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Abstract
Background  Kidney renal clear cell carcinoma (KIRC) represents a significant proportion of renal cell carcinomas and 
is characterized by high aggressiveness and poor prognosis despite advancements in immunotherapy. Disulfidptosis, 
a novel cell death pathway, has emerged as a critical mechanism in various cellular processes, including cancer. This 
study leverages machine learning to identify disulfidptosis-related long noncoding RNAs (DRlncRNAs) as potential 
prognostic biomarkers in KIRC, offering new insights into tumor pathogenesis and treatment avenues.

Results  Our analysis of data from The Cancer Genome Atlas (TCGA) led to the identification of 431 DRlncRNAs 
correlated with disulfidptosis-related genes. Five key DRlncRNAs (SPINT1-AS1, AL161782.1, OVCH1-AS1, AC131009.3, 
and AC108673.3) were used to develop a prognostic model that effectively distinguished between low- and high-
risk patients with significant differences in overall survival and progression-free survival. The low-risk group had a 
favorable prognosis associated with a protective immune microenvironment and a better response to targeted drugs. 
Conversely, the high-risk group displayed aggressive tumor features and poor immunotherapy outcomes. Validation 
through qRT‒PCR confirmed the differential expression of these DRlncRNAs in KIRC cells compared to normal kidney 
cells, underscoring their potential functional significance in tumor biology.

Conclusions  This study established a robust link between disulfidptosis-related lncRNAs and patient prognosis in 
KIRC, underscoring their potential as prognostic biomarkers and therapeutic targets. The differential expression of 
these lncRNAs in tumor versus normal tissue further highlights their relevance in KIRC pathogenesis. The predictive 
model not only enhances our understanding of KIRC biology but also provides a novel stratification tool for precision 
medicine approaches, improving treatment personalization and outcomes in KIRC patients.
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Introduction
Approximately 52,360 men and 29,440 women are pro-
jected to be diagnosed with kidney cancer in the United 
States of America in 2023. Kidney cancer is the 10th 
leading cause of death among men with cancer and the 
11th leading cause of death among women with cancer. 
Survival rates are similar for black and white patients 
with kidney cancer [1]. Renal cell carcinoma (RCC) is a 
common tumor of the genitourinary system. It is highly 
aggressive and has a high mortality rate [2]. Kidney renal 
clear cell carcinoma (KIRC) is the predominant patholog-
ical type of RCC, accounting for approximately 75–80% 
of RCC cases [3]. KIRC is heterogeneous and has a high 
metastatic rate and a poor prognosis [4]. Immunotherapy 
based on immune checkpoint inhibitors (ICIs) has ben-
efited patients with kidney cancer and has significantly 
better efficacy than conventional cytokine therapy. How-
ever, long-term use of the same drugs inevitably gener-
ates drug resistance [5]. Therefore, investigating new 
mechanisms underlying the pathogenesis of kidney can-
cer and identifying more effective therapeutic targets are 
necessary for successful treatment.

Disulfidptosis is a novel mechanism of programmed 
cell death (PCD). It differs from other mechanisms of 
PCD, such as necroptosis, apoptosis, autophagy and fer-
roptosis. Disulfidptosis is mediated by high levels of cys-
teine uptake coupled with inadequate NADPH supply. 
NADPH depletion leads to the abnormal formation of 
disulfide bonds in actin cytoskeletal proteins, followed by 
disulfide stress caused by the excessive accumulation of 
disulfide molecules, which further affects actin cytoskele-
tal proteins and leads to the collapse of the actin network 
and eventually cell death [6]. Specifically, in SLC7A11high 
cells, glucose depletion leads to a decrease in NADPH 
production. However, the concentration of cystine does 
not decrease, resulting in its accumulation. Eventually, 
abnormal disulfide bonds bind to the actin cytoskel-
eton, leading to cell death [7]. Actin is a multifunctional 
cytoskeletal protein that participates in several cellular 
events, such as transcription, translation, cell morpho-
genesis, cell mechanics, intracellular transport and disul-
fide formation [8, 9]. Alterations in the cytoskeleton of 
plants and animals play an active role in the initiation and 
regulation of PCD [10, 11]. Therefore, understanding the 
mechanism of disulfidptosis in tumors is important for 
inducing cancer cell death.

With the continuous development of biosequenc-
ing technology, numerous noncoding RNAs (ncRNAs) 
have been identified. Long noncoding RNAs (lncRNAs) 
are a class of ncRNAs that have received substantial 
attention from scholars in recent years [12]. The expres-
sion of the lncRNA NEAT1 is downregulated in RCC 
and is associated with a poor prognosis. Methylation 
of NEAT1 results in the upregulation of its expression 

and decreases the proliferative and migratory abilities 
of cancer cells [13]. The lncRNA PLK1S1 leads to RCC 
progression and sorafenib resistance by inhibiting the 
miR-653/CXCR5 axis [14]. The lncRNA SNHG12 stabi-
lizes SP1 by binding to SP1 and preventing its ubiquiti-
nation-dependent hydrolysis, leading to the upregulation 
of downstream CDCA3, which leads to RCC progres-
sion and sunitinib resistance [15]. Chen et al. established 
a prognostic nomogram based on five m6A-related 
lncRNAs to predict the overall survival of patients with 
KIRC and examined the biological functions of m6A-
related lncRNAs [16]. Zhang et al. constructed a prog-
nostic signature comprising seven cuproptosis-related 
lncRNAs that had greater predictive efficacy than clinico-
pathological parameters and further examined immune 
characteristics and drug sensitivity [17]. In addition, 
necrosis-, autophagy- and hypoxia-related lncRNA mod-
els have been constructed to predict the prognosis of 
KIRC patients [18–20], providing important guidance for 
treatment. Although the role of numerous lncRNAs in 
KIRC has been reported, in-depth studies on lncRNAs in 
KIRC are warranted owing to the scarcity of clinical sam-
ples and the limitations of cellular and animal models.

