utilizing the Bio-Rad 
Image Lab software.

Cell proliferation assay
Cell proliferation was assessed using the Cell Count-
ing Kit-8 (CCK8) and plate colony formation assay. For 
the CCK8 assay, cells were seeded in 96-well plates at 
a volume of 100 µL per well. After incubation for one 
day, three days, five days and seven days, 10 μL of CCK8 
(MCE, USA) was added to each well and incubated at 
37  °C for two hours. The optical density (OD) values 
were then measured using a microplate reader (BioTek, 
USA) at 450  nm. For the colony formation assay, cells 
in the logarithmic growth phase were selected and dis-
sociated with trypsin to obtain a single-cell suspension. 
These cells were then inoculated into a 12-well plate and 
cultured for 10  days, with regular monitoring of their 
growth. Then, all colonies were fixed using 4% paraform-
aldehyde, stained with crystal violet, and captured using 
a digital camera.

Wound‑healing assay
The transfected TE-1 cells were seeded into six-well 
plates with a density of 1 × 106 cells per well and cultured 
for 24 h. Cells adhered and scratched with 200 μL pipette 
tips. Then, the cells were washed with PBS twice and cul-
tured in a serum-free medium. Images were captured at 0 
h and 24 h.

Transwell assay
The transfected TE-1 cells were seeded into the upper 
chamber of a 24-well Transwell plate (8  μm pore size, 
Coring, USA). The assays involved culturing the cells 
with 200 μL serum-free RPMI-1640 medium, while 
the lower chambers were supplemented with 600 μL of 
RPMI-1640 medium containing 20% FBS. After incuba-
tion, the migrated cells were fixed with 4% paraformalde-
hyde and stained with crystal violet. The cells above the 
membrane in the upper chamber were removed with cot-
ton swabs. Finally, a quantitative analysis was conducted 
by counting the stained cells in three randomly selected 
fields.

Flow cytometry
In brief, the cells were collected, washed, and re-sus-
pended in a binding buffer to be monitored. Cells were 
processed with Annexin V-fluorescein isothiocyanate 
(FITC) and propidium iodide (PI) for apoptosis detec-
tion according to the protocol (Vazyme Biotech, China). 
Stained cells were detected and analyzed using a Can-
toII flow cytometer (BD Biosciences, Franklin Lakes, NJ, 
USA).

Statistical analysis
All experiments were conducted independently at least 
three times, yielding consistent outcomes, unless speci-
fied otherwise in the accompanying figure legends. All 
statistical analyses were performed using R software ver-
sion 4.3.1. Comparisons between two different groups 
were carried out using the t-test. Correlation analysis 
was evaluated using Spearman’s test. Statistical signifi-
cance set at P < 0.05, ns > 0.05, and indicated by asterisks 
(* P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001).

Fig. 2  Identification of BM-related diagnostic biomarkers for ESCC via machine learning methods. (A) Venn diagram showing the overlap 
between DEGs and 220 BMRGs. (B) Optimal λ values for hub genes identified by the LASSO logistic regression algorithm. (C) The correlation 
between the number of trees and the error rate in Random forests. (D) Gene selection using the SVM-RFE algorithm. (E) Venn diagram of diagnostic 
markers shared by LASSO, random forest, and SVM-RFE algorithms. (F) Split violin plot demonstrating the differential expression of nine hub genes 
between ESCC patients and controls in the GSE53625 dataset. *** P < 0.001

(See figure on next page.)
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Results
Single‑cell RNA‑seq profiling demonstrates a significant 
correlation between ESCC occurrence and BMs
We analyzed scRNA-seq data using the UMAP method, 
revealing 18 distinct clusters. These clusters were metic-
ulously classified into eight major cell types: T cells, B 
cells, myeloid cells, endothelial cells, epithelial cells, 
mast cells, fibroblasts, and smooth muscle cells (Fig. 1A). 
Expression profiles of marker genes for each cell type 
are depicted in the dotplot (Fig. 1B). Out of the 222 BM 
genes analyzed, 212 genes were identified in our single-
cell investigation. Utilizing these genes, we calculated the 
BM-related module score. Analysis by AUCell (Fig.  1C) 
and ssGSEA (Fig.  1D) algorithms consistently indicated 
elevated BM scores in most ESCC cell types compared to 
normal cells, with the fibroblasts exhibiting the highest 
scores. This finding strongly suggests that a noteworthy 
association exists between the occurrence of ESCC and 
the emergence of BMs.

