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Novel crossover and recombination hotspots =
massively spread across primate genomes
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Abstract

Background The recombination landscape and subsequent natural selection have vast consequences forevolution
and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously
reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination.

Methods On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units
(AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number
of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates
and mouse.

Results We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread
throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more
abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same
colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several
of the colonies across the primate species studied, which mainly reached maximum complexity and size in human.

Conclusions We report novel crossover and recombination hotspots of the finest molecular resolution, massively
spread and shared across the genomes of human and several other primates. With respect to crossovers and recombi-
nation, these genomes are far more dynamic than previously envisioned.
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Background

Crossover and recombination, alongside mutation, gen-
erate the raw material of evolution and speciation [1, 2].
Recombination hotspots are regions in a genome that
exhibit elevated rates of recombination relative to a
neutral expectation. Studies on recombination hot-
spots are mainly founded on mapping crossover events
through pedigree analysis and linkage disequilibrium
[3, 4]. Identification of these hotspots paved the way for
the discovery of PRDMY, a trimethyl transferase, which
is associated with hotspot activity in both humans and
mouse [5-7]. Using HapMap data, Myers et al. identified
a 13-bp “core” motif “CCTCCCTNNCCAC” for PRDM9
binding, which is strongly correlated with hotspot activ-
ity when it occurs in both repeat and non-repeat DNA. A
close match to this motif was reported to occur in about
40% of the crossover hotspots known to date [8]. Degen-
erate versions of the motif, of variable binding activity for
PRDMDY, have since been identified in the human genome
on centiMorgan (cM) scales [9, 10]. The 13-mer motif is
the most characterized hotspot locus in human to date.
However, the level of expression of PRDM9 should con-
trol for only a fraction of the targets that are hotspots and
the overall temperature of the genome [11].

Other indirect approaches, such as phylogenetic
and integrated genetic versus physical map analyses,
led to the idea that the local rates of recombination are
positively correlated with GC content in the human
genome [12-15] and a few other mammals [16]. Lined
with the above, there are reports that meiotic recombi-
nation favors GC- over AT-rich alleles, and facilitates
local GC-content [17, 18]. When a meiotic recombina-
tion hotspot from a GC-rich isochore was inserted into
an AT-rich isochore domain, the site adopted the lower
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recombination activity, characteristic of its new environ-
ment [19]. It is reported that programmed in vitro dou-
ble strand break formation and loading of axial structure
proteins are much more prominent in GC-rich isochores
[9, 10, 12].

We previously reported that C and G trinucleotide
two-repeat units (CG-TTUs) form colonies of exceeding
significance across the human genome, based on Pois-
son distribution [20, 21]. Several of the large and medium
size colonies that were further analyzed in other species,
unveiled crossover and recombination hotspots, shared
across primates, and in some instances, even in mouse.

Here, we investigated A and T trinucleotide two-repeat
units (AT-TTUs) with a similar algorithm, and discov-
ered that the colonies formed by AT-TTUs were sig-
nificantly more abundant and larger than the colonies
formed by CG-TTUs. These novel crossover sites vastly
spread across primate genomes, and mainly reach maxi-
mum complexity and size in human.

Materials and methods
Whole-genome extraction of AT-TTUs in human
A Java software package was created (available at: https://
github.com/arabfard/Java_STR_Finder) to facilitate the
extraction of AT-TTUs, including AATAAT, ATAATA,
ATTATT, TTATTA, TATTAT, and TAATAA, along with
their corresponding locations (Fig. 1). To that end, we
utilized the latest version of the human genome assem-
bly (GRCh38. p14), obtained from the UCSC genome
browser (accessible at https://hgdownload.soe.ucsc.edu).
To ensure the accuracy and reliability of the data
obtained from the algorithm, a validation process was
conducted. This involved random manual examination of
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Fig. 1 Workflow diagram, outlining the various steps and algorithm developed in this research
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these units across the entire genome. Through this veri-
fication process, we confirmed that the algorithm func-
tioned as intended, and produced reliable results.

Comparison of the AT-TTU and CG-TTU colonies

in the human genome

The AT-TTU colonies from the present study were com-
pared to the CG-TTU colonies, yielded from our previ-
ous study (https://figshare.com/articles/dataset/All_possi
ble_CG-rich_trinucleotides/23260562) [21].

The extraction algorithm

The developed Java program was used to extract all possible
AT-TTUs, as follows: AATAAT, ATAATA, ATTATT,
TTATTA, TATTAT, and TAATAA, from the human
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The genome assemblies used were as follows: Chimpanzee:
Pan_tro_3.0, Gorilla: gorGor4, Macaque:Mmul_10, Mouse
lemur: Mmur_3.0, and Mouse: GRCm39.