In a study, mass spectrometry revealed that the tumor 
microenvironment (TME) of KIRC is characterized by 
high infiltration of lymphocytes, particularly CD8+PD-1+ 
T cells [21]. Owing to the low sensitivity of RCC to con-
ventional radiotherapy and chemotherapy, surgery is the 
primary treatment for RCC [22]. Immunotherapies based 
on ICIs, such as PD-1/PD-L1 and CTLA-4 inhibitors, 
mainly target the TME and have revolutionized the treat-
ment of multiple cancers [23]. Changes in the TME of 
RCC are regulated by the interaction between EHBP1L1 
and JAK1 [24]. Single-cell RNA sequencing of KIRC 
tumors revealed that T-cell depletion was significantly 
associated with poor prognosis and might serve as a 
critical factor in the immunosuppression of KIRC tumors 
[25]. In this study, we investigated the differences in dif-
ferent immune cells and immune functions in the KIRC 
TME by disulfidptosis-related lncRNAs (DRlncRNAs).

The relevant clinical data of patients with KIRC were 
obtained from The Cancer Genome Atlas (TCGA) data-
base. R software was used to construct a prognostic 
model based on DRlncRNAs to improve the prediction 
of patient prognosis. In addition, the biological functions 
and signaling pathways of DRlncRNAs, immune cell infil-
tration, somatic mutations and immunotherapeutic effi-
cacy were examined, and the effects of antitumor drugs 
on different risk groups were predicted. The findings of 
this study provide insights into the biological mecha-
nisms of DRlncRNAs in KIRC and may guide the clinical 
prognosis of patients with KIRC.
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Materials and methods
Data collection
The RNA-seq, clinical and somatic mutation data of 
patients with KIRC, including transcriptomic data from 
541 tumor samples, 72 paracancerous samples and 532 
clinical data, were extracted from the TCGA database. 
All patients with KIRC were randomly assigned to the 
training (n = 373) or test (n = 159) group. The chi-square 
test was used to estimate differences in the clinical char-
acteristics of patients between the two groups. Disulfidp-
tosis-related genes were obtained from one of the most 
recently published articles [6].

Construction of a risk model based on disulfidptosis-
related lncRNAs
We identified 10 disulfidptosis-related genes by search-
ing the relevant literature [6]. Then, the correlation of the 
expression pattern between lncRNAs and genes linked 
to disulfidptosis was evaluated by Pearson correlation 
coefficients with P < 0.001 and |R|> 0.4. Subsequently, 
prognostically significant DRlncRNAs were identified 
via continuous dimensionality reduction. First, 86 DRln-
cRNAs associated with the prognosis of KIRC patients 
were identified via univariate Cox analysis. Second, the 
lasso algorithm was used to reduce dimensionality, and 
19 DRlncRNAs associated with overall survival (OS) in 
patients with KIRC were identified [26]. Third, five DRln-
cRNAs were identified as significant prognostic factors 
via multivariate Cox analysis, and a prognostic model 
was constructed. The risk score of each patient with 
KIRC was determined using a formula derived from the 
model, and the patients were subsequently divided into 
two risk groups based on the median risk score.

Assessment of the accuracy and independence of the risk 
model and construction of a nomogram
Kaplan–Meier (K–M) curves were plotted to assess the 
predictive ability of the risk model. Receiver operating 
characteristic (ROC) curves were plotted to examine 
the ability of the model to predict 1-, 3- and 5-year sur-
vival probabilities. Principal component analysis (PCA) 
was used for dimensionality reduction and visualization 
of the results of different subgroups. The risk model was 
examined using univariate and multivariate Cox regres-
sion analyses to assess whether it was a reliable predictor 
of outcomes. In addition, a nomogram was constructed 
by integrating various clinical characteristics and risk 
scores, and calibration curves were plotted to assess the 
accuracy of the nomogram.

Functional enrichment analysis
Differentially expressed genes (DEGs) were identified 
between the risk groups based on the following criteria: 
|log2FC| > 1.0 and p < 0.05. Gene Ontology (GO) analysis 

was performed to examine the biological functions of the 
DEGs. The analysis included three aspects, namely, bio-
logical processes (BPs), cellular components (CCs) and 
molecular functions (MFs). Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis was performed to investi-
gate signaling pathways associated with DEGs. Gene set 
enrichment analysis (GSEA) was performed to identify 
signaling pathways in the low- and high-risk groups.