Machine learning‑based screening of characteristic 
genes for clinical diagnosis of ESCC
In order to elucidate characteristic genes, we identified 
DEGs between the ESCC group and the control group 
from the TCGA, GSE53625, and GSE44021 datasets via 
the R package “limma”. Venn diagrams revealed 22 genes 
shared by DEGs and 220 BMRGs (Fig. 2A). Subsequently, 
we conducted functional analysis on these 22 genes. GO 
analysis indicated their involvement in the extracellular 
matrix organization, collagen-containing extracellular 
matrix, basement membrane, and matrix structural con-
stituent terms (Supplementary Fig. S1A-C). Additionally, 
KEGG analysis showed enrichment in ECM-receptor 
interaction, focal adhesion and PI3K-Akt signaling path-
way (Supplementary Fig. S1D), with most genes enriched 
in basement membrane-related terms upregulated in 
ESCC group.

We further employed three machine learning algo-
rithms to narrow down the diagnostic genes. The LASSO 
algorithm identified 13 characteristic genes according to 
the optimum λ value (Fig. 2B). Their coefficient profile is 
shown in Supplementary Fig. S1E. Using random forests, 
we optimized the model to achieve a minimum error rate 
(Fig. 2C) and selected genes with a Mean Decrease Gini 
(MDG) > 2 (Supplementary Fig.  S1F), resulting in the 

identification of 16 characteristic genes. Meanwhile, the 
SVM-RFE algorithm screened 16 genes with the mini-
mum error (Fig. 2D). After intersecting the results from 
LASSO, RF and SVM-RFE, nine key diagnostic genes 
were identified (Fig.  2E). We examined the expression 
patterns of these nine genes between ESCC and control 
samples using the GSE53625 dataset (Fig. 2F). Finally, we 
selected seven upregulated hub genes in tumor tissues 
for further analysis, including BGN, COL4A1, LAMB3, 
LUM, MMP1, NELL2, and SPARC​.

Validating potential biomarkers for ESCC diagnosis
In our study, it is evident that the seven selected genes 
demonstrate a distinct co-expression pattern in the 
GSE53625 dataset (Fig. 3A). Analysis using the Genema-
nia network revealed strong interactions among these 
genes in various biological aspects (Supplementary Fig. 
S2A). Based on these seven genes, we constructed a 
nomogram exhibiting an excellent predictive perfor-
mance with an AUC value of 1.0 (Fig.  3B, C). The cali-
bration curves demonstrate that the diagnostic model of 
the constructed nomogram closely aligns with the ideal 
model, indicating a highly accurate predicted probability 
(Supplementary Fig. S2B). We further assessed the diag-
nostic efficacy of each gene in predicting the occurrence 
of ESCC. The results are summarized as follows: BGN 
(AUC 0.981, CI 0.967–0.992), COL4A1 (AUC 0.918, CI 
0.885–0.948), LAMB3 (AUC 0.962, CI 0.939–0.981), 
SPARC​ (AUC 0.965, CI 0.943–0.984), LUM (AUC 0.925, 
CI 0.893–0.952), MMP1 (AUC 0.981, CI 0.964–0.993), 
and NELL2 (AUC 0.923, CI 0.891–0.953) (Fig. 3D).