Statistical analysis

The Poisson distribution was employed to determine the
probability distribution of the AT-TTU colonies. This
model assumed that the occurrence of the AT-TTUs was
random and independent of each other, and that their
distribution across the genome was relatively even. This
assumption was subsequent to our observations of the
ubiquitous occurrence of the sample colonies studied
(Table 1). Therefore, the probability of occurrence of var-
ious size colonies was calculated by the Poisson density
function, using the following formula:

- Colony Interval (bp)*all possible AT — TTUs in the human genome

Genome Size(3 gb)

genome sequence. The program initiated its search from
the first nucleotide of the genome, continuously scanning
for the occurrence of AT-TTUs. It employed a window
frame, consisting of 6 nucleotides. Upon discovering an
AT-TTU, the program recorded the count and location of
the occurrence. It then proceeded to search for new AT-
TTUs, starting from the next nucleotide.

To validate the results, the final list of the identi-
fied AT-TTUs underwent manual evaluation, using the
Ensembl genome browser 109 (https://asia.ensembl.org/
index.html). The precise locations of the AT-TTUs were
determined as follows: The output was organized and
classified in an Excel file, where the start and end points
of each AT-TTU were determined in the genome. By
subtracting the start and end points of consecutive AT-
TTUs, colonies were identified. If the resulting distance
between consecutive AT-TTUs was less than 500 bp,
these AT-TTUs were considered part of the same colony.
Subsequently, a list of colonies, consisting of two or more
AT-TTUs was compiled, the total count of colonies was
determined, and the output was saved in a readily avail-
able format (https://doi.org/10.6084/m?9.figshare.24202
461.v1).

Screening several large and medium-size human colonies
in five other species

Several of the large and medium-size colonies in human
were screened in five other species, spanning primates and
mouse, using the Genome Browser 109 (https://asia.ensem
bl.org/index.html) BLASTN program. This investigation
also included checking of the flanking sequences of the AT-
TTUs, to ensure specificity of the colonies in these species.

For example, the largest colony in human, C718,
spanned 21,859 bp of genomic DNA. On the other hand,
the total count of AT-TTUs in the human genome was
about 10,330,879, resulting in A=75.27 for C718, mean-
ing that based on the Poisson distribution, the average
expected count of AT-TTUs in the 21,859 bp interval
was 75.27. Table 1 presents values of A for several colony
sizes. The calculated probability value of the occurrence
of these colonies was inherent zero.

Visualization

The six pure AT-TTUs were visualized as: -,

MATTAT AATAAT ATTATT ATAATA.

and _ All the overlapping units were also

highlighted, using various highlight and text colors.

Results

The majority of the AT-TTUs resided in colonies.

In total, 10,330,879 AT-TTUs were detected across
the human genome, of which the majority (9,936,861)
(96.18%) were arranged in 1,390,055 colonies (Fig. 2)
(Suppl. 1). The AT-TTUs were spread across all chromo-
somes (Fig. 3).

AT-TTU colonies were significantly more abundant

and larger than the CG-TTU colonies

In comparison to the CG-TTU colonies (https://figsh
are.com/articles/dataset/All_possible_CGrich_trinucleot
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Table 1 Several large and medium-size AT-TTU colonies in human and their corresponding colonies in other primates

Colony formula®

A

Location (Colony interval)

Chr. No.

Macaque

Gorilla

Chimpanzee

Human

Colony size in
human?®

75.27

11:114603789-114625648

—

—

16.78

22:18728881-18733753

22

160

2

ATA

43

2

TAA

93

21.88

11:96561723-96568076

65

36

4162

12:79456025-79468112

103

2

TAT

22.63

X:143653179-143659751

17

2

ATA

22:18891229-18896934 19.65

22

135

2

ATA

105

2

TAT

9.05

2:16146128-16148756

95.6

2:231822812-231850574

16

2

AAT

Cc718

C457

€350

317

287

C275

267

€255
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Table 1 (continued)

Colony formula®

A

Location (Colony interval)

Chr. No.

Macaque

Gorilla

Chimpanzee

Human

Colony size in
human?

14.61

X:108772450-108776693

[(ATT)2N
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[(ATA)2117

[(ATA)2195
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Table 1 (continued)
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Colony formula®

Colony size in Human Gorilla

human?®

Chimpanzee

Macaque Chr. No. Location (Colony interval) A

C175 [(ATT)2]5

[(ATA)2]68
[(AAT)2]5

C173

It
[
It
I
It
C161 [(
[
It
It
It
It

7 7:54395223-54397576 8.1

16 16:18565943-18570325 15.09

3 3:8693642-8702099 29.12

2 Colony size, chromosomal location, colony interval, and A are based on the human genome, as reference. The corresponding colonies in other species were
identified, using BLASTN. Instances in which the colonies were partially sequenced (such as C287, C212, and C200 in gorilla), or lacked the corresponding colony in a
species were left blank. None of the colonies in this table were detected in mouse lemur or mouse

b Formulas represent absolute count of units, regardless of being pure or overlapping. The Poisson probability of the colonies was inherent zero
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Fig. 2 Genome-wide count of AT-TTUs in human. The majority
of the AT-TTUs were arranged in colonies. Absolute counts are
depicted

ides/23260562), the colonies formed by AT-TTUs were
significantly more abundant (Fig. 4). Large intervals of
chromosomes were occupied by colony intervals in many
chromosomes, for example in chromosome 4. Further-
more, the pattern of distribution of the AT-TTU colonies
across human chromosomes was significantly differ-
ent from the CG-TTU colonies. For example, whereas