Tumor microenvironment, somatic mutation analysis and 
drug prediction
The ESTIMATE algorithm was used to evaluate differ-
ences in TMEs between the two risk groups [27]. The 
CIBERSORT algorithm was used to evaluate the infil-
tration levels of 22 types of immune cells in the two risk 
groups [28]. The ssGSEA algorithm was used to analyze 
immune cell infiltration and immune function in differ-
ent risk groups [29]. The tumor immune dysfunction and 
exclusion (TIDE) scores were calculated to examine the 
immune escape of tumor cells and assess their response 
to ICIs in the two risk groups [30]. Somatic mutation data 
extracted from the TCGA database were used to ana-
lyze the tumor mutational burden (TMB) of patients in 
the two risk groups and to classify patients into low- and 
high-TMB groups based on the median TMB score. The 
‘oncoPredict’ R package was used to calculate the IC50 
values of common antitumour drugs to predict the drug 
response of patients with KIRC in different risk groups.

Cell culture and quantitative reverse transcription 
polymerase chain reaction
A human KIRC cell line (786-O, Caki-1) and a human 
normal control cell line (HK-2) were purchased from Pri-
cella (Wuhan, China). The cells were cultured in RPMI-
1640 medium (BI, Israel) supplemented with 10% fetal 
bovine serum (BI, Israel) and 1% streptomycin and peni-
cillin. The cells were cultured at 37  °C in a humidified 
environment with 5% CO2. TRIzol (Invitrogen, USA) was 
used to extract total RNA, and qRT‒PCR was performed 
to detect the expression of the five DRlncRNAs. PCR was 
performed using UltraSYBR (CWBIO, China) on an ABI 
7500 system under conventional conditions. Glycerol-
3-phosphate dehydrogenase (GAPDH) was used as an 
endogenous reference. The sequences of primers used for 
PCR are listed in Table 1.

Statistical analysis
All the statistical analyses were performed using R soft-
ware (version 4.2.1). A t test was used to analyze differ-
ences between groups. K‒M analysis and the log-rank 
test were used to examine differences in survival between 
the risk groups. Univariate and multivariate Cox regres-
sion analyses were performed to identify prognostic 
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factors associated with KIRC. A p value of < 0.05 indi-
cated a statistically significant difference.

Results
Data of patients with KIRC
A flow chart demonstrating the study protocol is shown 
in Fig. 1. A total of 532 patients with KIRC were divided 
into training (373 patients) and test (159 patients) sets at 
a ratio of 7:3. The data of patients in the training set were 
used to identify prognostic DRlncRNAs and establish a 
prognostic model, whereas the data of patients in the test 
set were used to verify the accuracy of the model. The 
two groups did not significantly differ in terms of clini-
cal characteristics, such as age, sex, grade, or TNM stage 
(p > 0.05) (Table 2).

Risk model based on DRlncRNAs for predicting the 
prognosis of KIRC
We obtained 10 disulfidptosis-related genes from the lit-
erature. Then, the Pearson correlation coefficient method 
was used to analyze the correlation between lncRNAs in 
the TCGA database and disulfidptosis-related mRNAs, 
and 431 DRlncRNAs were identified (Table S1). As 
shown in Fig.  2A, the Sankey diagram shows that 10 
disulfidptosis-related genes and 431 DRlncRNAs were 
involved in the coexpression network. Univariate Cox 
regression analysis of OS data from KIRC patients in the 
training set identified 86 DRlncRNAs associated with 
OS in KIRC (Table S2). Subsequently, 19 DRlncRNAs 
that were strongly associated with the prognosis of KIRC 
patients were identified via LASSO regression analy-
sis (Fig. 2B and C). Finally, five prognostic DRlncRNAs, 
namely, SPINT1-AS1, AL161782.1, OVCH1-AS1, 
AC131009.3 and AC108673.3, were used to construct 
a multivariate Cox regression model (Fig.  2D). The risk 
score was calculated based on the expression and Cox 
regression coefficients of these lncRNAs as follows: risk 
score = SPINT1-AS1 × -0.284849287424872 + AL161782.1 
× -0.558120637222694 + OVCH1-AS1 × -0.76333739830

2014 + AC131009.3 × 0.469858141530083 + AC108673.3 × 
0.431142218409321.

Furthermore, the correlations between 10 disulfidpto-
sis-related genes and the 5 DRlncRNAs were examined 
(Fig.  2E). The expression of the five DRlncRNAs in the 
low- and high-risk groups is shown in Fig. 2F, and the risk 
score distribution, survival time, and survival status of 
the two risk groups in the training set were analyzed. The 
expression of SPINT1-AS1, AL161782.1 and OVCH1-
AS1 was greater in the low-risk group than in the high-
risk group, indicating that these three DRlncRNAs may 
serve as protective factors for the prognosis of KIRC 
patients. However, the expression of AC131009.3 and 
AC108673.3 was greater in the high-risk group than in 
the low-risk group, indicating that these two DRlncRNAs 
may serve as risk factors for KIRC. K‒M curves were sub-
sequently plotted to assess differences in OS and progres-
sion-free survival (PFS) between the two risk groups. The 
results indicated that OS and PFS were better in the low-
risk group than in the high-risk group (p < 0.001 for all) 
(Fig. 2G and H).