To confirm the expression levels and diagnostic pre-
cision of these signature genes, we utilized two inde-
pendent external datasets, GSE20347 and GSE23400. 
In the GSE20347 dataset, the AUC values for BGN, 
LAMB3, SPARC​, MMP1, LUM, COL4A1, and NELL2 
were 0.886, 0.955, 0.869, 0.986, 0.917, 0.938, and 0.920, 
respectively (Fig. 3E). Moreover, the expression levels of 
these seven genes were significantly elevated in tumor 
samples compared to the control group (Fig. 3F). In the 
GSE23400 dataset, the AUC values for BGN, LAMB3, 
SPARC​, MMP1, LUM, COL4A1, and NELL2 were 0.921, 
0.927, 0.859, 0.968, 0.827, 0.844, and 0.868, respectively 
(Supplementary Fig.  S2C). Additionally, all seven genes 

(See figure on next page.)
Fig. 3  Development and validation of a diagnostic nomogram model. (A) Correlation matrix of the seven gene expression profiles from the 
GSE53625 dataset, highlighting inter-gene relationships. (B) Construction of a predictive nomogram incorporating characteristic genes for ESCC. 
Each gene is assigned a score, with the total score representing the sum of individual gene scores. (C) ROC curve analysis of the nomogram model, 
demonstrating its diagnostic accuracy. (D) Comparative ROC curves for the individual predictive genes within the GSE53625 dataset. (E) ROC curves 
for the corresponding genes in the GSE20347 dataset illustrate their predictive performance. (F) Split violin plot contrasting gene expression levels 
between ESCC patients and controls within the GSE20347 dataset, underscoring the differential expression patterns. *** P < 0.001
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exhibited higher tumor expression levels than controls 
(Supplementary Fig. S2D).

Analysis of gene expression and tumor 
microenvironment in ESCC
Studies indicate that the tumor microenvironment mod-
ulates extracellular matrix components to foster tumori-
genesis [36, 37]. We then conducted an in-depth analysis 
to elucidate the interplay between the tumor microen-
vironment and the seven BM gene expressions in ESCC 
patients. Utilizing a heatmap, we depicted the tumor 
microenvironment scores alongside the expression pro-
files of seven key BM genes, offering a visual synopsis 
of the molecular landscape in ESCC patients (Fig.  4A). 
Notably, the BGN, MMP1, LUM and SPARC​ genes exhib-
ited positive associations with the immune score, while 
COL4A1, LAMB3 and NELL2 demonstrated negative 
correlations, suggesting a dichotomous role in immune 
modulation (Fig. 4B).

Further, we employed ssGSEA to scrutinize the varia-
tions in 13 immune-related functions between normal 
and tumor tissues. Our findings indicated that 11 of these 
immune function scores were significantly elevated in 
tumor tissues, underscoring the presence of an aberrant 
immune response in ESCC (Fig.  4C). To delve into the 
cellular composition of the immune response, we applied 
the CIBERSORT algorithm to quantify the abundance 
of 22 distinct immune cell populations. We discovered 
that M0 and M1 macrophages, CD4 memory-activated 
T cells, and activated dendritic cells were positively cor-
related with the expression of all seven BM genes. Con-
versely, Tregs, CD8 T cells, activated NK cells, and naive 
B cells exhibited negative correlations, highlighting a 
complex interplay between tumor-associated genes and 
immune cell dynamics (Fig. 4D).

Leveraging these insights, we performed an integrated 
analysis of the immunological profiles of candidate 
BMRGs. This analysis revealed significant positive cor-
relations with a spectrum of immune checkpoint genes, 
particularly CD276, CTLA4 and TNFRSF family mem-
bers, indicating a potential immunological signature that 
may be harnessed for therapeutic development (Fig. 4E).