1000000
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Unit count

400000

200000

0

I I R R I O I U IO SRR PP R SR

Chromosome
Fig. 3 Count of AT-TTUs across human chromosomes.
Chromosome-by-chromosome absolute count of all possible AT-TTUs
is depicted

chromosome 1 had the highest percentage of CG-TTU
colonies [21], AT-TTU colonies reached highest percent-
age on chromosome 4. Chromosome X was also enriched
by AT-TTU colonies.

Several of the large and medium-size AT-TTU colonies
coincided with extensive dynamicity in great apes

Several of the large and medium-size AT-TTU colo-
nies in human were also detected in other great apes
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Fig. 4 Normalized distribution of AT-TTU vs. CG-TTU colonies across human chromosomes. The AT-TTU colonies were significanlty more abundant
than the CG-TTU colonies, and occupied significant intervals of several chromosomes (maximally in chromosome 4). Colony percentage (Y-axis)
depicts the percentage of each chromosome that is occupied by the AT-TTU colonies. The CG-TTU data were extracted from the following link:
https://figshare.com/articles/dataset/All_possible_CG-rich_trinucleotides/23260562

(Table 1). Exceedingly dynamic events were detected
across these colonies, affecting the AT-TTUs and the
flanking sequences to the units. Across the colonies,
the AT-TTUs were either pure or overlaps of two or
more pure units.

The largest AT-TTU colony in human was a compound
colony of 718 units (C718), located on chromosome 11,
which was detected with exceeding dynamicity in human
and chimpanzee, and at a far lesser extent in gorilla.
This colony reached maximum complexity and size in
human (Fig. 5). The absolute count of the AT-TTUs and
the distribution of the units in the pure and overlap-
ping compartments were exceedingly dynamic across
these species, adding multiple layers of complexity of the
events, and leading to massively divergent compositions.

Most of the units in C718 and its orthologous colo-
nies were in the overlapping compartment (Figs. 5 and
6A). The immediate flanking sequences of the overlap-
ping units conformed to the flanking sequences of the
involved pure units, and were significantly dynamic with
respect to mutations (Fig. 5B).

Models proposed for the evolution of pure
and overlapping units
The pure units were the inverted or palindromic
sequences of one another, and probably resulted in DNA
breakage and recombination events inherent to inverted
and palindromic sequences, for example, two pure units
of TTATTA and ATTATT (inversion), and TTATTA and
TAATAA (palindrome).

Overlapping units were a consequence of unequal
crossovers among the pure units. For example, in C718,
the most prevalent overlapping unit, TTATTAT, was the

consequence of unequal crossovers between pure units,
TTATTA and TATTAT (Fig. 6A). In another example in
C718, the overlapping unit, AATAATTATTAT, was the
consequence of several unequal crossovers across units
(Fig. 6A). It is conceivable that reverse processes leading
to the overlapping units resulted in the re-emergence of
the pure units.

The flanking sequences of the units were also highly
dynamic (Fig. 6B), signifying the occurrence of crosso-
vers at the sites of the AT-TTUs, and coupled breakage
and repair at, and around these sites.

Coincidence of some of the colonies beyond great apes
Several colonies, such as C212, C200, and C184 coincided
beyond great apes, and included macaque (Table 1). As
an example, in C184, the colonies were shared dynami-
cally in human, chimpanzee, gorilla, and macaque, and
there was a directional incremented trend of complex-
ity of the events and units in human (Fig. 7). Pure and
overlapping units were also detected across this colony
in human and other primates. For example, TATTATTA,
was the consequence of unequal crossovers between TAT
TAT, ATTATT, and TTATTA pure units.