Validation of the DRlncRNA-based risk model and PCA
The reliability of the risk model was verified in the test 
set. Risk curves and scatter plots demonstrated that 
patients in the low-risk group had lower risk scores, lon-
ger survival times and better prognoses than those in the 
high-risk group (Fig. 3A). In addition, the heatmap vali-
dated that SPINT1-AS1, AL161782.1 and OVCH1-AS1 
were protective factors for KIRC, whereas AC131009.3 
and AC108673.3 were risk factors for KIRC. K‒M analy-
sis revealed that OS was better in the low-risk group than 
in the high-risk group (p < 0.001) (Fig. 3B). The sensitiv-
ity and specificity of the risk score in the test set were 
assessed using ROC curves. The risk score had a larger 
area under the curve (AUC) than the other clinical risk 
indicators in the test set (Fig. 3C).

The AUC of the risk model for predicting 1-, 3- and 
5-year OS in the test set was > 0.7 (Fig.  3D), suggesting 
that the risk model based on the five DRlncRNAs has 
good discrimination efficiency. Subsequently, PCA was 
performed to assess the predictive performance of 431 
DRlncRNAs (Fig.  3E) and the risk model (Fig.  3F). The 
risk model was effective in distinguishing patients in the 
low-risk and high-risk groups, indicating a notable dif-
ference in sensitivity to disulfidptosis between the two 
groups.

Independent prognostic analysis and nomogram
Univariate and multivariate Cox regression analyses were 
performed to determine whether the five DRlncRNAs 
independently predicted the OS of patients with KIRC. 
The results of univariate Cox regression analysis showed 
that age, grade, stage and risk score were significantly 

Table 1  Primer sequences for qRT-PCR.
Primer name Primer sequence (5’−3’) Length (bp)
SPINT1-AS1 F: 5’ ​G​A​G​A​C​A​C​A​C​C​T​G​A​T​C​A​G​C​C​C 3’ 97

R: 5’ ​C​T​C​T​T​C​G​A​T​C​C​T​G​G​G​G​T​G​C 3’
AL161782.1 F: 5’ ​T​G​C​T​G​G​A​G​A​A​G​A​G​T​G​G​C​T​T​C 3’ 84

R: 5’ ​G​G​A​T​T​C​C​A​G​G​T​C​A​G​A​C​G​C​T​T 3’
OVCH1-AS1 F: 5’ ​G​C​A​A​C​T​T​C​C​T​T​G​T​T​G​A​T​G​G​T​C​C 3’ 128

R: 5’ ​G​G​T​T​C​A​T​A​G​C​C​C​C​C​T​G​C​A​A​A 3’
AC131009.3 F: 5’ ​G​A​G​C​C​G​G​A​G​A​G​A​A​C​A​G​A​T​A​G​C 3’ 85

R: 5’ ​G​C​A​C​T​C​G​G​A​A​G​A​G​C​A​A​G​G​A​T 3’
AC108673.3 F: 5’ ​A​C​C​T​G​C​T​C​T​C​C​A​G​T​G​A​A​T​C​C 3’ 108

R: 5’ ​G​G​C​T​T​C​A​G​G​C​A​G​C​A​C​T​T​T​T​G 3’
GAPDH F: 5’ ​C​C​C​C​A​C​C​A​C​A​C​T​G​A​A​T​C​T​C​C 3’ 90

R: 5’ ​G​T​A​C​A​T​G​A​C​A​A​G​G​T​G​C​G​G​C​T 3’
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associated with OS (p < 0.05 for all) (Fig. 4A). Multivari-
ate Cox regression analysis revealed that the risk score 
(p < 0.001) independently predicted OS in patients with 
KIRC (Fig. 4B). These results suggest that the risk model 
constructed based on the five DRlncRNAs is an indepen-
dent prognostic factor for KIRC.

Furthermore, for the entire cohort, the risk model had 
greater AUC values (AUC = 0.760) than the other clini-
cal risk indicators (Fig. 4C). The AUC of the risk model 
for predicting 1-, 3- and 5-year survival probabilities in 
the entire cohort was > 0.7, demonstrating the predictive 

accuracy and reliability of the model (Fig. 4D). A nomo-
gram was constructed by integrating multiple clinical 
factors and risk scores to predict the survival of patients 
with KIRC at 1, 3 and 5 years (Fig. 4E). Subsequently, a 
calibration curve was plotted to verify the accuracy of 
the nomogram (Fig.  4F). K‒M curves were plotted to 
examine the efficiency of the risk model in predicting 
several clinical traits, such as age, sex and TNM stage. 
The results indicated that the low-risk group had a better 
prognosis (Fig. 5).

Fig. 1  Flow chart of the study protocol
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Functional enrichment analysis
GO and KEGG enrichment analyses were performed to 
examine the functions of the 735 DEGs (Table S3). The 
DEGs were enriched in immune-related BPs, including 
humoral immune responses, defense responses against 
bacteria and organic anion transport. In terms of CCs, 
the DEGs were significantly enriched in apical cells, col-
lagen-containing extracellular matrix and immunoglobu-
lin complexes. In terms of MFs, the DEGs were involved 
in receptor–ligand activity, antigen binding and immuno-
globulin–receptor binding (Fig. 6A).

KEGG enrichment analysis indicated that the DEGs 
were mainly enriched in pathways associated with cyto-
kine–cytokine receptor interaction, protein digestion and 
absorption, viral protein interaction with cytokines and 
cytokine receptors and complement and coagulation cas-
cades (Fig. 6B).