Molecular subtyping and immunophenotyping 
of ESCC reveal distinct tumor microenvironments
To delineate the molecular subtypes of ESCC and elu-
cidate their associated molecular features, we further 
performed a cluster analysis using a consensus cluster-
ing approach based on the expression patterns of seven 
BMRGs derived from the GSE53625 dataset. The opti-
mal number of clusters was determined to be two (k = 2), 
which stratified 179 ESCC samples into two distinct 
subtypes: subtype A (n = 54) and subtype B (n = 125) 
(Fig.  5A). All the seven BMRGs elevated in subtype B 
compared to subtype A (Fig.  5B). To elucidate the bio-
logical differences between these subtypes, we performed 
GSVA analysis to assess GO enrichment. The results 
showed that subtype B exhibited upregulation of vari-
ous pathways, including gap junction assembly, metal-
loendopeptidase activity, keratinocyte proliferation and 
migration, collagen metabolic process, collagen catabolic 
process, lamellipodium membrane and extracellular 
matrix disassembly (Fig. 5C, D). Considering the central 
role of basement membranes in the tumor microenvi-
ronment, we further evaluated the differences between 
the two subtypes. Subtype B was found to have elevated 
stromal score and immune scores compared to subtype 
A, suggesting a more complex and potentially aggres-
sive tumor microenvironment (Fig.  5E). Additionally, 
we utilized the MCPcounter algorithm to quantify the 
relative proportions of different infiltrating immune and 
stromal cells. Notably, four infiltrating immune cell types 
— cytotoxic lymphocytes, NK cells, monocytic lineage 
cells and neutrophils — as well as two stromal cell types, 
endothelial cells, and fibroblasts, were found to be more 
abundant in subtype B. Among these, fibroblasts were 
identified as the predominant cell component, indicating 
their potential role in the tumorigenic process (Fig. 5F). 
This finding aligns with the scRNA-seq analysis, which 
reveals that fibroblasts possess the highest scores for BM-
related gene modules in ESCC (Fig. 1C, D). These results 
suggest a significant association between fibroblasts and 
the pathophysiology of basement membrane lesions.

Fig. 4  Tumor microenvironment characterization and expression of seven BM genes in ESCC patients. (A) Heatmap representation displaying 
the tumor microenvironment score and the expression levels of the seven BM genes in ESCC patients. (B) Scatter plots illustrating the correlations 
between the expression of the seven BM genes and the immune score (left panel) and the estimate score (right panel), highlighting 
the association between gene expression and immune activity. (C) Bar graphs showing the differences in immune-related functional scores 
between normal and tumor groups, indicating the impact of the tumor microenvironment on immune response. (D) Correlation matrices 
displaying the relationships between the expression of the seven BM genes and 22 immune-related cell types, elucidating the interaction 
between these genes and the immune system. (E) Correlation matrices depicting the associations between the expression of the seven BM genes 
and immune checkpoint genes, revealing potential regulatory mechanisms in the tumor microenvironment. * P < 0.05, ** P < 0.01, *** P < 0.001

(See figure on next page.)
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EMT pathway activation and fibroblast 
heterogeneity in ESCC tumor progression
In our analysis of ESCC scRNA-seq data, we identi-
fied the expression of six BMRGs, with the LAMB3 
gene notably absent from this dataset. Remarkably, the 
genes BGN, LUM, SPARC​, and COL4A1 exhibited high 
expression levels in fibroblastic and smooth muscle cells 
(Fig.  6A). This observation corroborated our previous 
cluster analysis and suggested a significant role for these 
BMRGs in the cancer-associated fibroblasts. To further 
elucidate the dynamics of fibroblast differentiation, we 
extracted fibroblasts to perform a pseudotime analysis 
using Monocle2, which delineated six distinct states of 
cell fate trajectories based on their gene expression pat-
terns (Fig. 6B). The differential expression of BGN, LUM, 
SPARC​, and COL4A1 throughout fibroblast differen-
tiation implies that these genes may exert distinct influ-
ences on tumor progression (Fig. 6C).

Expanding the scope of our investigation to a broader 
oncological context, we harnessed the GSCALite plat-
form to explore the correlation between gene expression 
profiles and the activation of cancer-related signaling 
pathways in a comprehensive dataset encompassing 33 
distinct malignancies from TCGA. Our analysis uncov-
ered that BGN exhibited the most significant association 
with the activation of the EMT pathway among the seven 
evaluated genes, shedding light on the molecular mecha-
nisms driving tumorigenesis (Fig.  6D). This finding was 
further substantiated by a focused analysis of the correla-
tion between BGN gene expression and EMT in pan-can-
cer using the EMTome database, which aligned with the 
results from GSCALite (Fig. 6E). Recognizing the critical 
role of EMT in processes such as tumor initiation, pro-
gression, and metastasis, we resolved to investigate the 
specific function of BGN in ESCC.