Some colonies were detected in human and not the other
five species studied

We also detected colonies that were found in human
only (Table 1), examples of which are visualized for
C457 (Fig. 8A) and C190 (Fig. 8B). Consecutive pure
units recombining with each other, or pure and overlap-
ping units recombining with each other were detected
in these colonies.
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Fig. 5 The largest AT-TTU colony in human (C718

S cacomcaor 2
e xzaaoac; =TS T EETECCACTT00TACAD PO TACCCACOADOCN cocarcacqE]
ToATGGATA GaoGCANA TS oA oo TANA T TACCCA AN AN TAACA AT Aoch TN S CALCATINCATTOGTIN oo R TSR ToaTACOCATeASocho T SR oo
AT AT A AT AT A A AN A A AN oA AN CaN o R CHoAO T AT TTTATTTICCAGCAGUTANCAGTOGTIAGCY ST AT ATTEACCCATEA AN ACATIAN COTSATTA
CABODCATCATTATONTCCACTONOT ACAGT GOTEAC CAKTOAGOCATCACETEETEICCACAGIT ARCATTOOTANG R wacore
frraras

AormaaG i
asoman
eaconce
Caccaoa e
ChmaaTTAecATaAToAN AR ACCAGe A
e orgocxs A csoocanca ST
BT T T s e TR T
ST G oo e RN
BECrcueT AR ACE A OCRA AT ATATCE AN TADEAC TG EATECACONRCR e COTAACAATCATEAC CACAAGGLAAT
pr—— GGATANGAGTOGNTACCCACANIICAA ACAG TANCA TOOTTACC CACOAGACAN T AC TAG TATCCACOGaT AR CAGT CATTAC CCAT AGICANTAT TR TACTOGOT AN CAGT GOTTAC!
A ST A TOOTAN A OO T RAAC caacooaman =
a0 A A oA A A K AN 00T T Ao AR AT A SO0 AT A A OCAA AT AT cA T CAGTAR AT TACA COTOAACAAAC ST A0 e ————y
oA TTA AT OA AT A TTATATACACA G AR ROCTTACOAC AN TA ST ATooATTAC RIS AN TACHERER ACCa00n A o IS ehnnTA oA
ChToRCoTACA RN ACCAGOTAACAGTOTTTACCEAL OACA T TACACAC A AR SRR ACADOOTANCAT O TACOCA GOSN TR A ToaTeA ARG A AR CeA TN AN GO 0T aKGOAN A LR AN ATAACALT AL COTAGA AR
e TTgCoacroco TN

cargocAATACCEEERCC ACCOOUTAX AITOTTAACCACD3

NmaxooeANA: T
czcacams

ooarmac ax —
mcmrmﬁcmcn ATOUTANCAGTGOTTACC CAGGAGGCANTACTCAT ATCCATTOGOTANCAGTOGTTACCCAC GAGCADTAC TR

GAATTACTESIEBACACAGOGTAN ToaGocarTA CHRIACCACTGIOTAN
et e e e e et
IEERCCACCAOTAACAS: TR CATTONTAACAS:
TacceaTarTocaneacHEE cCx7aA00eAACA COEEERECCAC CO0TAACEATOUTTACC CACOMIOCANTACEERZECCAC

oA A A a0 T AT o0 AT AC AL AN TATTATATE A
rmAcecaceAGeca S corc Ao ARG oA CooAAGsocAN AT
ocancaco SRS caaroc ooz A 2
TTATCCACTOaGAA TarTas incoch i T oA Tech A AN Ao A cancoe e BT oA POt ATT o0 A otACA st HRBERRC oA oo AATAGRo0 A cem i one e chacnd
00T AR A U aAC A TIAT OCAATA T TACTATC AL COAGTARCAS 00T TCCACOADOCARCAC] (cxrorTTaCecaCANgOAN e oA i0: xazon
acrrorma

Chimpaniee
sercereccmsoenen STETE sacocana TS carcao ST cansocareac TR — V—
emcocarea TR AT e corroc AR oA TR A ST A A GO TEACCARGNGO AN R ISAA A e TR ca:sosoman o R A aactacat
e S vy
e oo AR RO o
o

EETcaccaorma s
TGOGTAN - CAGACAATAC AR CACCGGG TAACAGTGGTTACCCTCGAGGCAR CAC TIEILIH CATCAGG TAKC UTATTATTC X \CGAGGCA COGOTANC FTOAGGCGACACHEN

Eoroamacmarac e e

oot rcocaTanasconene T A A AT TTACCCATASOCANTAC ecrrmeen Phcaoreormcccangeaneaca M ACAGAACAOTORT e AT IR ASCTACATTITE

oo eacaToaTace: ST AT AT

AACACORENICCACOORATANCAGT GGTTAC CCATGAGOCATTACTTAT TCTCCATAGGAT AAC TOT GUTTACCGAGOC ANTACERTEICCACCOGGTAACA GTOGTTATCCAC GAGGCAAAACTTAGTATC CAGC TG TARTOOTGUTTACCCACRAGGCAS TAACAGTC CTAACAG

e e o S ocsorma s

racTorse caAGGCANTA

carcocs EETEco
0200cAA A TGRS oo ToocTaACAr

AGAGGEANCACETTTEANAC CORTTAN
wmmmmmmmmmmmm:ﬂmm
coaoacarcxc TR acoracracacEcINC

TOOTTACCCACGAGOC AACACEEERECCACCOOTTAACAT T OGTTACACATAA AACAGTOOTTACCETAG
ceacan CAGITAACAOTOTTAC CCOPaAQOCAACAAHEICCACCOTTT