In addition, GSEA revealed that pathways associated 
with primary immunodeficiency, taste transduction, 
hematopoietic cell lineage, nod-like receptor signaling 
and cytokine–cytokine receptor interaction were signifi-
cantly enriched in the high-risk group (Fig. 6C), whereas 
pathways associated with apoptosis, drug metabolism, 
cytochrome p450, fatty acid metabolism, PPAR signaling, 

valine, leucine and isoleucine degradation and other 
metabolism-related pathways were significantly enriched 
in the low-risk group (Fig. 6D). We speculate that disul-
fidptosis is closely related to immune-related pathways, 
metabolism and apoptosis.

Immune infiltration landscape analysis and 
immunotherapeutic efficacy
The TME plays a crucial role in the progression and 
treatment of KIRC. Therefore, we examined the TME 
in different risk groups using multiple algorithms. The 
results of the ESTIMATE algorithm revealed that the 
immune and ESTIMATE scores of patients were lower in 
the low-risk group than in the high-risk group (p < 0.05 
for all) (Fig. 7A), whereas the stromal scores did not differ 
between the two groups. Furthermore, the CIBERSORT 
algorithm was used to evaluate the proportions of 22 
types of tumor-infiltrating immune cells. The distribution 
of immune cells differed between the two risk groups 
(Fig. 7B). As shown in Fig. 7C, the box plot demonstrated 
that the abundances of CD8+ T cells, T follicular helper 
cells, regulatory T cells (Tregs), M0 macrophages, acti-
vated mast cells and neutrophils were lower in the low-
risk group, whereas those of CD4 resting memory T cells, 
monocytes, M1 macrophages, M2 macrophages, resting 
dendritic cells, resting mast cells and eosinophils were 
greater in the low-risk group (p < 0.05 for all). In addition, 
the ssGSEA algorithm was used to analyze immune cell 
infiltration and immune function in different risk groups. 
The abundance of iDCs, mast cells and neutrophils was 
greater in the low-risk group, and MHC class I and type 
II IFN responses were greater in the low-risk group 
(p < 0.05 for all) (Fig.  7D). Finally, the TIDE algorithm 
was used to examine the relationship between the risk 
score and immunotherapy response. The results showed 
that the high-risk group had a significantly greater poten-
tial for immune escape and worse treatment outcomes 
(p < 0.001) (Fig. 7E).

Analysis of the somatic mutation landscape
By comparing the somatic mutation rate between the two 
risk groups, we found that the mutation rate was lower 
in the low-risk group (153/199 [76.88%] samples) than 
in the high-risk group (138/168 [82.14%] samples). The 
top 15 genes driving the mutations are shown in Fig. 8A. 
Furthermore, TMB scores were greater in the high-risk 
group than in the low-risk group (p = 0.012) (Fig.  8B). 
Patients with KIRC were divided into low- and high-TMB 
groups based on the median TMB score. K‒M analysis 
indicated that patients in the low-TMB subgroup had sig-
nificantly better OS than did those in the high-TMB sub-
group (p < 0.001) (Fig. 8C). The TMB and risk score were 
integrated to compare their efficiency in predicting the 
prognosis of KIRC patients. K‒M analysis revealed that 

Table 2  The clinical characteristics of KIRC patients in the 
training, validation and overall sets

Overall Validation Training P
Age
≤65 349(65.6%) 100(62.89%) 249(66.76%) 0.4479
>65 183(34.4%) 59(37.11%) 124(33.24%)
Gender
FEMALE 187(35.15%) 56(35.22%) 131(35.12%) 1
MALE 345(64.85%) 103(64.78%) 242(64.88%)
Grade
G1-G2 242(45.49%) 71(44.65%) 171(45.84%) 1
G3-G4 282(53.01%) 83(52.2%) 199(53.35%)
Unknow 8(1.5%) 5(3.14%) 3(0.8%)
Stage
Stage I-Stage II 323(60.71%) 87(54.72%) 236(63.27%) 0.0805
Stage III-Stage IV 206(38.72%) 71(44.65%) 135(36.19%)
Unknow 3(0.56%) 1(0.63%) 2(0.54%)
T classification
T1 272(51.13%) 72(45.28%) 200(53.62%) 0.1364
T2 69(12.97%) 18(11.32%) 51(13.67%)
T3 180(33.83%) 65(40.88%) 115(30.83%)
T4 11(2.07%) 4(2.52%) 7(1.88%)
M classification
M0 421(79.14%) 133(83.65%) 288(77.21%) 0.3283
M1 79(14.85%) 20(12.58%) 59(15.82%)
Unknow 32(6.02%) 6(3.77%) 26(6.97%)
N classification
N0 240(45.11%) 86(54.09%) 154(41.29%) 0.1029
N1 16(3.01%) 2(1.26%) 14(3.75%)
Unknow 276(51.88%) 71(44.65%) 205(54.96%)
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Fig. 2  Construction of the risk model based on DRlncRNAs. (A) Sankey diagram demonstrating disulfidptosis-related genes and DRlncRNAs. (B, C) Nine 
DRlncRNAs were identified via LASSO regression analysis. (D) Five DRlncRNAs were used to construct the multivariate Cox regression model. (E) Correla-
tion heatmap of 5 DRlncRNAs and disulfidptosis-related genes included in the multivariate Cox regression model. (F) Distribution of risk scores, survival 
status and survival time patterns of patients in different risk groups in the training set and the expression heatmap of the 5 DRlncRNAs. OS (G) and PFS 
(H) of patients in different risk groups in the training set
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Fig. 3  Validation of the DRlncRNA-based risk model and PCA. (A) Risk score distribution, survival status and survival time patterns of patients in different 
risk groups in the test set and the expression heatmap of five DRlncRNAs. (B) OS of patients in different risk groups in the test set. (C) ROC curves of clinical 
risk indicators and risk scores in the test set. (D) ROC curves for predicting 1-, 3- and 5-year OS in the test set. (E) PCA between different risk groups based 
on DRlncRNAs. (F) PCA between different risk groups based on the risk model
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patients with low TMB and risk scores had the best OS, 
whereas those with high TMB and risk scores had the 
worst OS (p < 0.001) (Fig. 8D).