BGN suppression attenuates the migratory 
capacity of ESCC cells and augments apoptotic 
activity
To investigate the role of BGN in ESCC pathophysiol-
ogy, we utilized RNA interference to diminish endog-
enous BGN expression. Our preliminary assessment of 
BGN expression levels disclosed a markedly elevated 

expression in the TE-1 cell line when contrasted with that 
of HEEC cell line (Supplementary Fig. S3). Consequently, 
TE-1 was selected for subsequent investigation. Two dis-
tinct small interfering RNAs (siRNAs) and their corre-
sponding scrambled controls were transfected into TE-1 
cells, with knockdown efficacy confirmed by western blot 
analysis (Fig.  7A and Supplementary Fig.  S4A). EMT, a 
process pivotally associated with cancer invasion and 
metastasis, involves transformating polarized epithelial 
cells into cells with mesenchymal phenotypes, character-
ized by the loss of cell adhesion and acquisition of migra-
tory properties. Following BGN knockdown, there was 
a notable increase in the expression of the epithelial cell 
marker E-cadherin, coupled with a significant decrease 
in the mesenchymal cell marker N-cadherin (Fig.  7B 
and Supplementary Fig. S4B, C). Notably, BGN suppres-
sion led to a significant curtailment in cell proliferation 
and a reduction in clone formation in vitro (Fig. 7C, D). 
Flow cytometry analyses indicated that BGN knockdown 
enhanced apoptosis in TE-1 cells (Fig. 7E). Additionally, 
the migratory capabilities of TE-1 cells were substantially 
diminished upon BGN inhibition (Fig.  7F, G). Collec-
tively, these findings underscore the tumor-suppressive 
effects of BGN inhibition in ESCC.

BGN, a member of the small leucine-rich proteoglycan 
(SLRP) family, class I subfamily, features 12 leucine-rich 
repeat (LRR) domains (Fig.  7H). AlphaFold’s predicted 
structure of BGN (P21810) reveals an orderly arrange-
ment of β-strands on the cell membrane, creating a 
’palisade’ configuration that likely mediates key protein 
interactions. Given the established role of glycosyla-
tion in protein function [38, 39], the O-linked glyco-
sylation sites [40] at S42, S47, S180, S198, and N-linked 
sites at N270, N311 on BGN may critically influence its 
trafficking, localization, signaling, and immunological 
properties, providing a foundation for future research. 
Additionally, charge analysis identifies positively charged 
domains within the LRR ’ palisade ’ head (e.g., K139, 
K209, K238) and bottom regions (e.g., K82, K128, R266), 
which may serve as crucial sites for cofactor recruitment 
and protein interaction, suggesting potential targets for 
drug design (Fig. 7H).

(See figure on next page.)
Fig. 5  Characterization of molecular subtypes in ESCC and their associated molecular features. (A) Consensus clustering matrix demonstrating 
the optimal partitioning into two distinct subtypes when k = 2. (B) Box plots illustrating the mRNA expression levels of the seven BMRGs 
genes across the two identified subtypes. (C) Heatmap depicting the GSVA enrichment scores of GO pathways, highlighting the differences 
between the two subtypes. (D) Corresponding bar plot providing a detailed view of the GSVA enrichment differences in GO pathways 
between the subtypes. (E) Violin plot displaying the comparative stromal, immune, and estimate scores for the two subtypes, indicating variations 
in the tumor microenvironment. (F) Box plots showing the infiltration levels of eight immune cell types and two stromal cell types in the two 
subtypes, revealing the cellular composition of the tumor microenvironment * P < 0.05, ** P < 0.01, *** P < 0.001
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BGN expression dictates sensitivity 
to chemotherapeutic agents in metastatic ESCC
In the therapeutic landscape of metastatic ESCC, chemo-
therapy regimens incorporating platinum and fluoropy-
rimidine/paclitaxel continue to set the standard of care 
[41]. Chemotherapy sensitivity refers to the extent of 
vulnerability of cancer cells to chemotherapeutic agents. 
Highly sensitive tumor cells are more likely to be eradi-
cated during treatment, thereby enhancing the therapeu-
tic efficacy of the drugs. Our approach commenced by 
stratifying ESCC patients into high and low-expression 
cohorts according to the median expression level of BGN. 
Subsequently, we assessed the differential drug sensitivity 
between these cohorts to identify candidate therapies for 
patients with elevated BGN expression. Notably, ESCC 
patients exhibiting high BGN expression demonstrated 
enhanced sensitivity to docetaxel, paclitaxel, and oxali-
platin, all established chemotherapeutic agents in ESCC 
management and mTOR inhibitor OSI-027 (Fig.  8A). 
To elucidate this, we conducted cell proliferation assays 
to assess the chemosensitivity of cells exhibiting varying 
levels of BGN expression to a panel of clinically relevant 
drugs. It is worth noting that the proliferation of TE-1 
cells, which endogenously express high levels of BGN, 
was markedly suppressed upon treatment with docetaxel, 
paclitaxel, oxaliplatin and OSI-027, particularly when 
compared to cells with BGN knockdown (Fig.  8B–E). 
Altogether, our data suggest that BGN expression may 
serve as a predictive biomarker to guide clinical drug 
selection in ESCC treatment.