TAC T CACOGATAACAGTOOTTA

BT CATTI0GTAMCAUTOOTTACCAGAGAGOCA

CAGOTANCAGTGITTAC
conson aoacecan
£A0C0007AN A CTaTTEACCAAGAGOCAACACEZEEEEA
ACCOGITAA TocATRAG
cansozaacacy

CcATaAOTANTACEERERATIOS

AvoTak e e osoman anceamTATETATC
anaoc; comaac Aooaman e e~
ETRTECcAGAGN ETETECCACTAGOTAGCAG? ACOTANTGOTAGTTA STTCCACCAGTTAATAGTA
o A aoihachseac SRS oraoon
et Cmcond e
Gorta
s gim—-
eacsine: oo cariacer
s s
macacr Ee

Page 8 of 16

) and the corresponding colonies in chimpanzee and gorilla. While the colony was shared

across these apes, we detected dynamic differences and species-specific formulas and compositions of the AT-TTUs. Pure units and overlapping
units of the pure units were detectable, signifying sites of unequal cross-over at the units. The colony reached maximum complexity and size

in human

AT-TTUs are a mechanism for the emergence of Aand T
short tandem repeats (STRs)

The AT-TTUs and coupled unequal crossovers and
recombination at these sites result in the emergence of

STRs (repeats of > 3). For example, in C184, the (TTA)3
STR could be a consequence of unequal crossovers
through various paths (Fig. 9A and B). In other exam-
ples, in C457 and C190, unequal crossovers gave rise to
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Fig. 6 Emergence of overlapping units from pure units. Emergence of the most prevalent overlapping unit in C718, and other overlapping

units in this colony (A). For simplicity, only the alleles involved in the process of gaining overlapping units are depicted. A sample of the flanking
sequences to each unit is depicted (B). For the units that were highly prevalent, only 10 sequences were randomly selected from the human C718
colony. The flanking sequences of the overlapping units conformed to the flanking sequences of the involved pure units, and were significantly
dynamic with respect to mutations. Underlines represent probable mutations (the least frequent substitutions in a given nucleotide position

are underlined). The high density of flanking mutations is an expected consequence of the unequal crossovers at the units and breakage/repair
mechanisms at, and around these sites. The models represent only a sample of the dynamicity at the units and their flanking sequences

overlapping units for the emergence of several (ATA)3
STRs (Fig. 8C, D, and E). We detected the pure units
and intermediate overlapping units necessary for the
emergence of a given STR, in the same (or orthologous)
colonies that the STR was detected.

AT-TTUs may regulate transposable elements (TEs)

We observed that some of the colonies, such as C718,
were surrounded by various classes of TEs, such as
short interspersed nuclear elements (SINEs), long
interspersed nuclear elements (LINEs), and long termi-
nal repeats (LTRs) (https://genome.ucsc.edu/), whereas
within the colony interval was mainly devoid of these
elements. This property was observed in human, chim-
panzee, and gorilla, for C718 (Fig. 10). This colony may

function as a potential cis inhibitor of TEs in the human
genome.

Discussion
The bulk of literature is dominated by reports of the
preference of CG- over AT-rich sequences at the
recombination hotspots [15, 22—-27]. Limited reports of
the involvement of AT-rich sequences in recombination
and consequent translocations primarily concern AT-
rich palindromic or inverted sequences. These events
are mainly involved in chromosomal translocations and
deletions, for example in chromosomes 11, 17, and 22
[28-30].

The algorithm developed in the present study aimed
at including palindromes and inversions in the context


https://genome.ucsc.edu/

Ohadi et al. Biology Direct

(2024) 19:70

Human

ACATATGTAACAAACCTGCATGTTGTACACATGTACCCTAGAACT TCAAGT TN Ur VAR AATATATAAAAATAAARATAAATAAGA GAAA VUV UV UFICAAT
TATAGGACTAAGTAAATATGGCATTAAAAAACCTAACAAAATAAAAGAAGAGTTAAGAGGAGAGAGGATGCATAGTAGACACTACTGGATGCTGGACTGAGCTGC
TTAAACTTCAGTGGTGGGCAGTAAGGAAGGCTCCCAATTATGLLUEr Vv A ATV T VAT CACA AT T A C