Analysis of drug response
Given the significant differences in prognosis, immune 
microenvironment and somatic mutation frequency 
between the two risk groups, we screened for drugs 
sensitive to precision therapy in patients in the two risk 

groups. The R package oncoPredict can be used to asso-
ciate antitumor drugs with biomarkers and to easily pre-
dict the response of patients to many anticancer drugs 
[31]. We used OncoPredict to screen for antitumor drugs 
for patients with KIRC in different risk groups. The IC50 
values of four drugs (axitinib, ibrutinib, osimertinib and 
ruxolitinib) were lower in the low-risk group, indicat-
ing that these drugs are more beneficial for patients with 
KIRC with low risk scores (Fig.  9A and D). The IC50 

Fig. 4  Independent prognostic analysis and construction of a nomogram. (A) Forest plot of univariate Cox regression analysis. (B) Forest plot of multivari-
ate Cox regression analysis. (C) ROC curves of clinical risk indicators and risk scores for the entire cohort. (D) ROC curves of the risk model for predicting 
1-, 3- and 5-year OS for the entire cohort. (E) Nomogram. (F) Calibration curves of the nomogram
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values of the other four drugs (crizotinib, lapatinib, lin-
sitinib and nilotinib) were greater in the low-risk group, 
indicating that these drugs are more effective in patients 
with KIRC with high risk scores (Fig. 9E and H).

The expression pattern of DRlncRNAs
The expression of five DRlncRNAs in KIRC samples and 
normal samples was first explored in the TCGA data-
base. As shown in Fig.  10A and E, SPINT1-AS1 and 
AL161782.1 were downregulated, while OVCH1-AS1, 
AC131009.3 and AC108673.3 were upregulated in KIRC 
samples compared with normal samples. To validate 
the reliability of the model, qRT‒PCR was performed to 
verify the expression of the five DRlncRNAs in normal 
human renal tubular epithelial cells (HK-2) and KIRC 
cells (786-O, Caki-1). The expression of SPINT1-AS1 and 

AL161782.1 was lower in KIRC cells than in normal kid-
ney cells, whereas that of OVCH1-AS1, AC131009.3 and 
AC108673.3 was greater in KIRC cells than in normal 
kidney cells (Fig.  10F and J). These results demonstrate 
the reliability of the risk model constructed based on the 
five DRlncRNAs.

Discussion
KIRC is a relatively common type of cancer in adults. 
Because KIRC is not easily detected in the early stages, 
most patients with KIRC are diagnosed in the middle to 
late stages and have progressed to metastasis [32]. Few 
biomarkers are available for the early diagnosis or treat-
ment of KIRC, resulting in a relatively poor prognosis 
[33]. Immunotherapy can be used to treat patients with 
kidney cancer. However, two-thirds of patients with 

Fig. 5  K‒M analysis of OS in different subgroups based on the clinical characteristics of patients with KIRC in the TCGA cohort. (A) Age ≤ 65 years. (B) 
Age > 65 years. (C) Female. (D) Male. (E) Stages I–II. (F) Stage III–IV. (G) T1–T2. (H) T3–T4.
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advanced disease respond poorly to ICI therapy, possi-
bly because of factors in the TME that help tumor cells 
evade immunotherapy [34]. To improve the diagnosis 
of patients with early-stage KIRC and reduce the likeli-
hood of metastasis, we screened for prognosis-related 
biomarkers for KIRC using bioinformatics tools. These 
markers may help in the development of more effective 
immunotherapeutic strategies.

PCD is an active form of cell death mediated by spe-
cific genes and proteins. It plays an essential role in 
maintaining the growth and development of the body 
and the normal physiological functions of tissues and 
organs [35]. The PCD mechanisms reported in KIRC 
include ferroptosis, autophagy and apoptosis. Research-
ers have attempted to induce PCD through several tar-
gets and subsequently kill cancer cells to achieve the goal 

of treating tumors. Targeted inhibition of ISCA2 reduces 
HIF-1/2α levels, increases lipid peroxidation, induces 
iron death and inhibits tumor growth in KIRC [36]. 
Silencing of the obesity-associated protein FTO enhances 
N6-methyladenosine (m6A)-mediated autophagic flux 
and inhibits tumor growth and metastasis in KIRC [37]. 
In addition, knockdown of KEAP1 inhibits the resis-
tance of KIRC cells to axitinib and promotes apoptosis 
[38]. Wang et al. constructed a 6-gene signature related 
to cuprotosis to accurately predict the prognosis of KIRC 
patients [39]. Recent studies have proposed a novel disul-
fide stress-mediated PCD mode called disulfidptosis [6].