Discussion
ESCC is characterized by its aggressive phenotype, typi-
cally presenting at advanced stages with a pronounced 
tendency for metastasis and exhibiting resistance to 
chemotherapeutic agents. The BMs provide structural 
support and tissue compartmentalization, facilitating 
dynamic cellular interactions that regulate behaviors like 
proliferation and migration [13]. Additionally, BMs act as 
a physical barrier, typically impeding primary tumor dis-
semination during the in situ phase of cancer [42]. Mean-
while, the degradation of BMs is a critical initial step for 
ESCC cells to invade and metastasize. Therefore, investi-
gating the early diagnosis and mechanisms of ESCC may 
enhance diagnostic precision and guide stratified thera-
peutics, addressing a critical research gap. With this in 

mind, we aimed to investigate the clinical relevance of 
BM-associated genes in ESCC. Using single-cell data, we 
initially estimated the BM score in individual cells based 
on the expression profiles of related genes. Our integra-
tive analysis identified a set of 22 differentially expressed 
genes enriched in BMs functions, which were further 
refined to seven key diagnostic genes (BGN, COL4A1, 
LAMB3, LUM, MMP1, NELL2, and SPARC​) through 
machine learning algorithms. These genes showed dis-
tinct co-expression patterns and high diagnostic accu-
racy in ESCC, as validated across independent datasets, 
underscoring their potential as robust biomarkers for 
early detection and stratified treatment strategies. This 
approach holds the potential for diagnosing and treat-
ing a spectrum of solid tumors in future oncology 
applications.

Among the seven biomarkers, MMP-1, known for 
its BM-degrading capabilities, has been implicated as a 
potential diagnostic and prognostic biomarker in ESCC 
[43]. COL4A1, a key component of collagen IV, has been 
shown to promote tumorigenesis in various cancers 
and is consistently upregulated in ESCC [44]. Laminins, 
encoded by LAMB3, are glycoproteins integral to BM 
and have been linked to cancer cell proliferation and 
migration [45]. SPARC, a matricellular glycoprotein, 
is associated with aggressive metastatic tumors and is 
highly expressed in ESCC, where it may promote tumor 
progression through interactions with the tumor micro-
environment [46]. LUM, a small leucine-rich proteogly-
can, and NELL2, a secreted protein with potential roles in 
cancer development, were also identified as differentially 
expressed in ESCC. Biglycan (BGN) is a vital extracel-
lular matrix constituent implicated in various malignan-
cies [47–50]. It can be secreted by prostate cancer cells 
and regulate myeloid-derived suppressor cells (MDSCs) 
migration through Akt/mTOR and MNK/eIF4E pathways 
[51].