A CACAcm-c ATTATTAR TAGTACACACT’I-CG ATTATTA,VAATAATA CACAAT'I-
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ACATATGTAACAAACCTGCACTTTGTGCACATGTACCCTAGAACT TCAAGT LMW VAWV AAAATATATAAAAATAAAAATAAATAAGAAAAY: TAATAATA(&:V-Viy g
ATAGGACTAAGTAAATATGGCATTAAAAAACCTAACAAAATAAAAGAAGAGTTAAGAGGAGAGAGGATGCATAGTAGACCCTACTGGATGCTGGACTGAGCTGCT
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GGACATGGAGGAGGAAATGTTGGATGCAGGGGGAAGAGT TGGGAACGTTTCTGTARAGAGCCARATATGAGACAATAAGGGCCTAGACCAGGATGGTGCTGATGT
CAAGAAAAGGGACAACGGGAGGAACTTCCTGAAATTGATGTCACT TTACAT CGTTAAFAMGANCTGATT TTTTAAATTTAT GACAATATTC CARAGGTTATGGAT
AGCETTCILUE U T TTATTT TCCTAT CAATAT GACAGT CARARAGCTTTAAATGACAGTGACAACTGAAAGGCARATTTAATGAGTAACATAATTATTGAARAT
CARATTTCAATCCTTATTCTCCTGATAAGTCTACATGAAAAAATATGAATT TTCATATTTCATAATAGGACAGGTATAAAAAGCAAAATAT CACAGTTCTTCCCA

Gorilla

GAACTTCAAGTATAGTAAAAARATATATARATAAAAATARATAAGAGARAAATIVV VIV UV ICAATTATAGGACTAAGTARATATGGCATTARAAAACCTARCARA
ATAAAAGAAGAGTAAGAGGAGAGAGGATGCATAGTAGACACTACT GGATGC TGGACT GAGCTGCTTARACTTCAGTGGTGGGCAGTAAGGAAGGCTCCCAATTAT

ATTATTAIVAATAATA XS Nehuiy - - (S TATTAT TAL VAR A TAATA CACACTT_CAMAAMCACACT’I_
pINIS SN X T TATTAT TRl TAT TATTAI VAAATAA T2 CACACTTTTACGMAAWCACACT!_ A

TGCACACTTGTATTACGY:Vwv-Nuvla

CACACTTGTATTAC

: AARATAATGCACACTT GTATTACGL g Ugv A GCACACTTGTATTACGI LETNETN
A@GCACACTTGTATTAC 'ATTATTAVSAATAATA CACAAT‘I-C TAAAACAATTIBIIECGAATTG TTAARNNINNAITG

TAG’IMGTATTGTTGTTAAAMCATAGWGTAGTAATTTTA

Macaque

VA VWA ATTGGTCATAAAAATTAATCTGGCATTAAAATGCA

AACATTATTCTTACTTCAATCAAAGTTATTTTTCTCTCTCCTTATCAGAGAACAATACTGGTCTTTATAATGGTCTTCTAACTGTAGTTTT TACTTTAGTGTGCA
CCARRAAACCTTTATTTGCTGGTACTTC TGGTAGAGAATAATTTCTGATCTT TTTTCT CANBIIARAGCTAAAGTTCTTATAAATTAT TGAAAGTIRL UV CEVIGT
ATTTTAGCATAGTCAAGCCTGTGCATT TGCINTNNUNIAA TATGIY U e Uei T TTGTAGATATATATTTTA TTTTAC TATGCATCACAGTGACAGCATTATATTGAC
TTTTATGAATTATTTGGTAGGTTA CTATAAGCTAAATTT TAGGGTGAAATT TTTGAGCTATTAGCATATAATTGT TATARAATGCAACATCATTTTTGA
TAAAAATAAARATACTCAATCTAAGAAAAAAGT TGCTGT TCTAGT CAGGGT TCTCCAGAGAAACAGACCCAATAGGGCAAGTATATACACAGAGAGAARACTATT
TAAAGAAATTGGTTCATGTGATTTTGCAAGTTCAAAATATGCAGGCTGGGCAATCACGCTGGAGGTAAGAGAATGAATCCTACATTTTGCAGTTCAAGTCTGAAG
GCTATCTGCAACAGAATGACT TTCTGT TTGGGARAGTCAATCTTTGGCTCAATTCAGGCCTTTAGATGATTGAAT GAGGCCCACCCATATTAGAGAGGGCTCTCT

GCTTTATCCAACATTCACCAATTTAAATCTCATCCAAAAATGTCATCACAGAAACATCCAA@GTTTGACTAAATATCTGAGAACTATGACTCACCCAGGT
TGACATATAAAATTAATCATCACAATAGCATATGTTAGCTGCAGGGTAAGACAGACAAATATC TATATGGCTTGATAAATAGGGCTCCACTGAACAAGTGTCTTC
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CATATAGAAGTGTTCAAATTGGTGAAATACCACAATTAGAG

AATAATTATGTTGAAGAATTATTATTAAAAAATGAATAGAACATATAAAAGTAATATT TGGAA

Fig. 7 Example colony shared across great apes and macaque (C184). High dynamicity encompassed the AT-TTUs, as well as the flanking
sequences to each unit. The colony reached maximum complexity and size in human. It is conceivable that the pure units, AATAAT and TTATTA
,emerged from unequal crossovers between sister chromatids and non-sister homologous chromosomes. It can also be predicted that AATAAT
emerged before TTATTA, as the former was detectable as distantly as in macaque, whereas TTATTA was not detected in this species. Overlapping
units of these units and other pure units later emerged in gorilla, chimpanzee, and human

of AT-TTU pure units, which led to the identification
of a phenomenon, whereby AT-TTUs colonized across
the genome with exceeding significance, based on
Poisson distribution. In fact, the majority of AT-TTUs
resided in colonies, and these colonies spanned sig-
nificant intervals of several chromosomes. Remarkably,
chromosome X was also enriched by colonies.