Excessive accumulation of intracellular disulfide mol-
ecules disrupts the actin network because actin cytoskel-
etal proteins are especially vulnerable to disulfide stress. 
Studies have demonstrated a close relationship between 

Fig. 6  Functional enrichment analyses. (A) GO. (B) KEGG. (C, D) GSEA.
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actin and apoptosis at the cellular and tissue levels. Actin 
binds to the α-actin protein, predisposing osteoblasts 
at focal adhesion sites to apoptosis [40]. Apoptotic cells 
can be expelled by the assembly of F-actin and myosin 
[41]. The precise alignment of disulfide bonds is essential 
for maintaining the structural integrity of intracellular 
cysteine-rich cytokines [42]. Oxidized cysteine residues 
in actin in sickle cell anemia can form disulfide bonds 
that reduce the dynamics of actin filaments and lead 
to disintegration of the erythrocyte cytoskeleton [43]. 

The thiol–disulfide oxidoreductase PDI1;1 reduces and 
degrades disulfide bonds in the high-molecular-weight 
structure of rice actin [44]. In addition, the surface viru-
lence factor IcsA plays an important role in actin-based 
motility in Shigella through three cysteine residues [45].

In-depth studies have revealed that lncRNAs can either 
promote or suppress tumors by participating in gene 
signaling regulation and can serve as promising poten-
tial biomarkers [46–48]. In one study, eight ferroptosis-
associated lncRNAs were used to construct a predictive 

Fig. 7  Immune infiltration analysis and assessment of immunotherapy outcomes. (A) The ESTIMATE algorithm was used to assess differences in immune, 
stromal and ESTIMATE scores between the two groups. (B, C) The CIBERSORT algorithm was used to evaluate differences in the abundances of 22 types 
of immune cells between the two groups. (D) The ssGSEA algorithm was used to analyze differences in the proportions of immune cells and immune 
functions between the two groups. (E) The TIDE algorithm was used to calculate TIDE scores between the two groups
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model that accurately predicted the prognosis of KIRC 
patients and suggested treatment options [49]. However, 
the role of DRlncRNAs in KIRC remains elusive. In this 
study, we identified DRlncRNAs based on disulfidptosis-
related genes and investigated how lncRNAs regulating 
disulfidptosis affect tumor progression and prognosis in 
KIRC.

Stepwise dimensionality reduction was performed 
sequentially through lasso and Cox regression analyses to 
reduce the number of feature parameters and construct a 
prognostic model. This method has been reported in sev-
eral studies [50, 51]. Five DRlncRNAs significantly asso-
ciated with the prognosis of KIRC, namely, SPINT1-AS1, 
AL161782.1, OVCH1-AS1, AC131009.3 and AC108673.3, 

Fig. 8  Analysis of the somatic mutation landscape. (A) Mutation distribution in the low-risk group. (B) Mutation distribution in the high-risk group. (C) 
Differences in TMB scores between different risk groups. (D) K‒M analysis of OS in different TMB groups. (E) K‒M analysis of OS among the four groups 
based on TMB scores and risk scores
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were identified and used to construct a prognostic model. 
Subsequently, a nomogram was developed to improve the 
prediction of OS in patients with KIRC at 1, 3 and 5 years. 
Among the five DRlncRNAs, three lncRNAs, OVCH1-
AS1, AC131009.3 and AC108673.3, have not been inves-
tigated previously, whereas the other two lncRNAs are 
closely associated with cancer. The lncRNA SPINT1-
AS1 has been extensively investigated. It is inconsis-
tently expressed in different cancers and is essential for 
inhibiting or promoting cancer progression. Initially, the 
expression of the lncRNA SPINT1-AS1 was found to be 
elevated in colorectal cancer (CRC) and was negatively 
associated with the mRNA expression of SPINT1 and the 
prognosis of CRC patients [52]. Subsequent studies have 
demonstrated that SPINT1-AS1 promotes CRC pro-
gression by suppressing miR-214 and increasing HDGF 

expression [53]. In addition, SPINT1-AS1 is an impor-
tant breast cancer (BC) regulator that may interact with 
the miRNA let-7 a/b/i-5p, and its knockdown inhibits the 
proliferation and migration of BC cells and promotes the 
resistance of BC cells to lapatinib [54, 55]. SPINT1-AS1 
is upregulated in cervical cancer, inhibits miR-214 via 
DNM3OS, activates the Wnt/β-catenin signaling pathway 
and is associated with a poor prognosis [56]. In addition, 
SPINT1-AS1 expression is downregulated in esophageal 
squamous cell carcinoma (ESCC), and patients with low 
expression of SPINT1-AS1 have shorter OS [57]. Fur-
thermore, the expression of SPINT1-AS1 is significantly 
increased in growth hormone-secreting pituitary adeno-
mas (GH-PAs) and is strongly associated with cancer 
aggressiveness [58]. In one study, 14 immune-related 
lncRNAs, including SPINT1-AS1, were used to construct 

Fig. 9  Analysis of therapeutic sensitivity. (A) Axitinib. (B) Ibrutinib. (C) Osimertinib. (D) Ruxolitinib. (E) Crizotinib. (F) Lapatinib. (G) Linsitinib. (H) Nilotinib
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a risk model for predicting the prognosis of patients with 
melanoma [59]. The lncRNA AL161782.1 is considered a 
m6A- and cuproptosis-related lncRNA in KIRC [60, 61]. 
In this study, AL161782.1 was identified as a DRlncRNA. 
We speculate that it is involved in multiple modes of 
PCD.