In the context of advanced cancers, tumor-associated 
macrophages (TAMs) are known to undermine immune 
surveillance by adopting immunosuppressive attrib-
utes that impede the antitumor efficacy of CD8+ T cells. 
These TAMs exhibit an upregulation of PD-L1, which 
interfaces with PD-1 receptors on T cells, precipitating 
T cell exhaustion. Furthermore, they secrete IL-10, TGF-
β, and arginase, as well as initiate collagen deposition 
and TME metabolic reprogramming, which collectively 

Fig. 6  Molecular characterization and functional analysis of fibroblasts in ESCC. (A) Tissue-specific expression patterns of BMRGs including BGN, 
MMP1, LUM, SPARC​, COL4A1, and NELL2 across various cell types. (B) Pseudotime trajectory analysis of fibroblasts, illustrating differentiation stages 
(left) and progression along pseudotime (right). (C) Expression dynamics of BGN, COL4A1, LUM, and SPARC across different pseudotime points 
and differentiation stages. (D) The GSCALite platform was used to analyze the cancer-related pathway activity. (E) Examination of the correlation 
between BGN gene expression and EMT in pan-cancer using the EMTome database, revealing the widespread impact of BGN on cancer progression

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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dampen the activity of CD8+ T cells [52]. This immu-
nosuppressive environment propels the differentiation 
of CD4+ T cells into regulatory T cells (Tregs), thereby 
exacerbating the suppression of antitumor responses. 
Treg cells and TAMs are engaged in a reciprocal positive 
feedback mechanism that fosters an immunosuppres-
sive phenotype [53]. This study revealed that the seven 
BM genes significantly correlate with M0 macrophages, 
M1 macrophages, and CD8 T cells, indicating their role 
in the tumor immune microenvironment (Fig.  4D). In 
addition, cancer-associated fibroblasts (CAFs) and TAMs 
interact through the SDF-1/CXCR4 signaling axis, lead-
ing to the activation of PI3K/Akt and NF-κB pathways, 
thereby reinforcing a sophisticated network of immune 
evasion [54, 55]. CAFs are critical in modulating the 
biomechanical properties of the ECM, contributing to 
its stiffness and degradation. These cells actively engage 
with a diverse array of cell types within the TME, thereby 
orchestrating ECM remodeling to facilitate the process of 
tumorigenesis [36]. In this work, our research delineates 
an ESCC tumor microenvironment dichotomy in BM 
gene expression, signifying immune response complexity 
and therapeutic targeting opportunities. ESCC molecu-
lar subtypes, distinguished by differential BMRG expres-
sion, reveal subtype B as more aggressive with enriched 
immune and stromal scores, highlighting the role of 
fibroblasts in tumorigenesis. BGN is hypothesized to 
enhance the migratory and invasive properties of malig-
nant cancer cells [56, 57]. Its modulation by the TGF-β 
signaling pathway, a vital driver of EMT, highlights the 
importance of this interplay [58]. Furthermore, BGN has 
emerged as a biomarker that marks the progressive tran-
sition from normal colonic mucosa to adenoma and ulti-
mately to adenocarcinoma, particularly in the context of 
colorectal cancer [59].

BGN’s significant correlation with EMT pathway acti-
vation across cancers suggests its pivotal role in tumor 
progression, warranting further investigation into its 
specific function in ESCC (Fig.  6D, E). Although  ele-
vated BGN  expression has  been reported  to correlate 
with poorer  overall survival in ESCC, the underlying 

mechanisms remain to be elucidated [24]. In vitro experi-
ments from our study corroborate these findings, show-
ing that RNA interference-mediated BGN suppression in 
ESCC cell lines significantly impeded cell proliferation, 
induced apoptosis, and attenuated cell migration and 
invasion, revealing a tumor-suppressive role for BGN in 
ESCC pathophysiology.