The AT-TTU colonies were significantly larger
and more complex than the CG-TTU colonies that
we reported previously [20, 21]. These findings sup-
port a more significant role of AT-rich sequences in
comparison to CG-rich sequences, as crossover and

recombination hotspots. The AT-TTU crossover hot-
spots are ubiquitous, whereas the most refined maps of
recombination identified to date are on the cM scales
[31, 32].

The presence of pure units and overlapping units of the
pure units, signify that the main reason for the hotspot
events in the colonies is the AT-TTUs. The inversions
and palindromes as a result of the pure and overlapping
units increase the rate of various genetic rearrangement
events and recombination across the colonies. Palin-
dromes and inversions are known to be recombinogenic
in the genomes, and a risk to instability [33, 34].
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Fig. 8 Example colonies that were detected in human and not the other five species. These colonies were denser than the non-specific colonies. A
C457 was the largest colony in the human-only category. The high intensity of unequal crossovers in C457 resulted in recombination of numerous
pure and overlapping units in some regions, e.g., consecutive blue, purple, and navy units. Inversions and palindromes were readily detectable.

For example, the ATAATATATTAT palindrome was the consequence of the recombination of two pure units, ATAATA and TATTAT. B C190 exemplifies

a medium-size colony of mainly pure units. This colony was also highly dynamic with respect to the intensity of AT-TTU recombination

The flanking sequences of the AT-TTUs were also
extensively dynamic. The very high dynamicity of the
flanking sequences was in line with the previous reports
that flanking sequences to the recombination sites are
prone to mutations [35].

Some of the identified colonies, which were further
studied in several other primates, were shared in these
primates with exceeding dynamicity of the events. These
findings challenge the literature on the rarity of shared
recombination hotspots between human and closely
related species [36-39]. An isolate report of shared
hotspot loci between human and chimpanzee was at
[-globin and HLA regions on chromosome 21, which was
based on high Bayes factors of shared hotspots at loca-
tions within both regions [40]. Our data extend crossover

and recombination hotspot sharedness across primates,
and envision a new perspective with respect to the mag-
nitude of these events across genomes.

It is reasonable to consider AT-TTUs a novel genomic
entity, as although they are repeats, they do not con-
form to the conventional definition of repetitive DNA
sequences [41]. It is also expected that novel proteins
are recruited to these loci, as neither the well-character-
ized recombination hotspot 13-mer, nor the degenerate
sequences of this sequence conform to the identified AT-
TTUs and colonies, and the extent of the events occur-
ring across these colonies.

It is possible that some of the AT-TTU colonies are a
result of “non-crossover” recombination, which includes
exchange of DNA fragments, without exchanging the
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Fig. 9 AT-TTUs are a novel mechanism for the emergence of STRs. For simplicity, only the alleles involved in the process of STR emergence are
depicted. Models of the birth and maturation of (TTA)3 STRs in C184 (A) and (B), (ATA)3 STRs in C457 (C), (D), and (E) and (ATA)3 STRs in C190 (C)

and (D)

flanking chromosome arm. In fact, the majority of
recombination interactions in meiosis are of the non-
crossover type, as opposed to crossovers, which include
the flanking chromosomal arm as well. Similar to crosso-
vers, knowledge on the sites and biological implications
of non-crossovers are also limited (if not less) at this time,
and they are more difficult to detect. Evidence indicates
that there probably is no non-crossover-specific pathway,
and that restoration of intermediate events in a single

pairing/recombination pathway promotes synaptonemal
complex formation [42]. PRDM9 recruitment, CG-bias
at the sites of recombination, and nearby conversions
are also inherent to non-crossovers known to date [22,
43]. The AT-TTUs identified here, unveil recombination
hotspots and evolutionary implications, which may be of
relevance in both crossover and non-crossover contexts.
Throughout this paper, we used the term “crossover” as
its general application (see Glossary). That term was not
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Fig. 10 Potential inhibitory effect of C718 on surrounding TEs. While this colony is surrounded by various TEs, such as SINEs, LINEs, and LTRs,
the colony interval itself is mainly devoid of these elements (Blat Search in https://genome.ucsc.edu/). C718 in human and the orthologous colonies
in chimpanzee and gorilla are yellow-highlighted