The biological functions and signaling pathways of the 
five DRlncRNAs were examined via enrichment analysis. 
The results of GO and KEGG analyses indicated that the 
DRlncRNAs were associated with several immune and 
metabolic pathways. Several proteins involved in comple-
ment and coagulation cascade reactions are upregulated 
in the serum of patients with thymomas [62]. DRln-
cRNAs were found to be associated with complement 
and coagulation cascades in this study. GSEA revealed 
that DRlncRNAs can influence immune- and apoptosis-
related pathways in KIRC. However, further studies are 
warranted to verify these findings.

Changes in the TME of kidney cancer may lead to 
disease progression [63]. We examined the relation-
ship between the risk score and changes in the TME of 
KIRC patients. Both immune and ESTIMATE scores 
were significantly greater in the high-risk group. In 
addition, patients in the high-risk group had greater 
immune cell infiltration and enhanced immune func-
tion, which explains, to some extent, differences in the 
OS of patients with KIRC between the two risk groups. 
The NF-κB signaling pathway is significantly activated in 
infiltrating CD8+ T cells, inducing apoptosis and lead-
ing to a worse overall prognosis [64], which is consistent 
with the results of this study. Tregs have been strongly 

associated with poor prognosis and poor immunother-
apy outcomes in KIRC patients [65]. Th2 cells are a sub-
population of CD4+ T cells that secrete IL-4 and IL-10 to 
promote tumor growth by suppressing the host immune 
system [66]. This phenomenon was observed in the high-
risk group in this study. We speculate that disulfidpto-
sis mediates alterations in immune function and hence 
influences the progression of KIRC. However, relevant 
basic studies demonstrating the relationship between 
disulfidptosis and immunity in KIRC are lacking. In this 
study, the abundances of most immune cells and immune 
function scores were greater in the high-risk group than 
in the low-risk group, suggesting that immune activity 
was greater in patients with high risk scores. Further-
more, the TIDE algorithm was used to estimate the rela-
tionship between risk score and response to ICIs. The 
results revealed that the high-risk group had a poorer 
response to ICI treatment, suggesting that DRlncRNAs 
are promising biomarkers for predicting the response to 
ICIs in KIRC patients.

A high TMB is associated with poor survival out-
comes and may inhibit immune infiltration in KIRC 
patients [67]. In this study, the risk score was found to 
be significantly positively correlated with the TMB. The 
high-risk-score and high-TMB-score groups had the 
shortest survival and the worst prognosis, whereas the 
low-risk-score and low-TMB-score groups had the high-
est survival rate and the best prognosis. This finding 
demonstrates the accuracy of the risk score in predict-
ing immunotherapy outcomes in patients with KIRC. 
Furthermore, we evaluated the sensitivity of patients 

Fig. 10  Exploration of the expression of DRlncRNAs in KIRC. Expression pattern of (A) SPINT1-AS1. (B) AL161782.1. (C) OVCH1-AS1. (D) AC131009.3. (E) 
AC108673.3 in normal or KIRC samples in the TCGA database. qRT‒PCR was used to detect the expression of (F) SPINT1-AS1. (G) AL161782.1. (H) OVCH1-
AS1. (I) AC131009.3. (J) AC108673.3 expression in normal human renal tubular epithelial cells (HK-2) and KIRC cells (786-O, Caki-1). *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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with KIRC to anticancer drugs in the two risk groups. 
Axitinib, ibrutinib, osimertinib and ruxolitinib were 
more effective in patients in the low-risk group, whereas 
crizotinib, lapatinib, linsitinib and nilotinib were more 
effective in patients in the high-risk group. These findings 
may help guide the treatment of patients with KIRC in 
clinical settings.

This study has several limitations that should be 
acknowledged. First, while our prognostic model was 
developed and validated using the TCGA dataset, we 
were unable to find a suitable external dataset that 
included all the necessary lncRNAs for validation. This 
lack of external validation limits the generalizability of 
our findings, and future studies should prioritize the col-
lection of data on these specific lncRNAs in independent 
cohorts to further test the reliability and robustness of 
our model. Second, the biological roles and underlying 
mechanisms of the candidate DRlncRNAs in KIRC pro-
gression were not explored in this study. Future research 
should focus on validating the prognostic value of these 
lncRNAs using both in vitro and in vivo experiments to 
provide more comprehensive biological evidence to sup-
port the statistical findings of our study.

Conclusion
In summary, this study is the first to report the role of 
DRlncRNAs in KIRC. A prognostic model was con-
structed based on DRlncRNAs using data from the 
TCGA-KIRC cohort. The findings of this study offer 
prospects for the diagnosis and treatment of KIRC.
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