Cancer represents a multifaceted systemic disorder 
characterized by the dynamic interplay between malig-
nant cells, the ECM, and the diverse cellular constituents 
of the TME. The ECM’s pivotal role in tumor progression 
marks it as a prime target for oncological therapies. TKIs 
have revolutionized NSCLC [60] and CML [61] treat-
ment by targeting EGFR mutations, partially via discoidin 
domain receptors (DDRs) signal transduction inhibition. 
There is an urgent need to identify tumor-specific ECM 
targets that can suppress cell proliferation, migration, and 
angiogenesis to curb tumor progression without harming 
healthy tissues. Intratumoral ECM has been proposed 
as an antigen for tumor vaccines and CAR therapy, with 
studies demonstrating that fibronectin EDA domain-tar-
geted vaccines improved macrophage infiltration, inhib-
ited angiogenesis, and reduced metastasis in a breast 
cancer mouse model [62, 63]. Despite advances, chal-
lenges persist in ECM-targeted cancer therapies, notably 
the absence of systematic assessments of ECM variability 
across cancers, which is essential for tailored treatment 
strategies and sensitivity profiling. Furthermore, the scar-
city of ECM-specific drug libraries may stem from inad-
equate in vitro and in vivo models [37]. Our stratification 
of ESCC patients by BGN expression levels identified a 
heightened sensitivity to standard chemotherapies in the 
high-expression cohort. TE-1 cells with intrinsic high 
BGN levels showed significantly reduced proliferation 
following treatment with docetaxel, paclitaxel, oxalipl-
atin and OSI-027, in accordance with the drug sensitivity 
analysis. These findings position BGN as a promising bio-
marker for personalized ESCC chemotherapy and high-
light its potential role in guiding the selection of targeted 
therapeutics.

(See figure on next page.)
Fig. 7  Impact of BGN knockdown on ESCC cell phenotypes. (A) Western blot analysis confirming the significant suppression of BGN expression 
following siRNA transfection in ESCC cells. (B) Knockdown BGN led to a significant downregulation of the EMT marker N-cadherin, accompanied 
by an upregulation of E-cadherin. (C) CCK-8 assay depicting the attenuated proliferation of TE-1 cells upon BGN knockdown. (D) Plate cloning 
assay illustrating the reduced clone formation capacity of TE-1 cells with BGN depletion. (E) Flow cytometry analysis revealing the influence 
of BGN knockdown on apoptosis in TE-1 cells, focusing on the role of BGN. (F-G) Transwell assays (F) and wound-healing assays (G) quantifying 
the compromised migration capabilities of TE-1 cells post-BGN knockdown. Error bars, ± SD from at least three biological replications. * P < 0.05,  ** 
P < 0.01, *** P < 0.001, ****P < 0.0001. (H) In the left panel, the AlphaFold-predicted structure of the BGN protein (P21810) is depicted in a cartoon 
representation, with O-linked glycosylation sites at S42, S47, S180 and S198, as well as N-linked glycosylation sites at N270 and N311, illustrated 
using a ball-and-stick model. The 12 leucine-rich repeat (LRR) domains are delineated within dashed squares. The right panel presents a rotated 180° 
view of the charge distribution, with elliptical dashed lines highlighting the positively charged regions at the head and tail of the ’palisade’ structure
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Fig. 7  (See legend on previous page.)
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Fig. 8  BGN expression and its correlation with drug sensitivity in ESCC. (A) Predicted sensitivity profiles for the chemotherapeutic agents docetaxel, 
paclitaxel, oxaliplatin and OSI-027, stratified by BGN expression levels. (B-E) Proliferation assays showing the effects of docetaxel (B), paclitaxel 
(C), oxaliplatin (D) and OSI-027 (E) drugs on BGN knockdown TE-1 cells, highlighting the influence of BGN expression on treatment response, 
suggesting a potential role of BGN in dictating therapeutic susceptibility. Error bars, ± SD from three biological replications. * P < 0.05, ** P < 0.01, *** 
P < 0.001, **** P < 0.0001
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Conclusion
In conclusion, our research has pinpointed seven pivotal 
characteristic genes and crafted a diagnostic nomogram 
integrating these genetic markers with clinical metrics, 
offering a robust framework for the early detection of 
ESCC. These genetic elements may also serve as prognos-
tic indicators and therapeutic targets, facilitating person-
alized clinical strategies and medical decision-making for 
ESCC management. Given BGN’s crucial involvement in 
the etiology and progression of ESCC, therapeutic target-
ing of this protein could confer a significant clinical ben-
efit. Thus, the adjunctive use of chemotherapeutic agents 
like docetaxel, paclitaxel, and oxaliplatin, in tandem with 
current therapeutic strategies, may significantly bolster 
the clinical efficacy of ESCC treatments.
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