intended to differentiate between crossover and non- be noted that more comprehensive evolutionary studies

crossover events defined above. are warranted to draw solid conclusions on the evolu-
In comparison to CG-TTU colonies, the AT-TTU col- tionary time-scale of the AT- and CG-TTU colonies.
onies (at least the colonies that were further analyzed It is estimated that approximately 50% of the human

in additional primates and mouse), were mainly more genome contains repeat elements [44]. These elements
complex in human, at a directional trend. Furthermore, are classified into different classes, including STRs,
the rate of detecting these colonies in human only, was  LINEs, SINEs, LTRs, minisatellite and satellite repeats,
higher than the CG-TTU colonies [21]. One explanation = RNA repeats (including RNA, tRNA, rRNA, snRNA,
may be that the mechanisms involved in the development ~ scRNA, srpRNA), other repeats e.g., class RC (Rolling
of the AT-TTU colonies evolved more recently than the  Circle), and Unknown [45]. Similar to CG-TTUs [21], AT-
CG-TTU colonies. This is also supported by our obser- TTUs and the crossovers coupled with these units are a
vations that the sample colonies studied in Table 1 were  novel mechanism for the emergence of STRs. This fol-
not detected in mouse lemur and mouse, whereas in the  lows from our observations that all the pure and inter-
instance of CG-TTU colonies, several of the colonies mediate overlapping units necessary for the birth and
were identified in these species [21]. However, it should maturation of a given STR were detectable in the same
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(or orthologous) colonies. STRs are being increasingly
linked to significant functions of evolutionary, biologi-
cal, and pathological consequences [46—50]. The colo-
nies may also be coupled with the inhibition of TEs, such
as SINEs, LINEs, and LTRs. TEs contribute to cell and
species-specific chromatin looping and gene regulation
in mammalian genomes [51]. It is, therefore, conceiv-
able that the interaction between TEs and the identified
colonies will eventually shape the genome structure and
functionality.

Considering that large intervals of chromosomes are
occupied by the AT-TTU colonies and the recombina-
tion events coupled with these colonies, it is conceivable
that these colonies link to genome size regulation. This
concept is in line with several reports, for example, the
driving force of recombination on vertebrate genome size
evolution [52, 53], and the chromosome size effect on
sequence divergence among species through the inter-
play of recombination and selection [54].

Taken together, in view of the events associated with
the identified AT-TTUs, their abundance and ubiquity
throughout the genomes studied, and exceedingly sig-
nificant colonization based on Poisson distribution, we
predict that these findings are the tip of the iceberg, vari-
ous aspects of which are yet to be explored in the future
studies.

Conclusion

Our findings unveil massive AT-TTU crossover and
recombination hotspots across the human genome, and
signify preference of AT- over CG-rich sequences at the
crossover and recombination hotspots. These recombina-
tion hotspots are conserved, yet with extensive dynamic-
ity, at least across great apes and Old-World monkeys.

Abbreviations

AT-TTU  Aand T trinucleotide two-repeat unit

C Colony

CG-TTU  Cand G trinucleotide two-repeat unit

cM CentiMorgan

LINE Long interspersed nuclear element

LTR Long terminal repeat

SINE Short interspersed nuclear element

STR Short tandem repeat

TE Transposable element

Glossary

Unit Two-repeats of any A and T trinucleotides. For
example, TTATTA is a two-repeat unit of the TTA
trinucleotide.

Colony A group of units, in which the distance between two

consecutive units was < 500 bp. Throughout the text,
specific colonies are identified by adding the “C" prefix,
where necessary. The designation of colonies is based
on their size in the human genome. For example,
C718is a colony of 718 units in human.

Compound Colony A colony that consists of more than one type of
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two-repeat units of AT trinucleotides. For example, a
compound colony could include (TTA)2 and (TAT)2
units.

A unit that consists of only one type of A and T trinu-
cleotide, for example, TTATTA.

A unit that consists of two or more pure units that
overlap. For example, the sequence “TTATTATT" con-
sists of three pure units of TTATTA, TATTAT, and ATTATT,
which overlap with each other.
Count of units regardless
overlapping.

The exchange of DNA between paired homologous
chromosomes (one from each parent) that occurs
during the development of egg and sperm cells
(meiosis).

Unequal crossing-over, also referred to as illegitimate
recombination, refers to crossover events that occur
between nonequivalent sequences.

Recombination interactions, which include DNA frag-
ments, without exchange of flanking chromosome
arms.

Recombination hotspot A genomic region (typically in ~ kb ranges) that expe-
rience intensely high levels of Recombination com-
pared to the genomic background.

A genomic region (typically in ~kb ranges) that expe-
rience intensely high levels of Recombination com-
pared to the genomic background.

Pure unit

Overlapping unit

Absolute count of being pure or

Crossover
Unequal crossover

Non-crossover

Repeat of > 3A
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